Conformance Testing of Machine Learning API

Chai Chaoweeraprasit

Development Lead Windows AI @ Microsoft WebNN co-editor

Problems

- Modern ML models run on a wide variety of specialized hardware
- Most known AI use cases relies on floatingpoint calculations
- Processing of deep neural networks unavoidably accumulates floating-point errors

Is That a Muffin?

- Karen Zack posted a series of bizarre photo quiz on her Twitter account (March 2016)
- Her "Animals vs. Food" posts went viral and later became an Al challenge

Variability of Results

Precision differences

Data types e.g. half, float, double

Hardware differences

 Architectural differences e.g. floatingpoint vs. fixed-point

Algorithmic differences

 Any two convolution algorithms are never alike

Numerical differences

 Non-deterministic computation or lossy conversions

Comparison Methods

Fuzzy comparison with epsilon introduces numerical differences on top of everything else

ULP "unit of least precision" is the distance between two consecutive floating-point values

ULP-based comparison removes numerical differences between the two values

ULP-based Compare

```
int64_t GetBitwise(float value) {
   int64_t bitwiseValue = (value < T(0)) ? ~int64_t(0) : 0; // Extend sign.
   *std::launder(reinterpret_cast<T*>(&bitwiseValue)) = value;
   return bitwiseValue;
}

bool CompareUlp(float a, float b, uint64_t ulp) {
   return static_cast<uint64_t>(abs(GetBitwise(a) - GetBitwise(b))) > ulp;
}
```

Baseline and Tolerances

- Algorithmic differences is unavoidable
- Tolerances are acceptable differences between the result (what-is) and the baseline value (whatshould-be)
- ULP-based tolerances remove both the hardware and numerical differences during a comparison
- An "ideal" baseline is invariant and stable

Test Construction Strategy

