
W3C WebRTC
WG Meeting

July 2, 2019
8 AM Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the interim meeting of the W3C

WebRTC WG!
○ During this meeting, we hope to decide on proposals

for substantive changes to webrtc-pc.

3

About this Virtual Meeting
Information on the meeting:
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/July_2_2019
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-stats/
○ https://www.w3.org/TR/mst-content-hint/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://w3c.github.io/webrtc-dscp-exp/
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is being recorded.

4

https://www.w3.org/2011/04/webrtc/wiki/July_2_2019
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
https://www.w3.org/TR/mst-content-hint/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-exp/
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/July_2_2019
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

WebRTC-PC Issues
● Issues & PRs

○ Issue 2150/PR 2220: stop() needs more work (jan-ivar)
○ Issue 2176/PR 2220: Spec steps on stop()

underestimates BUNDLE problem (jan-ivar)
○ Issue 2165: A simpler glare-proof SLD() (jan-ivar)
○ Issue 2166: A simpler non-racy rollback (jan-ivar)
○ Issue 2167/PR 2169: {iceRestart: true} works poorly

with negotiationneeded (jan-ivar)
○ Issue 2221: Negotiation methods are racy with a pushy

SFU (jan-ivar)
○ Tweaking Jan-Ivar’s stop() - if time allows (henbos)

5

https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2220
https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/pull/2220
https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/issues/2167
https://github.com/w3c/webrtc-pc/pull/2169
https://github.com/w3c/webrtc-pc/issues/2221

Introduction: Perfect negotiation (jan-ivar)
Imagine: What if we could add/remove media to/from a live RTCPeerConnection, without worrying
about state, glare, role (which side you’re on), or what condition the connection is in?

We’d simply call:

 pc.addTrack(track, stream); // ...and that’s it! Track appears remotely

 // Negotiation, written once, is isolated from the rest of the application logic
 pc.onicecandidate = e => { … }; // Written perfectly
 pc.onnegotiationneeded = e => { … }; // Written perfectly
 io.onmessage = e => { /* Written perfectly to handle glare using rollback */ };

Crazy? Chrome 75 finally fixed negotiationneeded, but only Firefox implements “rollback”.

See the Perfect negotiation in WebRTC blog, where I did this, for how to write it perfectly.

TL;DR: Works in Firefox! But reveals our spec APIs to be racy and glare-prone!

🤔💡

����

https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

Premise: Perfect negotiation (jan-ivar)

7

pc.addTrack(track, stream)
pc.removeTrack(sender)

RTCPeerConnection

pc.addTransceiver(kind) pc.restartIce()
pc.createDataChannel(name)

tc.direction = “sendrecv”
tc.sender.setStreams(streams)
 tc.stop()

RTCRtpTransceiver

negotiationneeded icecandidate

High-level application methods

Low-level signaling methods

pc.createOffer()
pc.createAnswer() tc.reject()
pc.setLocalDescription()
pc.setRemoteDescription()

pc.addIceCandidate(candidate)

signaling
channel

Premise: Perfect negotiation (jan-ivar)

8

pc.addTrack(track, stream)
pc.removeTrack(sender)

RTCPeerConnection

pc.addTransceiver(kind) pc.restartIce()
pc.createDataChannel(name)

High-level application methods

tc.direction = “sendrecv”
tc.sender.setStreams(streams)
 tc.stop()

RTCRtpTransceiver

Premise: Perfect negotiation (jan-ivar)

9

pc.addTrack(track, stream)
pc.removeTrack(sender)
pc.addTransceiver(kind)
pc.createDataChannel(name)
pc.restartIce()

RTCPeerConnection

tc.direction = “sendrecv”
tc.sender.setStreams(streams)
tc.stop()

RTCRtpTransceiver

Application logic with perfect negotiation

pc.addTrack(track, stream)
pc.removeTrack(sender)
pc.addTransceiver(kind)
pc.createDataChannel(name)
pc.restartIce()

RTCPeerConnection

tc.direction = “sendrecv”
tc.sender.setStreams(streams)
tc.stop()

RTCRtpTransceiver

(Glare is solved in negotiationneeded using rollback)

Issue 2165/6/7: If we don’t solve races & stop() then it doesn’t work

10

pc.addTrack(track, stream)
pc.removeTrack(sender)
pc.addTransceiver(kind)
pc.createDataChannel(name)
pc.restartIce()

RTCPeerConnection

tc.direction = “sendrecv”
tc.sender.setStreams(streams)
tc.stop()

RTCRtpTransceiver

Application logic with perfect negotiation

pc.addTrack(track, stream)
pc.removeTrack(sender)
pc.addTransceiver(kind)
pc.createDataChannel(name)
pc.restartIce()

RTCPeerConnection

tc.direction = “sendrecv”
tc.sender.setStreams(streams)
tc.stop()

RTCRtpTransceiver

⚠ ⚠

https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/issues/2167

Issues 2176 & 2150: stop()’s BUNDLE problem

11

RTCPeerConnection

negotiationneeded

SLD(offer)

SRD(answer)

io.onmessage

RTCPeerConnection

io.onmessage

pc.createDataChannel(name)
pc.addTrack(track, stream)
pc.addTransceiver(kind)
pc.removeTrack(sender)
pc.restartIce()

tc.stop()
tc.direction = “sendrecv”
tc.sender.setStreams(streams)

SRD(offer)

SLD(answer)

pc.createDataChannel(name)
pc.addTrack(track, stream)
 pc.addTransceiver(kind)
 pc.removeTrack(sender)
 pc.restartIce()

 tc.stop()
 tc.direction = “sendrecv”
tc.sender.setStreams(streams)

negotiationneeded
(picks up in “stable” state, reversing roles.
 i.e. reverse diagram)

tc1

tc2

tc1

tc2

Baseline: Today’s negotiation model illustrated

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150

Issues 2176 & 2150: stop()’s BUNDLE problem illustrated

12

RTCPeerConnection

Today with stop() on offerer side

negotiationneeded

SLD(offer)

SRD(answer)

io.onmessage

RTCPeerConnection

io.onmessage

SRD(offer)

SLD(answer)

negotiationneeded
(picks up in “stable” state, reversing roles.
 i.e. reverse diagram)

1) tc1.stop()

tc1
stopped

tc2

tc1
stopped

tc2
��

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150

Issues 2176 & 2150: stop()’s BUNDLE problem illustrated

13

RTCPeerConnection

Today with stop() on answerer side

negotiationneeded

SLD(offer)

SRD(answer)

io.onmessage

RTCPeerConnection

io.onmessage

SRD(offer)

SLD(answer)

negotiationneeded
(picks up in “stable” state, reversing roles.
 i.e. reverse diagram)

1) tc1.stop()

BUNDLE

💥

tc1
stopped

tc2
stopped

tc1
stopped

tc2
stopped

��

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150

Issues 2176 & 2150 / PR 2220: stop() needs more work (jan-ivar)

PROBLEM: The BUNDLE spec has painted us in a corner where calling stop() on the first transceiver in or
before “have-remote-offer” signalingState, is lethal: stops all transceivers. This is racy behavior.

Impossible to fix in BUNDLE. Yet this flies in the face of the purpose of negotiationneeded, which was to
abstract away negotiation, and free us from signaling state management, by separating it from high-level actions.

The two use-cases for transceiver.stop() are:

1. High-level (everyone): Relinquish resources after an app is done with a transceiver:

 button.onclick = () => {
 if (button.checked) {
 this.transceiver = pc.addTransceiver(track, {streams: [stream]});
 } else {
 this.transceiver.stop();
 }
 }

⚠ The above code will work 95% of the time, but once in a blue moon it will stop all transceivers, just
 because we happened to hit the time-window where signalingState == “have-remote-offer”. A footgun!

2. Low-level (expert): Reject an offered m-line in time for the answer (in “have-remote-offer”). 14

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2220
https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

Issues 2176 & 2150 / PR 2220: It’s worse than we thought (jan-ivar)

Current stop() language assumes
BUNDLE problem is limited to
“have-remove-offer” state, but it’s not.

The problem is equally present if
stop() is called any time before
SRD(offer), as long as what ultimately
ends up being called next is
SRD(offer) rather than SLD(offer).
Only then is the bundle transport toast
(not everyone uses negotiationneeded)

PROBLEM: No way to stop the other transceivers synchronously in this case, since we don’t know outcome yet.

POSSIBLE SOLUTIONS:
1. Stop them later in SLD(answer) only in this corner case? (only solves #2176). Booh!
2. A safer stop() that only affects createOffer, not createAnswer. A separate reject() method would work like old

stop() but throw InvalidStateError outside “have-local-offer”. (solves both #2176 and #2150).
Defies JSEP a bit, which doesn’t anticipate creating/setting a stopped offer wo/entering stopped state.

Inherent JSEP problem: Once stopped in “stable”, no way to know what comes next, SLD(offer) or SRD(offer). 15

or before!

 v

No good! Doesn’t cover “stable” + later SRD(offer)!
v

🤔

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2220
https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150

Issues 2176 & 2150 / PR 2220: Do we need stop()? Yes! (jan-ivar)

Why is stop() important? Web sites have been doing the following every time a participant enters & later drops:

 const sender = pc.addTrack(track, stream); // participant enters
 pc.removeTrack(sender); // participant drops

(or something similar but convoluted for receive-only participants, but let’s keep things simple to make this point)

In PLAN-B, this worked ok, but in UNIFIED-PLAN, this accumulates resources, because the transceiver remains!

To prevent resources and m-lines from accumulating, sites need to call stop():

 const sender = pc.addTrack(track, stream); // participant enters
 pc.removeTrack(sender); // participant drops
 pc.getTransceivers().find(t => t.sender == sender).stop(); // drop resources

 ⚠ The above code will work 95% of the time, but once in a blue moon it will stop all transceivers, just
 because we happened to hit the time-window where signalingState == “have-remote-offer”. A footgun!

Browsers cannot infer users want auto-stop, because stop() stops both directions. So this is why we need stop()
to work, and not be a footgun. It’s answer-rejecting properties are undesirable here. How do we solve this?

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2220

Issues 2176 & 2150: stop() workaround comes up short (jan-ivar)

There’s a seemingly simple workaround:

 const pc = new RTCPeerConnection(config);
 pc.addTransceiver(“audio”); // Add an offerer-tagged dummy!
 /* Rest of your WebRTC code goes here */

...except, this may upset your app logic if you plan on using pc.addTrack:

 pc.addTrack(track, stream); // Attaches itself to dummy!

Web developers would have to avoid addTrack outright, and learn to only use addTransceiver, which has different
semantics (e.g. won’t pair up with remote transceivers).

Another problem is if both ends do this, you end up with two dummies (wasted m-lines, confusion over order of
transceivers and which one is used).

But ultimately, this doesn’t solve the footgun, because people would need to actively know about it and avoid it.

People need to use stop() but want to not have to think about all this.

17

https://github.com/w3c/webrtc-pc/issues/2176
https://github.com/w3c/webrtc-pc/issues/2150

PR 2220: stop() sets new tc.stopping, affecting createOffer only

SOLUTION:

New stopping attribute.

stop() sets stopping, not stopped, but
otherwise works the same locally.

stopping affects createOffer only, not
createAnswer, by tricking JSEP.

SRD(offer/answer) still sets stopped.

We sidestep createAnswer, and that
sidesteps the BUNDLE problem.

New reject() method sets stopped, just like old stop() did, but it only works in “have-remote-offer” state.

https://github.com/w3c/webrtc-pc/pull/2220

PR 2220: stopping solution to BUNDLE problem illustrated (1/2)

19

RTCPeerConnection

Tomorrow with stop() on answerer side (slide 1)

negotiationneeded

SLD(offer)

SRD(answer)

io.onmessage

RTCPeerConnection

io.onmessage

SRD(offer)

SLD(answer)

negotiationneeded
(picks up in “stable” state, reversing roles.
 i.e. reverse diagram)

1) tc1.stop()

tc1
stopping

tc2

tc1*

tc2

*) tc1 is neither stopping
nor stopped yet. Things
appear normal, except
tc1.receiver.track has
ended from RTCP BYE. Immediately followed by...

🙉

https://github.com/w3c/webrtc-pc/pull/2220

PR 2220: stopping solution to BUNDLE problem illustrated (2/2)

20

RTCPeerConnection

Tomorrow with stop() on answerer side (slide 2)

 io.onmessage

SRD(offer)

SLD(answer)

RTCPeerConnection

negotiationneeded

SLD(offer)

SRD(answer)

2) stable reached

tc1*
stopped

tc2

tc1
stopped

tc2
��

*) tc1 will be stopping
initially, then stopped
once back in “stable”
yet again.

🐵

https://github.com/w3c/webrtc-pc/pull/2220

21

RTCPeerConnection

Tomorrow with stop() on offerer side (still works)

negotiationneeded

SLD(offer)

SRD(answer)

io.onmessage

RTCPeerConnection

io.onmessage

SRD(offer)

SLD(answer)

negotiationneeded
(picks up in “stable” state, reversing roles.
 i.e. reverse diagram)

1) tc1.stop()

tc1
stopped

tc2

tc1*
stopped

tc2
��

*) tc1 will be stopping
initially, then stopped
once back in “stable”.

PR 2220: stopping solution in simple case illustrated (1/1)

🐵

https://github.com/w3c/webrtc-pc/pull/2220

PR 2220: stop() sets new tc.stopping, affecting createOffer only

https://github.com/w3c/webrtc-pc/pull/2220

23

24

Backup plan: Improve the stop() workarounds (jan-ivar)

(Only if we fail to agree to fix the problem)

WORKAROUND PROPOSAL A: pc.addTransceiver(“audio”, {ineligible: true}); with the
following special property:

1. This transceiver is ineligible for reuse by pc.addTrack.

This most minimal solution fixes the footgun with the workaround for the first footgun: subsequent addTrack use is
POLA again. But if both ends do this, you still end up with two dummies (wasted m-lines, confusion over order of
transceivers and which one is used).

WORKAROUND PROPOSAL B: pc.addTransceiver(“audio”, {offererTagged: true}); with the
following special properties:

2. This transceiver is ineligible for reuse by pc.addTrack.
3. If any other transceiver exists already, throw InvalidStateError.
4. This transceiver is somehow paired with remote’s construct if remote also uses {offererTagged:

true}.
5. This transceiver is otherwise a regular transceiver (e.g. can be stop()ed).

25

Issue 2167/PR 2169: {iceRestart: true} works poorly with ONN
How does one restart ICE today when using negotiationneeded? Here’s a common trick (but spot the bugs!):

pc.onnegotiationneeded = async options => {
 await pc.setLocalDescription(await pc.createOffer(options));
 io.send({desc: pc.localDescription});
};
pc.oniceconnectionstatechange = () => {
 if (pc.iceConnectionState == “failed”) {
 pc.onnegotiationneeded({iceRestart: true});
 }
};

Clever reuse... except this will fail if iceconnectionstatechange fires outside of “stable” state! An intermittent!

Furthermore, what if your ONN uses rollback (e.g. to implement “the polite peer”)? Your ICE restart just got rolled
back! What do you do? You’d need to write application logic to persist until the offer is applied and not rolled back
by the other peer. Users will most likely never do this, or get it right, leaving them open to intermittents.

This is hard to polyfill in a way that catches all known corner cases that lead to races in common apps. PR next:

https://github.com/w3c/webrtc-pc/issues/2167
https://github.com/w3c/webrtc-pc/pull/2169

Proposal: pc.restartIce(); // sets [[RestartIce]], fires ONN. Cleared in SRD(answer)

Implemented in Firefox behind pref (but not landed yet).

First-class high-level application method.
Sets [[RestartIce]] internal slot, and fires ONN.
Only cleared in SRD(answer) or by full remote ICE restart.
Flips createOffer’s {iceRestart} to default to true.

Has POLA behaviors. WPT tests are written here:

● }, "restartIce() survives rollback");
● }, "restartIce() causes fresh ufrags");
● }, "restartIce() survives remote offer");
● }, "restartIce() fires negotiationneeded");
● }, "restartIce() returns whether state changed");
● }, "restartIce() is satisfied by remote ICE restart");
● }, "{iceRestart: false} overrides and cancels local restartIce()");
● }, "restartIce() survives remote offer containing partial restart");

PR 2169: Add pc.restartIce() method (Jan-Ivar)

27

RTCPeerConnection

pc.restartIce()

RTCRtpTransceiver

 negotiationneeded signaling
channelpc.createOffer({iceRestart})

https://bugzilla.mozilla.org/show_bug.cgi?id=1551316
https://phabricator.services.mozilla.com/D30978#C975484NL1
https://github.com/w3c/webrtc-pc/pull/2169

PR 2169: Add pc.restartIce() method (Jan-Ivar)

28

https://github.com/w3c/webrtc-pc/pull/2169

Issue 2165/6/7: Perfect negotiation exposes racy APIs (jan-ivar)
The “polite peer” signaling strategy: One side is polite, the other is not.
The polite peer uses ”rollback” to always yield to incoming offers from (impolite) peer on glare:

 // Negotiation, written once, isolated from the rest of the application logic.
 io.onmessage = async ({data: {description, candidate}}) => {
 if (description) {
 if (description.type == "offer" && pc.signalingState != "stable") {
 if (!polite) return;
 await Promise.all([pc.setLocalDescription({type: "rollback"}), // Q: Why Promise.all???
 pc.setRemoteDescription(description)]); // A: Racy rollback! #2166
 } else {
 await pc.setRemoteDescription(description);
 }
 if (description.type == "offer") {
 await pc.setLocalDescription(await pc.createAnswer());
 io.send({description: pc.localDescription});
 }
 } else if (candidate) await pc.addIceCandidate(candidate); // Mustn’t race ahead of SRD call!
 }; 29

https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/issues/2167
https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/
https://github.com/w3c/webrtc-pc/issues/2166

Issue 2166/PR 2212: A simpler non-racy rollback (jan-ivar)
If remote candidates come in between rollback & SRD, don’t miss them! Promise.all + PeerConnection queue
avoid this, enqueueing methods ahead of addIceCandidate. But intermittents == Bad API. A simpler/safe API:

 // Negotiation, written once, isolated from the rest of the application logic.
 io.onmessage = async ({data: {description, candidate}}) => {
 if (description) {
 if (!polite && description.type == "offer" && pc.signalingState != "stable") return;
 await pc.setRemoteDescription(description, {rollback: true}); // Simpler, race-proof!
 if (description.type == "offer") {
 await pc.setLocalDescription(await pc.createAnswer());
 io.send({description: pc.localDescription});
 }
 } else if (candidate) await pc.addIceCandidate(candidate); // Never races ahead of SRD now.
 };

PROPOSAL A: SRD takes a {rollback: true} options argument that will roll back an "offer" ahead of applying, if
needed, instead of rejecting with InvalidStateError. Once SRD() is enqueued, addIceCandidate cannot beat it
(JS ahead of first await foo() runs synchronously and to completion, including the synchronous part of foo()).
PROPOSAL B: Always do this implicitly on SRD. Then no API surface change is needed.

https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/pull/2212

PR 2212: Add setRemoteDescription(desc, {rollback: true}) (jib)

https://github.com/w3c/webrtc-pc/pull/2212

PR 2212: Add setRemoteDescription(desc, {rollback: true}) (jib)

Promise<void> setRemoteDescription (RTCSessionDescriptionInit description,
 optional RTCSetRemoteDescriptionOptions options);

https://github.com/w3c/webrtc-pc/pull/2212
https://heycam.github.io/webidl/#idl-promise

Issue 2165: A simpler glare-proof setLocalDescription() (jan-ivar)
The “polite peer” exercise revealed a similar race in negotiationneeded, which is in fact glare-prone:

 pc.onnegotiationneeded = async () => { // Always called from “stable” state only. Good!
 const offer = await pc.createOffer(); // ...except await means createOffer takes time.
 if (pc.signalingState != "stable") return; // Q: Why?! A: Avoid race w/incoming offers #2165
 await pc.setLocalDescription(offer); // Otherwise this may fail w/InvalidStateError!
 io.send({description: pc.localDescription});
 }

A remote offer may come in between createOffer & SLD(offer), causing the latter to fail with InvalidStateError
But who’s going to know/remember that, over some rare intermittent? Instead, I propose a simpler and safe API:

 pc.onnegotiationneeded = async () => {
 await pc.setLocalDescription(); // Simpler, glare-proof!
 io.send({description: pc.localDescription});
 }

Proposal A: SLD without {sdp} implicitly calls createOffer/Answer, if needed, instead of InvalidStateError.
Proposal B: SLD without {type} infers type from signaling state (state.includes("offer")? ”answer” : ”offer”)

https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2165

Issue 2165: A simpler glare-proof setLocalDescription() (jan-ivar)
Not that different from today. Fun fact: the sdp argument to setLocalDescription() is already unused, a ritual:

await pc.setLocalDescription(await pc.createOffer());

...is identical to:

await pc.createOffer(); await pc.setLocalDescription({type: "offer"});

...because the spec already says to fish out [[LastCreatedOffer]] and use that here. Ditto for the answer.

Proposal A: The next natural step here is...

If [[LastCreatedOffer]] is null, instead of rejecting with InvalidModificationError, invoke the
createdOffer algorithm implicitly to set it, before proceeding. Ditto answer.

Proposal B: Proposal A +

Default {type} to (effectively) signalingState.includes("offer")? "answer" : "offer"

100% backwards compatible. setRemoteDescription would remain unchanged.
34

https://github.com/w3c/webrtc-pc/issues/2165

Not covered in "Perfect negotiation in WebRTC", is dealing with an SFU. Fippo explained SFUs can be “pushy”:
They’ll send an offer, followed immediately by a second “better” offer. One strategy is the “FIFO peer”:

io.onmessage = async ({data: {description, candidate}}) => {
 if (description) { // FIFO peer:
 await Promise.all([// ←- Avoids race!
 pc.setRemoteDescription(description), // ←- Always an “offer”. Fixed roles
 pc.createAnswer(), // ←-
 pc.setLocalDescription({type: "answer"}) // ←- Unusual, but works today
]); // ←-

 io.send({description: pc.localDescription});

A second offer may come in while we’re busy responding to the first offer. Use Promise.all to front-load the
peer connection’s queue with all our methods to get back to "stable" before any other methods get a go!
Even with our API fixes proposed so far, we’re not able to fully get rid of Promise.all here. We’ll still need:

io.onmessage = async ({data: {description, candidate}}) => {
 if (description) {
 await Promise.all([// ←- Still needed
 pc.setRemoteDescription(description),
 pc.setLocalDescription()
]);
 io.send({description: pc.localDescription}); 35

Issue 2221: Negotiation methods are racy with a pushy SFU

https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/
https://github.com/w3c/webrtc-pc/issues/2221

The SFU FIFO case shows SLD() & SRD() are racy and a bit outdated: from an earlier time when SDP mangling
between createOffer/Answer to SLD was allowed (it is now forbidden), and when rejecting m-lines in the answer
was common. I propose we give people a simpler and safer alternative that’s race-free and glare-proof:

 io.onmessage = async ({data: {description, candidate}}) => {
 if (description) { // FIFO peer:
 await pc.setRemoteAndLocalDescriptions(description); // ←- Always an “offer”. Fixed roles
 io.send({description: pc.localDescription});
 } else if (candidate) {
 await pc.addIceCandidate(candidate);
 }
 };

Proposal: pc.setRemoteAndLocalDescriptions(description) works like regular SRD, plus, if description is an
offer, generates and sets a local answer before resolving. Behavior-neutral with the Promise.all case. I.e. if SRD
succeeds, but SLD fails, we won’t roll back on failure.

36

Issue 2221: Negotiation methods are racy with a pushy SFU

https://github.com/w3c/webrtc-pc/issues/2221

Issue 2165/6/7: Hopefully we can fix this, and have a race-free API:
 const pc = new RTCPeerConnection(config);

 mediaButton.onclick = () => {
 if (button.checked) {
 this.transceiver = pc.addTransceiver(track, {streams: [stream]});
 } else {
 this.transceiver.stop();
 }
 }
 pc.addTransceiver(“audio”, {offererTagged: true});

 io.onmessage = async ({data: {description, candidate}}) => {
 if (description) {
 if (!polite && description.type == "offer" && pc.signalingState != "stable") return;
 await pc.setRemoteAndLocalDescriptions(description, {rollback: true});
 if (description.type == "offer") {
 io.send({desc: pc.localDescription});
 }
 } else if (candidate) await pc.addIceCandidate(candidate);
 };
 pc.onnegotiationneeded = async () => {
 await pc.setLocalDescription();
 io.send({desc: pc.localDescription});
 }
 pc.onicecandidate = ({candidate}) => io.send({candidate});
 pc.oniceconnectionstatechange = () => (pc.iceConnectionState == “failed”) && pc.restartIce();

😀

❤

https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/issues/2167

Tweaking Jan-Ivar’s stop() - if time allows (1/2)

Starting point: Jan-Ivar’s slides. We have [[Stopping]] and [[Stopped]].
enum RTCRtpTransceiverDirection {
 "sendrecv",
 "sendonly",
 "recvonly",
 "inactive"
};

interface RTCRtpTransciever {
 ...
 readonly attribute boolean stopping;
 readonly attribute boolean stopped;
 attribute RTCRtpTransceiverDirection direction;
 readonly attribute RTCRtpTransceiverDirection? currentDirection;
 void stop();
 void reject();
}

Problem: We have two new APIs, and we rarely care about the difference
between “stopping” and “stopped”. We just want to avoid the BUNDLE footgun.

38

Tweaking Jan-Ivar’s stop() - if time allows (2/2)

Solution: Treat “stopping” as a direction and remove reject().
enum RTCRtpTransceiverDirection {
 "sendrecv",
 "sendonly",
 "recvonly",
 "inactive",
 "stopped"
};

interface RTCRtpTransciever {
 attribute RTCRtpTransceiverDirection direction;
 readonly attribute RTCRtpTransceiverDirection? currentDirection;
}

● Note that [[Direction]] is not a control surface we need once we become stopping.

● While [[Stopping]], direction is "stopped".
● Once [[Stopped]], both direction and currentDirection are "stopped".

● reject() optimizes away an “SDP-ping” at the cost of being a BUNDLE footgun. It’s not worth it.
stop() is “good enough”!

39

We can remove both the stopped and stopping attributes,
now covered by direction/currentDirection.

We can remove stop() too in favor of:
 t.direction = "stopped";

For extra credit

40Name that bird!

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The bird

41

