
W3C WebRTC
WG Meeting

March 30, 2020
8 AM Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the interim meeting of the W3C

WebRTC WG!
○ During this meeting, we hope to make progress on

features at risk, privacy concerns and potential new
work relating to audio acquisition.

3

About this Virtual Meeting
Information on the meeting:
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/March_30_2020
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-stats/
○ https://www.w3.org/TR/mst-content-hint/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://w3c.github.io/webrtc-dscp-exp/
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is being recorded.

4

https://www.w3.org/2011/04/webrtc/wiki/March_30_2020
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
https://www.w3.org/TR/mst-content-hint/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-exp/
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/February_27_2020
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

Issues for Discussion Today
● WebRTC-PC

○ Features at risk
○ Issue 2495: When is negotiation complete? (Jan-Ivar)
○ Issue 2502: When are effects of in-parallel stuff surfaced? (Henrik)

● Media Capture and Streams
○ Issue 671: New audio acquisition constraints (Sam Dallstream)
○ Issue 639: Enforcing User Gesture for getUserMedia (Youennf)
○ Issue 640: Only reveal labels of device user has given permission to

(Youennf)
○ Issue 669: "user-chooses": Does required constraints make any sense now?

(Henrik)
○ Issue 672: Deprecate inputDeviceInfo.getCapabilities() for privacy (Jan-Ivar)

5

https://github.com/w3c/webrtc-pc/issues/2495
https://github.com/w3c/webrtc-pc/issues/2502
https://github.com/w3c/mediacapture-main/issues/671
https://github.com/w3c/mediacapture-main/issues/639
https://github.com/w3c/mediacapture-main/issues/640
https://github.com/w3c/mediacapture-main/issues/669
https://github.com/w3c/mediacapture-main/issues/672

Issues for Discussion Today
● WebRTC-PC

○ Features at risk
○ Issue 2495: When is negotiation complete? (Jan-Ivar)
○ Issue 2502: When are effects of in-parallel stuff surfaced? (Henrik)

6

https://github.com/w3c/webrtc-pc/issues/2495
https://github.com/w3c/webrtc-pc/issues/2502

WebRTC-PC Features at Risk
(Bernard)
● Should we mark these unimplemented features

as “Features at Risk”?
○ Issue 2496: voiceActivityFlag

■ Exposed in RTCRtpSynchronizationSource
○ Issue 2497: Unimplemented MTI Stat

■ Also remove MTI designation:
■ RTCInboundRtpStreamStats - partialFramesLost

○ Issue 2498: Multiple DTLS Certificates
■ WPT test fails
■ Not a high priority for any browser

7

https://github.com/w3c/webrtc-pc/issues/2496
https://github.com/w3c/webrtc-pc/issues/2497
https://github.com/w3c/webrtc-pc/issues/2498

Issue 2495: When is negotiation complete? (Jan-Ivar)

This problem arose while writing WPT tests for perfect negotiation. Need something like

 const transceiver = pc.addTransceiver("video"); // for example
 await /* some event or promise */
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

8

��

https://github.com/w3c/webrtc-pc/issues/2495

Issue 2495: When is negotiation complete? (Jan-Ivar)

The obvious approach is racy, outside highly controlled cases:

 const transceiver = pc.addTransceiver("video");
 await state(pc, "stable");
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

 function state(pc, s) {
 return new Promise(r => pc.onsignalingstatechange = () => pc.signalingState == s && r());
 }

We might reach "stable" from rollback, or answering a remote offer.

Or from a previous negotiation we just missed locally.

9

��

https://github.com/w3c/webrtc-pc/issues/2495

Issue 2495: When is negotiation complete? (Jan-Ivar)

We could write terrible action-specific spin-tests:

 const transceiver = pc.addTransceiver("video");
 while (!transceiver.currentDirection) { // spin-test specific to addTransceiver
 await state(pc, "stable");
 }
 assert_true(true, "we didn't time out!");
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

But in general, APIs that time out on failure stink.

10

��

https://github.com/w3c/webrtc-pc/issues/2495

Issue 2495: When is negotiation complete? (Jan-Ivar)

As a workaround, JS can dispatch its own “negotiated” event from SRD(answer)

11

��

https://github.com/w3c/webrtc-pc/issues/2495

Issue 2495: When is negotiation complete? (Jan-Ivar)

This avoids rollbacks & remote offers, but we must still account for missing a local train:

 const transceiver = pc.addTransceiver("video");
 await negotiated(pc);
 if (!transceiver.currentDirection) { // non-spin test specific to addTransceiver
 await negotiated(pc); // catch the next train
 }
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

 function negotiated(pc) {
 return new Promise(r => pc.addEventListener("negotiated", r, {once: true}));
 }

We get rid of the while-loop, but not the action-specific completion-test.

12

��

https://github.com/w3c/webrtc-pc/issues/2495

Proposal A: Fire negotiationcomplete from SRD(answer) if renegotiation isn’t needed

 const transceiver = pc.addTransceiver("video");
 await new Promise(r => pc.onnegotiationcomplete = r);
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

Simple. One downside is subsequent actions may delay this event.

Issue 2495: When is negotiation complete? (Jan-Ivar)

13

��

https://github.com/w3c/webrtc-pc/issues/2495

Proposal B: Expose a negotiationneeded boolean attribute.

 const transceiver = pc.addTransceiver("video");
 while (pc.negotiationneeded) await state(pc, "stable");
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

Complication: once set, browser MUST fire negotiationneeded, to meet JS expectation.

Has the same downside that subsequent actions may delay settling.

Issue 2495: When is negotiation complete? (Jan-Ivar)

14

��

https://github.com/w3c/webrtc-pc/issues/2495

Proposal C: Expose a negotiationcomplete Promise<void> attribute.

 const transceiver = pc.addTransceiver("video");
 await pc.negotiationcomplete;
 assert_equals(transceiver.currentDirection, "sendonly", "negotiates to sendonly");

Fulfillment of this new promise would not be delayed by subsequent actions
(accomplished by the browser replacing the attribute with a new promise each time a
negotiation train leaves the station)

Collectively, “it’s the promise addTransceiver et al. should have returned!”

Bonus:
 const lastPromise = pc.negotiationcomplete;
 await foo();
 if (lastPromise == pc.negotiationcomplete) { /* still on the same negotiation train */

Issue 2495: When is negotiation complete? (Jan-Ivar)

��

https://github.com/w3c/webrtc-pc/issues/2495

Issue 2502: When are effects of in-parallel stuff surfaced? (Henrik)

Silly question? Spec: In-parallel, do “foo”. When “foo” is done, queue a task.
● Example: In parallel, apply SDP according to JSEP. If successful, queue a task

that updates the set of transceivers and internal slots accordingly.
It would seem clear that effects are surfaced in a queued task.

… but what about addTrack()? JSEP:
If the PeerConnection is in the "have-remote-offer" state, the track will be attached to the first
compatible transceiver that was created by the most recent call to setRemoteDescription() and
does not have a local track.

Note:
● JavaScript is supposed to act “single threaded”.
● Most PC states are represented by internal slots, updated in tasks. The set of

transceiver and signaling state are not defined as “internal slots”, but they are
defined in webrc-pc and get and set inside tasks (JS thread).

● The same concepts exist in JSEP, which executes in-parallel. Same or different?
16

https://github.com/w3c/webrtc-pc/issues/2502

Issue 2502: When are effects of in-parallel stuff surfaced? (Henrik)

Does this addTrack() create a new transceiver or use the one created by SRD?
pc.setRemoteDescription(offerSdpThatCreatesACompatibleTransceiver);
// Don’t await in-between.
pc.addTrack(track);

Has a compatible transceiver been created yet by “the most recent call to
setRemoteDescription()” when addTrack() is executed?

If addTrack() operates on webrtc-pc’s signaling state and set of transceivers then:

NO

If addTrack() operates on JSEP’s signaling state and set of transceivers then:

Maybe?
17

https://github.com/w3c/webrtc-pc/issues/2502

Issue 2502: When are effects of in-parallel stuff surfaced? (Henrik)

But aren’t webrtc-pc and JSEP’s signaling and transceiver states the same?

● No, if so pc.signalingState and pc.getTransceivers() would be racy APIs.

Still, might addTrack() surface an SRD-created JSEP-transceiver to JS?
What do we do today?

● Chrome: SRD creates the transceiver, addTrack exposes it.
○ Well-defined behavior, but the JS thread is blocked on “in-parallel” work!

● Firefox: Mutex access to shared transceiver objects?
JS and background thread races. addTrack MAY expose SRD-transceiver.
○ Non-blocking, but racy!

Problems: Compatibility concerns and races.
In both cases: “single threaded” principles violated?

18

https://github.com/w3c/webrtc-pc/issues/2502

Issue 2502: When are effects of in-parallel stuff surfaced? (Henrik)

Proposal A:

● addTrack() should determine whether to create or recycle a transceiver based on
JS thread’s set of transceivers.

⇒ addTrack() is not dependent on JSEP states and has no risk of surfacing
in-parallel created transceiver objects.

I believe the spec already says this, but it would be good to clarify.
Both Chrome and Firefox are non-compliant.

Proposal B:

● Update the spec to allow addTrack() to add to JS’s set of transceivers a JSEP
transceiver that has not yet been exposed.

● Make it clear that which transceiver is obtained is racy, implementation-specific
and that this non-“single threaded” behavior is on purpose. :(19

https://github.com/w3c/webrtc-pc/issues/2502

Issues for Discussion Today
● Media Capture and Streams

○ Issue 671: New audio acquisition constraints
○ Issue 639: Enforcing User Gesture for getUserMedia (Youennf)
○ Issue 640: Only reveal labels of device user has given permission to

(Youennf)
○ Issue 669: "user-chooses": Does required constraints make any sense now?

(Henrik)

20

https://github.com/w3c/mediacapture-main/issues/671
https://github.com/w3c/mediacapture-main/issues/639
https://github.com/w3c/mediacapture-main/issues/640
https://github.com/w3c/mediacapture-main/issues/669

Issue 671: New audio acquisition constraints (Sam Dallstream)

21

● Problem Statement:
The specification, as it stands today, does not provide enough specificity within
constraints (noiseSuppression, echoCancellation) to allow developers to
differentiate streams for speech recognition and communication.

● noiseSuppression, echoCancellation, autoGainControl, are only on/off
● Current implementations are geared towards communications.
● Communications modifications generally hurt speech recognition and vice versa.
● Testing current constraints is hard (besides getters/setters). More specific

constraints can start to conform to relevant ETSI standards. (communication,
speech recognition (Draft ETSI TS 103 504))

https://github.com/w3c/mediacapture-main/issues/671
https://www.etsi.org/deliver/etsi_ts/126100_126199/126131/12.03.00_60/ts_126131v120300p.pdf
https://drive.google.com/open?id=1y_i7NkXbCuRWznYRl9dacy3xDdH2e7-m

Issue 671: New audio acquisition constraints - Technical
Details

Examples of areas where speech recognition streams differ from
communications streams.

22

Communications Audio Speech Audio

Echo (Suppression) Echo leakage is intolerable to human listeners

>40 dB speakerphone, >46 dB handsets, ITU-T TS

26.131

Echo leakage is tolerable with sufficient speech level

 Typically >15-20 dB speech to echo

Echo (Switching) Switching (slight loss of initial syllables) is used to

avoid echo leakage, and slight impairments are not

noticeable to human listeners

ITU-T P.501, P.502, TS 26.131, P.1100, G.131

Any switching resulting in slight loss or attenuation of

syllables impairs barge-in and introduces word error

rate

STQ63-250 Section 5.2

Ambient Noise Focused on perceived quality/distraction from

speech/noise. Some ambient noise is tolerable is it

provides contextual cues in human perception

without distraction

Noise sources diffuse

ITU-T TS 26.131, P.835, ETSI EG 202 396

Not concerned with human perception but

preservation of source utterance and removal of

background noise

Noise sources diffuse + discrete in test to evaluate

rejection nearby non-users and noises

STQ 63-250 Section 4.2

Alexa Acoustic Testing V3.5.6

https://github.com/w3c/mediacapture-main/issues/671

Issue 671: New audio acquisition constraints - Technical
Details

23

Room Acoustics (Reverb) Typically ok to have some amount of reverb, as audio
provides contextual cues in human perception
without distraction

Devices concerned with preservation of source
utterance. Room reflections introduce loss of
information in frequency regions and phonemes

Comfort Noise Desired to avoid perception that call has dropped

ITU-T G.711

Undesirable to add any additional noise that impairs

source utterance

Sound Quality Sensitive to human perception

ITU-T P.863

Sensitive to preserving speech formants

STQ 63-250 Section 6

Alexa Acoustic Testing V3

Level/Gain Control Standardized to match cross-network

communications architectures

 ITU-T G.111, G.121, TS 26.131

Dependent on trained model, often less sensitive

https://github.com/w3c/mediacapture-main/issues/671

Issue 671: New audio acquisition constraints - Proposal

Proposal #1
● Add a new constraint “category” that takes one of four values: “default”,

“raw”, “communication”, “speech” (or “speechRecognition”).
● Link to explainer

Pros
● Fits well into existing constraint model.
● Straightforward translation to implementation on multiple platforms.

Cons
● Competes with existing content-hint draft in a non-productive / confusing

way.
● Could have required interactions with other constraints.

24

https://github.com/w3c/mediacapture-main/issues/671
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/AudioStreamCategory/explainer.md

Issue 671: New audio acquisition constraints - Proposal

Proposal #2
● Modify existing constraints like echoCancellation to be more specific.
● Add new hints to content-hint draft (communication, speechRecognition).

Pros
● Fits in well with content-hint draft.
● Allows for (possibly) more developer freedom.

Cons
● Implementation route is currently not as clear.

25

https://github.com/w3c/mediacapture-main/issues/671

Issue 639: Enforcing user gesture for getUserMedia (Youenn)

● Problem: getUserMedia should only be callable on user gesture
○ Most modern APIs add such restrictions
○ This is not web compatible

● Can we start shipping such restrictions in getUserMedia?
● Proposal: require a user gesture to grant access without a prompt

○ PR: https://github.com/w3c/mediacapture-main/pull/666
● Other ideas

○ Require a user gesture past initial page load
○ Require a user gesture once a previous call to getUserMedia is denied for the

page (implemented in Safari)
■ If a call was denied for the current page, Safari will deny all further calls,

except if call is made as part of a user gesture, in which case it will prompt
■ Persistent denying stays denied 26

https://github.com/w3c/mediacapture-main/issues/639

If difficult to enforce per-device exposure rule, enforce per-device-type exposure
● Expose all microphones if one microphone is granted
● Expose all cameras if one camera is granted
● Do not expose speakers once output speaker picker API is available

Still possible to use groupId to get microphone corresponding to camera

Issue 640: Only reveal labels of devices user has given permis.. (Youenn)

https://github.com/w3c/mediacapture-main/issues/640

Issue 669: "user-chooses": Do required constraints make any sense
now? (Henrik)
Constraints are powerful for optimizing resolution, frame rate and other properties.
But “required” constraints also remove devices from the selection.
● Does this make any sense if “user-chooses”? Example: SD camera faces me, HD

camera faces my room. Application opens HD camera because it requires HD, but
that’s not what I want! If we have a picker, why not let the user pick?

But I want to avoid re-prompt when user re-visits my website!
● How about {quickJoin:true} that defaults the choice if it’s been selected before and

devices have no changed? The app doesn’t even need to remember deviceId.

But I want in-content picker!
In-content selection only works well when exposing all device labels to the application.
… wasn’t one of the points of “user-chooses” to stop leaking device labels?

28

https://github.com/w3c/mediacapture-main/issues/669

Issue 669: "user-chooses": Do required constraints make any sense
now? (Henrik)
Proposal A: Continue to support in-content picker in “user-chooses”, but prefer not to…
● deviceId can be required, all other constraints are treated as optional if they would result in

decreasing the set of devices.
● In order to support in-content picker, deviceId and labels of ALL devices have to be exposed

when permission is granted to one device.

Proposal B: Partial in-content picker support in “user-chooses”.
● Like Proposal A except in-content can only pick between devices UA has exposed; other

devices only available through re-prompt.
● (Discussion: How would the application know if there were other devices available so that it

knows whether to have an “other (re-prompt)” option or not?)

Proposal C: Don’t support in-content picker in “user-chooses”.
● Any device selection is necessarily done by the user. Labels only exposed for current track.
● Avoiding re-prompt is supported by {quickJoin:true}, not by requiring deviceId.

29

https://github.com/w3c/mediacapture-main/issues/669

Issue 672: Deprecate inputDeviceInfo.getCapabilities() for privacy (jib)

Chrome/Edge & Safari have info.getCapabilities() w/info on all devices after gUM.

Reason: Lets site enforce its constraints while building picker, or choosing other device
outright. Most sites enforce some constraints. But: It’s a trove of fingerprinting info!

"user-chooses" provides feature-parity, without the information leak:

await navigator.mediaDevices.getUserMedia({video: constraints, semantics: "user-chooses")

So once #667 merges, can we deprecate info.getCapabilities()?

30

��

��

https://github.com/w3c/mediacapture-main/issues/672
https://jsfiddle.net/jib1/2pnmjz57/
https://w3c.github.io/mediacapture-main/getusermedia.html#input-specific-device-info
https://twitter.com/jibrewery/status/1242512103900094470
https://github.com/w3c/mediacapture-main/pull/667
https://w3c.github.io/mediacapture-main/getusermedia.html#input-specific-device-info

For extra credit

31
Name that bird!

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The bird

32

