
Web Components Integrity
Caridy Patiño

March, 2020



Web Components provide a certain degree of encapsulation to preserve integrity

1. Closed shadow roots, element internals, etc.
2. Event retargeting
3. Style encapsulation

How to Preserve Web Components Integrity



Need more features for large-scale applications and sharing components 
across orgs

1. Manage custom element registration at scale: e.g., scoped registries, 
tag names restrictions, etc.

2. Prevent shared object manipulations: e.g., DOM APIs, globals, 
component prototypes, etc.

3. Sandboxing shared resources: cookies, local storage, etc.

How to Preserve Web Components Integrity (2)



● Developed at Salesforce for web components running on its platform

● Focused on very large scale multi-authors applications (+1K components per page)

● Virtualize DOM APIs for integrity

● Manage communication between multiple JavaScript realms using Proxy Membranes

● Communication is synchronous to match semantics of existing DOM APIs

● Compilation and runtime overhead

Example of DOM Virtualization Today: “Locker”



Locker implementation strategy

Namespace “foo”
- Sandboxed DOM
- Yellow Components
- Yellow Resources:

- cookie, registry, etc.

Namespace “bar”
- Sandboxed DOM
- Green Components
- Green Polyfills
- Green Resources:

- cookie, registry, etc.

Window
- Document
- Platform System Code
- Platform Base WC



Demo



Developers can technically already create a new Realm by creating new same-domain iframe, 
but there are few impediments to use this as a reliable mechanism:

● We either use the DOM apis of the iframe (which requires to keep the iframe attached), 
and deal with unforgeables that can be used to affect the integrity of the app (e.g.: 
window.top).

● or we can detach the iframe while using the realm associated to it and lose some features 
that require host behavior (e.g. import() statements).

In the future we might be able to create new Realms:

● https://github.com/tc39/proposal-realms (currently at stage 2)

Limitations of using iframes to sandbox

https://github.com/tc39/proposal-realms


● We should continue developing our integrity preserving story for WC, 
scoped registry is a good next step.

● Virtualization using async or sync iframes is very far from ideal, Realms 
proposal seems to help a lot to do user-land virtualization for integrity.

Takeaways



How Locker will use scoped registries

Namespace “foo”
- Create yellow scoped registry
- Distort ce.define() to add 

elements to yellow registry
- Disort E.p.attachShadow to 

attach the yellow registry

Namespace “bar”
- Create green scoped registry
- Distort ce.define() to add 

elements to green registry
- Disort E.p.attachShadow to 

attach the green registry

Window
- Document
- Global Registry


