
Introduction 

Make it easier to author equations with CSS... 
Over the year it has become increasingly easier to represent equations using CSS and 
HTML while respecting the traditional typographic rules for this type of content. However, 
there are still cases where the necessary markup and styling makes it extremely difficult to 
author such content without the support of complex libraries or authoring software. 
 
A few examples of some of the difficulties existing today: 

● some inline styles ( vertical­align: 0.374em ) are necessary to represent some 
constructs such as stacked elements (fractions, matrices). These styles use 
font­dependent metrics, and therefore make it difficult to support styling that would 
alter the font family used. They are also fragile with regard to manual editing and 
content change. 

● in other cases, glyph bounding box information is necessary to properly calculate 
alignment offsets, for example for placement of limits in integrals, and this information 
needs to be hard coded and is again font specific, fonts with may not be available 
when used in email or ebook systems. 

● some CSS tricks used to properly represent some constructs such as fraction bars 
and root bars are brittle and can break when a zoom factor is applied to the 
rendering. 

... with improvements that are not only for math 
We are faced with an opportunity to simplify specialized authoring tools, make it easier for 
anyone to use CSS and HTML to author scientific content armed with nothing more than a 
text editor and to introduce to the web some typographical features that are useful beyond 
the narrow use case of scientific authoring. 
 
We outline below some of the most common issues faced when laying out equations in the 
hope to foster a discussion on improvements that could be made to CSS to address them. 
 

● Baseline alignment 
● Stretchy constructions/fences 
● Enclosures 
● Roots 
● Accents and decorators 
● Center­line/math axis alignment 

 
 
 
 



Consideration for Solutions 
● quality of rendering.  The goal of the Community Group is to have fine­grained 

control using CSS over layout and typography of formulas so that high­quality 
scientific typography comparable to what can be achieved in print can be 
implemented using HTML and CSS. 

● minimize the need for inline styles. 
○ reduce the need to track dimension of children for manual alignment/spacing 

etc 
○ reduce the need to provide font metrics for tight bounding boxes, italic 

correction etc 
● stability of layout.  Reduce the need to recompute layout when child content 

changes 
● math fonts.  OpenType defines some optional information that can be embedded in a 

font file and used to render more accurately equations ( 'MATH' table ). This 
information includes how to place mathematical superscript and subscript, stacked 
elements and how to composite glyphs for stretched fences. There are some fonts 
available with these additional tables ('math fonts') including Cambria Math from 
Microsoft which is pre­installed on Windows, STIX, Neo Euler, Latin Modern and 
others. To the extent that metadata information for accurate layout can be used from 
the information embedded in these fonts, they should be. 

 
 

Stretchy Constructions/Fences 

Problem Description 
Stretchy constructions (primarily of  brackets ) are a common typographic feature but currently 
very difficult to do via CSS. 



 

Use Cases 
● https://en.wikipedia.org/wiki/Bracket#Types_and_uses 
● https://macrotypography.blogspot.com/2015/11/curly­braces.html 
● https://graphicdesign.stackexchange.com/questions/4819/whats­the­best­way­to­mak

e­a­curly­brace­used­for­grouping­items­together 
● https://books.google.de/books?id=LFc3DQAAQBAJ&lpg=PA46&ots=vs7rJgfz16&dq=

curly%20brace%20typography&pg=PA45#v=onepage&q&f=false 

Current Approaches 
The typical solution is to track dimensions and manually place boxes with individual glyphs 
or insert SVG elements with custom dimensions. 

Drawbacks 
The boxes can easily misalign due to rounding errors, zoom, etc.  
Hard coded knowledge of the font being used is required. 

Other approaches 
● Vertical stretchy construction with only 2­3 parts (with webfonts). 

https://codepen.io/pkra/pen/aLjGxZ 
● Traditional vertical construction (switching between fonts/glyphs and stretchy 

construction) using element/container queries, CSS (with webfonts). 
https://codepen.io/pkra/pen/gvvagd 

● CSS borders (no webfonts) 
○ Horizontal (single­element) stretchy brace using CSS radial gradients. 

https://codepen.io/lrenhrda/pen/hkLIe 
● unexplored ideas 



○ Leveraging variable fonts 
○ Houdini custom paint 

Related Problems 
A notable related difficulty: in traditional (print) layout, capable fonts will ship several glyphs 
of different sizes and only switch to a general stretchy construction when the dimension of 
the child container is too great for these glyphs. 
Automating this kind of switch is not possible with CSS right now (without element queries). 
In particular, with such an approach the height and width of the stretchy construction will 
depend on the dimensions of the children. 

Baseline Alignment 

Problem Description 
Aligning complex inline content with the baseline of the text is currently difficult. 

 

Non­equation use cases 
● SVG icons with text 

https://blog.prototypr.io/align­svg­icons­to­text­and­say­goodbye­to­font­icons­d44b3d
7b26b4

 
● aligning an inline table/grid with the baseline at a particular row of the grid. 

Current approaches 
The dominant solution is to track dimensions and set  style="vertical­align:..." 



Other approaches 
● Under/over, sub+superscripts and fractions using nested flexbox. 

https://codepen.io/daniwiris/pen/JOqvpB 
● Under/over using nested inline­table  https://codepen.io/pkra/pen/BYwBXB 
● CSSWG GitHub issue: align­at­child  https://github.com/w3c/csswg­drafts/issues/1339 

CSS Inline Layout Module Level 3's “alignment­baseline: alphabetic” might be another path 
towards this feature,  https://www.w3.org/TR/css­inline­3/#propdef­alignment­baseline  (in the 
draft of 2018­08­08 ). 

Center­line/math axis alignment 

Problem statement 
Center­line alignment is in some ways a more advanced case of baseline alignment. 
Traditional (print) equation layout engines have a concept of a "math axis" or similar which 
provides important information for equation layout. 
The typical example is to ensure that a minus sign aligns with the fraction line or with the 
middle of an equality sign. Another example is the alignment of the minus sign or equal sign 
with the tip of a stretchy curly bracket (used in piecewise functions). 

Non­equation use cases 
As the name "math axis" suggests, this is fairly specific to equation layout. 

Current approaches 
The dominant solution is to track dimensions and set style="vertical­align:..."; this is 
combined with webfonts that ensure glpyh and font metrics work out. 

Potential simplifications 
CSS Inline Layout Module Level 3 has alignment­baseline: mathematical 
https://www.w3.org/TR/css­inline­3/#propdef­alignment­baseline  (in the  draft of 2018­08­08 ). 

Enclosures 
Equation layout uses enclosures to style content. 

 
Examples: 

● (US) long division notation 
● actuarial sign ( wiki ) 
● phase­or­angle 
● radical/root 



● strike through lines (updiagonal, downdiagonal, vertical, horizontal) 
● strike through arrows (various kinds) 
● madruwb (Arabic factorial) 

 
TeX/LaTeX packages provide an infinite variation of such designs and MathML provides the 
menclose element alongside an (open­ended) list of attribute names (including the above as 
well as various borders). 
Some of these are relatively easily realized using CSS, however aligning borders across 
(pseudo) elements causes issues, making these solutions brittle. 
A particular problem are diagonal strike through arrows and generally centering strike 
throughs. 

Roots 
While formally a special case of enclosures, roots are special in that they can also come with 
an additional index (cube root etc). This poses additional complications. 
 

 

Accents and Decorators 
For example, an arrow over a variable. 
 
Inherits the problems of stretchy constructions with the addition that the symbol is close to 
another element. 
 
 


