
Theming for Web
Components

Two Types of Theming Customers
Customer A: Large eng orgs, design systems, ...

● Encapsulation is critical
● Components must be able to evolve without breaking users
● Want to define a tightly controlled styling API

Customer B: App components, npm/OSS packages, ...

● Encapsulation is a hindrance
● Need broad styling capabilities
● Either

○ Are their own user
○ Use versioning to manage evolution

Customer A
● Large eng organizations
● Design systems
●

Customer B Solutions
● ::theme()
● "open styleable" ShadowRoot mode

Open Styleable Shadow Roots
Shadow Roots are open for styling from any
scope above it

Open non-styleable shadow roots block styling as
normal

How do selectors match? Would we need /deep/?

Requirements, Level 1: Pierce Shadow Roots
● Affect styling in a shadow root
● Inherit down multiple levels of scopes
● Component opts-in to styling

✅ Both ::part() and CSS properties affect styling in another root

✅ Both ::part() and CSS properties require the component to opt-in

✅ CSS properties inherit

❌ ::part() doesn't inherit

Requirements, Level 2: Targeting
● Control what properties are styleable
● Allow styling many properties, if desired

✅ CSS properties control exactly which properties are styleable

❌ CSS properties make it cumbersome to allow styling for large number of
properties

❌ ::part() does not allow easy control over what properties are styleable

✅ ::part() does make it easy to allow arbitrary properties to be styleable

Requirements, Level 3: Abstraction
● Parameterize theming with high-level parameters
● Transform high-level parameters to concrete CSS properties

✅ CSS properties let you define new parameter names

❓::part() sort of lets you define a parameter as a pseudo-element

❌ CSS properties do not effectively let you define new value types

❌ calc() is too limited for transformations to low-level properties

Custom A Solutions
● ?
● Evolve CSS itself more

○ Use CSS Custom Properties as style parameters
○ Expand CSS's ability to implement transforms from parameters to styles
○ == standardize runtime versions of Sass features?

Expressiveness

Abstraction

Modularity

Extensibility

Expressiveness
● calc()

○ Operators: ternary, comparison, logical, numeric
○ Functions: string, math, color…
○ Literals: true, false, string

● Lookup Tables
● Container Queries

Expressiveness in calc() allows components to implement richer, higher-level
custom properties.

Abstraction
● Custom Functions
● Mixins

These might be mainly used by components to implement transforms from custom
properties to shadow styles.

They allow sharing that implementation across many components.

● CSS References
○ Export CSS entities (Rulesets, Mixins, Variables, etc)
○ Import CSS entities into CSS, JS, HTML

● Module-like import facility (@use?)

Modularity allows sharing of custom functions and mixins.

Developers largely want lexical scoping. Using CSS properties to refer to entities
is dynamic scoping.

Modularity

Extensibility
● Style Observers
● Custom CSS Features in JS: http://tabatkins.github.io/specs/css-aliases/

http://tabatkins.github.io/specs/css-aliases/

@mixin buttonType($type) {
 border-radius: $type == 'fab' ? 5px : 0;
}

#button {
 /* --button-type == 'fab', 'submit', or 'basic' */
 @include(buttonType(var(--button-type, 'basic')));
}

