TPAC 2021

WebNN ML JS Frameworks
Performance

Ningxin Hu (Intel)
Oct 2021

Agenda

= ONNX Runtime Web
= TensorkFlow Lite Web
=" OpenCV.js

= Summary

ONNX Runtime Execution Providers
l .
—>

Parallel, Distributed Graph Runner -

Output

Input .

Result

' 1 1

Execution Providers

GPU Hardware

ONNX Runtime works with different hardware acceleration libraries through its
extensible Execution Providers (EP) framework to allocate specific nodes or sub-graphs for
execution by the EP library in supported hardware.

https://onnxruntime.ai/docs/execution-providers/

WebNN Execution Provider Prototype

= Based on ONNX Runtime Web 1.9.0

Web Application
* Implemented in C++ and uses webnn.h

ONNX Runtime JavaScript AP|

= Add, Conv, Gemm/Matmul, Poolings, BatchNorm,
Relu, LeakyRelu, Clip, Concat and Reshape

= Run CPU EP (Wasm) op if not supported by

WebNN EP
ONNX Runtime (WASM) .
CPU EP ' I = E.g., Softmax, ImageScalar, Shape, Gather,
I ! Unsqueeze

= Compile to Wasm with a customized
Emscripten with WebNN support

Browser/Electron.|
(JS engine, WASM engine, WebGL, WebNN) = library_webnn.js maps C++ to JavaScript call

= Source code available at github repo

JavaScript

WASM

NEYE

https://github.com/microsoft/onnxruntime/tree/v1.9.0/js/web
https://github.com/webmachinelearning/webnn-native
https://github.com/huningxin/emscripten/tree/webnn_2.0.26
https://github.com/huningxin/emscripten/blob/webnn_2.0.26/src/library_webnn.js
https://github.com/huningxin/onnxruntime/tree/webnn_ep/onnxruntime/core/providers/webnn

ONNX Runtime Web Demo with WebNN EP

= Based on ONNX Runtime
Web Demo.

= Support “GPU-WebNN" and
"CPU-WebNN" for all demos

= Access native ML API through
WebNN-native node.js addon
when served as an Electron.js

cheetah ~ or UPLOAD IMAGE

app for Windows
» DirectML for GPU-WebNN
* OpenVINO for CPU-WebNN

= Source code available at
github repo

Select
Backend: GPU-WebGL

CPU-WebAssembly

GPU-WebNN

CPU-WebNN ce Time: 3.0ms

cheetah |IEEEGCG—N 100%

leopard | 0%

jaguar | 0%
|

[

snow leopard ﬂ 0%

O,

o
o8

lynx

SqueezeNet is a light-weight convolutional networks for image classification.
https://github.com/onnx/models/tree/master/vision/classification/squeezenet

The packaged Electron.js app runs ORT Web demo with WebNN EP

https://github.com/Microsoft/onnxruntime-web-demo
https://github.com/webmachinelearning/webnn-native
https://github.com/huningxin/onnxruntime-web-demo/releases/download/ort_webnn_ep_0.1.0/ONNXRuntimeWeb-webnn-demo-win32-x64.zip
https://github.com/huningxin/onnxruntime-web-demo/releases/tag/ort_webnn_ep_0.1.0

ONNX Runtime Web Demo with WebNN EP
Performance*

Inference Latency Speedup on CPU Inference Latency Speedup on GPU
(higher is better) (higher is better)
20 18
16
18 17.5 > 15.8
16 14.2 14.6 14
— 14 13.1 .
¢ 12 g 12
E 12 - E 9.7 .
2 10 9 = 86 £
= 2 8 7
o 8 [}
(] (]
o Q 6
w6 n
4 3.0 3.1 3.0 4 331
- A o A e | - . .
o mill - - - o [-]
MobileNet SqueezeNet Emotion Yolo MobileNet SqueezeNet Emotion Yolo
® Wasm EP SIMD (ORT Web) ® Wasm EP SIMD+MT (ORT Web) § ® WebGL EP (ORT Web) = WebNN EP GPU (ORT Web) B DirectML EP GPU (ORT Native)

m WebNN EP CPU (ORT Web) B OpenVINO EP CPU (ORT Native)

* Tested on a Windows laptop. All models are FP32 precision. See backup for workloads and configurations. Results may vary.
§ Enabling Wasm MT (Multi-Threading/SharedArrayBuffer) requires “cross-origin isolation”.
£ Tested with ONNX Runtime benchmark tool (onnxruntime_perf_test)

https://developer.chrome.com/blog/enabling-shared-array-buffer/

What is a TensorFlow Lite Delegate?

Operation
Kernels

Interpreter Accelerator
Core Delegate

Operation
Kernels

A TensorFlow Lite Delegate allows you to run your models (part or whole) on another
executor. This mechanism can leverage a variety of on-device accelerators such as the
GPU or Edge TPU (Tensor Processing Unit) for inference.

https://www.tensorflow.org/lite/performance/delegates

WebNN Delegate Prototype

» Based on TF Lite support for Web

Web Application

* Implemented in C++ and uses webnn.h
(see REC for design details)

TF Lite Web JavaScript API = Support 10 ops:

= Add, Mul, Conv2d, DepthwiseConvZ2d,
| Poolings, ResizeBilinear, Softmax, Reshape,
TF Lite WebAssembly Runtime ! Concat

XNNPACK Delegate ~ [WebNN Delegate .« Run Wasm ops if not supported by

WebNN delegate

{enableWebNNDelegate: true}

Browser/Electron,j) ComT o
(JS engine, WASM engine, WebGL, WebNN) e.g, Lonviranspose

= Compile to Wasm with a customized

Emscripten with WebNN support

JavaScript

WASM = Source code is available at github repo

INEWVE

https://github.com/jinjingforever/tflite-support
https://github.com/tensorflow/sig-tfjs/pull/2
https://github.com/huningxin/emscripten/tree/webnn_2.0.15_tflite_support
https://github.com/huningxin/tensorflow/tree/webnn_delegate/tensorflow/lite/delegates/webnn

TFLite Web APl Demo with WebNN Delegate

[B ased on TFL|te Web AP' M 0 d el E— TFLite Web API Model Runner Demo
Runner Demo

= Supports “Use WebNN delegate”

TFLite Web API Model Runner Demo

Number of runs: [50 |
fo r C P U a n d G P U . Model: | MobileNetv2 v
Use WebNN delegate: E Device preference:

= Access native ML API through
WebNN-native node.|s addon
when served as an Electron.js
app for Linux:

= OpenVINO/CPU for WebNN/CPU

wine bottle (score: 0.934)

= OpenVINO/GPU for WebNN/GPU sverage tme 213 ms

median time: 2.10 ms

max Time: 2.8 ms

= Source code is available at
github repo

The packaged Electron.js app runs TFLite Web APl demo with WebNN delegate

https://github.com/jinjingforever/tflite-support/tree/master/tensorflow_lite_support/web/tflite_model_runner/demo
https://github.com/webmachinelearning/webnn-native/tree/main/node
https://github.com/huningxin/tflite-support/releases/download/webnn_delegate_0.1.0/tflite-web-api-model-runner-demo-linux-x64.tar.gz
https://github.com/huningxin/tflite-support/releases/tag/webnn_delegate_0.1.0

TFLite Web APl Demo with WebNN Delegate
Performance *

Inference Latency Speedup (higher is better) -

e it 16.6
16 native £

14
12.1

12 10.9

10 8.3

Speedup (times)

2.6

1 -
I

L
MobileNetv2 ResNet50v2

4 33
0 [

m XNNPACK Wasm SIMD (TFLite Web) m XNNPACK Wasm SIMD+MT (TFLite Web) & m WebNN CPU (TFLite Web) WebNN GPU (TFLite Web)

1
1
1
1
I
1
1
1
1
I
1
75
1
1
1
1
1
1
1
1
1
1

B XNNAPCK (TFLite Native) B WebNN CPU (TFLite Native) B WebNN GPU (TFLite Native)

* Tested on a Linux laptop. All models are FP32 precision. See backup for workloads and configurations. Results may vary.
§ Enabling Wasm MT (Multi-Threading/SharedArrayBuffer) requires “cross-origin isolation”.
£ Tested with TFLite benchmark tool (benchmark_model)

10

https://developer.chrome.com/blog/enabling-shared-array-buffer/

OpenCV DNN Module and Backends

i OpenCV modules

OpenCV AP|

core

Imgproc

video

calib3d

highgui

11

OpenCV.js and WebNN backend

Web Application = Google Summer of Code project of OpenCV

_ n |mp[emented iNn C++ and uses webnn.h

_ = Support 11 layers (ops):
OpenCV JavaScript AP| _
= BatchNorm, Convolution, FullyConnected,
RelL U, ReLU®6, Pooling, Reshape, Softmax,
Permute, Concat

OpenCV WebAssembly Runtime

» Run CPU backend (Wasm) ops if not
SR BRI supported by WebNN backend
= Eg, LRN

= Compile to Wasm with a customized
Emscripten with WebNN support

Browser/Electron.|
(JS engine, WASM engine, WebGL, WebNN)

= Source code is available at github pull
JavaScript reg u est

WASM

INEWOVE

12

https://summerofcode.withgoogle.com/archive/2021/projects/4779460481515520/
https://github.com/huningxin/emscripten/tree/webnn_2.0.15_tflite_support
https://github.com/opencv/opencv/pull/20406

OpenCV.js DNN Examples with WebNN
Backend

. Based On ODenC\/JS |mage : — : Image Classification Example
Classification Example

Image Classification Example

m U W b N N b k d b This tutorial shows you how to write an image classification example with OpenCVijs.
S e e a C e n y To try the example you should click the modelFile button(and configFile button if needed) to upload inference model. You can find the model URLs and
parameters in the model info section. Then You should change the parameters in the first code snippet according to the uploaded model. Finally click Try it

n e t. S e tPre fe ro b [e B O Cke n d(“We b n n ") . button to see the result. You can choose any other images.

= Access native ML API through
WebNN-native node.js addon when
served as an Electron.js app for

Label Probability
L | n u X . space shuttle 81.30%
' submarine, pigboat, sub, U-boat 10.92%

trailer truck, tractor trailer, trucking rig, rig,
: ; 1.21%
articulated lorry, semi

= OpenVINO/CPU for WebNN/CPU
= OpenVINO/GPU for WebNN/GPU

= Source code is available at github
repo E—

The packaged Electron.js app runs OpenCV.js DNN example with WebNN backend

13

https://docs.opencv.org/master/d3/d6b/tutorial_js_image_classification.html
https://github.com/webmachinelearning/webnn-native/tree/main/node
https://github.com/opencv/opencv/pull/20406

OpenCV.js DNN Module with WebNN Backend
Performance *

Inference Latency Speedup (higher is better)

16.4
13.9

14
7 12
o 10.2
= 10
S
g 8 6.4f
Q
& 6

4 3 3

[] [

GoogleNet SqueezeNet
B CPU Wasm SIMD (OpenCV.js) B CPU Wasm SIMD+MT (OpenCV.js) §
B WebNN CPU (OpenCV.js) W OpenVINO CPU (OpenCV Native)

* Tested on a Linux laptop. All models are FP32 precision. See backup for workloads and configurations. Results may vary.
§ Enabling Wasm MT (Multi-Threading/SharedArrayBuffer) requires “cross-origin isolation”.
£ LRN is currently not supported by WebNN backend and fallbacks to Wasm backend

14

https://developer.chrome.com/blog/enabling-shared-array-buffer/

WebNN Design Highlights for ML Framework

» Graph API

» Work with framework’s graph partitioner

= Always able to fallback to default backend, allow progressive improvement

Separate build and compute

* map to framework’s model compilation and inference stages
Sync API

= Work with framework’s C++ code base

= Blocking main thread issue: move to worker

Produce results in standard layout into pre-allocated output buffer

= work with tensor buffers of frameworks without memory copying and conversion

Fused ops (e.g., conv2d with bias and activation):

= Work with framework’s graph optimizer that fuses ops

Rich options (e.g., tensor layout)

* maximize the compatibility of frameworks

15

Summary

= WebNN would help ML JS framework get close-to-native
performance by accessing native ML AP

= Proven by Electron.js/node.js implementation

» Help project the performance of browser implementation
* Proposals:

= Implement WebNN APl in Web browsers

= Implement WebNN backend in ML JS frameworks

= Support WebNN in Emscripten

16

Backup - Workloads and Configurations

ONNX Runtime workload: Device ASUS ZenBook Flip S laptop with Windows 10 Home/version 21H1/os build 19043.1237, Hardware CPU:
11th Generation Intel® Core™ i7 Processors/ TGL i7-1165G7, # of Cores: 4, # of Threads: 8, Max Turbo Frequency: 4.70 GHz, Cache: 12 MB
Intel® Smart Cache, Bus Speed: 4 GT/s, Configurable TDP-up Frequency: 2.80 GHz, GPU: Intel® Iris® Xe Graphics, Graphics Max Dynamic
Frequency: 1.30 GHz, Execution Units: 96, Memory: 16G LPDDR4X/512G SSD, Advanced Technologies: Intel® Deep Learning Boost (Intel®
DL Boost), Intel® Speed Shift Technology, Intel® Hyper-Threading Technology, Intel® Turbo Boost Technology: 2.0, Instruction Set: 64-bit,
Instruction Set Extensions: Intel® SSE4.1, Intel® SSE4.2, Intel® AVX2, Intel® AVX-512, etc. Software native test tool ONNXRuntime
Performance Test , web test tool ONNX Runtime Web Demo , OpenVINO™ toolkit version: 2021.4, Node.js version: 14.16.1, Electron:
version 15.1.2, Chrome version: Stable 94.0.4606.81, Python version: 3.8, etc. tested by Intel on 10/18/2021.

TFLite workload: Device MSI Prestige 14 Evo laptop with Ubuntu 20.04.71 LTS, Hardware CPU: 11th Generation Intel® Core™ i7 Processors/
TGL i7-1185G7, # of Cores: 4, # of Threads: 8, Max Turbo Frequency: 4.80 GHz, Cache: 12 MB Intel® Smart Cache, Bus Speed: 4 GT/s,
Configurable TDP-up Frequency: 3.00 GHz, GPU: Intel® Iris® Xe Graphics, Graphics Max Dynamic Frequency: 1.35 GHz, Execution Units: 96,
Memory: 16G LPDDR4X/512G SSD, Advanced Technologies: Intel® Deep Learning Boost (Intel® DL Boost), Intel® Speed Shift Technology,
Intel® Hyper-Threading Technology, Intel® Turbo Boost Technology: 2.0, Instruction Set: 64-bit, Instruction Set Extensions: Intel® SSE4.1,
Intel® SSE4.2, Intel® AVX2, Intel® AVX-512, etc. Software native test tool _TensorFlow Model Benchmark Tool , web test tool TFLite Web API
Model Runner Demo , OpenVINO™ toolkit version: 2021.4, Node.js version: 14.17.0, Electron: version 15.1.2, Chrome
version: Stable 94.0.4606.81, Python version: 3.8, etc.,, tested by Intel on 10/18/2021.

OpenCV workload: Device MSI Prestige 14 Evo laptop with Ubuntu 20.04.7 LTS, Hardware CPU: 11th Generation Intel® Core™ i7
Processors/ TGL i7-1185G7, # of Cores: 4, # of Threads: 8, Max Turbo Frequency: 4.80 GHz, Cache: 12 MB Intel® Smart Cache, Bus Speed: 4
GT/s, Configurable TDP-up Frequency: 3.00 GHz, GPU: Intel® Iris® Xe Graphics, Graphics Max Dynamic Frequency: 1.35 GHz, Execution
Units: 96, Memory: 16G LPDDR4X/512G SSD, Advanced Technologies: Intel® Deep Learning Boost (Intel® DL Boost), Intel® Speed Shift
Technology, Intel® Hyper-Threading Technology, Intel® Turbo Boost Technology: 2.0, Instruction Set: 64-bit, Instruction Set Extensions:
Intel® SSE4.1, Intel® SSE4.2, Intel® AVX2, Intel® AVX-512, etc. Software workload source code [GSoC] OpenC\V.js: Accelerate OpenC\V.[s

DNN via WebNN, OpenVINO™ toolkit version: 2021.4, Node.js version: 14.17.0, Electron: version 15.1.2, Chrome

version: Stable 94.0.4606.81, Python version: 3.8, etc., tested by Intel on 10/18/2021.

17

https://github.com/microsoft/onnxruntime/blob/8d737f977056444a307f1b7f0bcd402fba62d790/onnxruntime/test/perftest/README.md
https://github.com/huningxin/onnxruntime-web-demo/releases/tag/ort_webnn_ep_0.1.0
https://github.com/tensorflow/tensorflow/blob/5dcfc51118817f27fad5246812d83e5dccdc5f72/tensorflow/tools/benchmark/README.md
https://github.com/huningxin/tflite-support/releases/tag/webnn_delegate_0.1.0
https://github.com/opencv/opencv/pull/20406

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all
publicly available updates. See backup for configuration details. No product or component can be

absolutely secure.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or
its subsidiaries. Other names and brands may be claimed as the property of others.

18

http://www.intel.com/PerformanceIndex

