

	[image: HW_POS_RGB_Vertical]

	Document Title
	Security Level

[image: W3C]
1 WebRTC 1.0: Real-time Communication Between Browsers
2 W3C Editor's Draft 30 May 2012
This version:
http://dev.w3.org/2011/webrtc/editor/webrtc-20120530.html
Latest published version:
http://www.w3.org/TR/webrtc/
Latest editor's draft:
http://dev.w3.org/2011/webrtc/editor/webrtc.html
Previous version:
http://dev.w3.org/2011/webrtc/editor/webrtc-20120528.html
Editors:
Adam Bergkvist, Ericsson
Daniel C. Burnett, Voxeo
Cullen Jennings, Cisco
Anant Narayanan, Mozilla
Initial Author of this Specification was Ian Hickson, Google Inc., with the following copyright statement:
© Copyright 2004-2011 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA. You are granted a license to use, reproduce and create derivative works of this document.
All subsequent changes since 26 July 2011 done by the W3C WebRTC Working Group are under the following Copyright:
© 2011-2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. Document use rules apply.
For the entire publication on the W3C site the liability and trademark rules apply.

3 Abstract
This document defines a set of APIs to represent streaming media, including audio and video, in JavaScript, to allow media to be sent over the network to another browser or device implementing the appropriate set of real-time protocols, and media received from another browser or device to be processed and displayed locally. This specification is being developed in conjunction with a protocol specification developed by the IETF RTCWEB group and an API specification to get access to local media devices developed by the Media Capture Task Force.	Comment by Li Li: We should make it clear that the APIs specify the interfaces between web applications and the RTC componnet in user agent. Any media processing APIs that do not involve this component, such as the interfaces between web applications and web servers, are not specified in this spec. 	Comment by Li Li: The spec defines the APIs in WEBIDL, not Javascript. Also, we should use the standard name of Javascript, which is ECMAScript.
4 Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
This document is not complete. It is subject to major changes and, while early experimentation is encouraged, it is therefore not intended for implementation. The API is based on preliminary work done in the WHATWG. The Web Real-Time Communications Working Group expects this specification to evolve significantly based on:
· The outcome of ongoing exchanges in the companion RTCWEB group at IETF to define the set of protocols that, together with this document, will enable real-time communications in Web browsers.
· Privacy issues that arise when exposing local capabilities and local streams.
· Technical discussions within the group, on the data channel in particular.
· Experience gained through early experimentations.
· Feedback received from other groups and individuals.
This document was published by the Web Real-Time Communications Working Group as an Editor's Draft. If you wish to make comments regarding this document, please send them to public-webrtc@w3.org (subscribe, archives). All feedback is welcome.
Publication as an Editor's Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
5 Table of Contents
· 1. Conformance
· 2. Introduction
· 3. Network Stream API
· 3.1 Introduction
· 3.2 Interface definitions
· 3.2.1 MediaStream
· 3.2.1.1 label
· 3.2.1.2 Events on MediaStream
· 3.2.2 MediaStreamTrack
· 3.3 AudioMediaStreamTrack
· 3.3.1 Attributes
· 3.3.2 Methods
· 4. Peer-to-peer connections
· 4.1 PeerConnection
· 4.1.1 SdpType
· 4.1.2 SessionDescription Class
· 4.1.2.1 Attributes
· 4.1.2.2 Methods
· 4.1.3 SessionDescriptionCallback
· 4.1.4 PeerConnectionErrorCallback
· 4.1.5 PeerState Enum
· 4.1.6 IceState Enum
· 4.1.7 IceCandidate Type
· 4.1.7.1 Attributes
· 4.1.7.2 Methods
· 4.1.8 IceCandidateCallback
· 4.1.9 IceServers Type - Option 1
· 4.1.9.1 Attributes
· 4.1.10 IceServers Type - Option 2
· 4.1.10.1 Attributes
· 4.1.11 PeerConnection Interface
· 4.1.11.1 Attributes
· 4.1.11.2 Methods
· 5. IANA Registrations
· 5.1 Constraints
· 6. Simple Example
· 7. Advanced Example
· 8. Peer-to-peer Data API
· 8.1 DataChannel
· 8.1.1 Attributes
· 8.1.2 Methods
· 8.1.3 Constants
· 8.1.4 Dictionary DataChannelInit Members
· 8.2 Examples
· 9. Garbage collection
· 10. Event definitions
· 10.1 PeerConnectionEvent
· 10.1.1 Attributes
· 10.1.2 Dictionary PeerConnectionEventInit Members
· 10.2 PeerConnectionIceEvent
· 10.2.1 Attributes
· 10.2.2 Dictionary PeerConnectionEventIceInit Members
· 10.3 MediaStreamTrackEvent
· 10.3.1 Attributes
· 10.3.2 Dictionary MediaStreamTrackEventInit Members
· 10.4 MediaStreamEvent
· 10.4.1 Attributes
· 10.4.2 Dictionary MediaStreamEventInit Members
· 10.5 DataChannelEvent
· 10.5.1 Attributes
· 10.5.2 Dictionary DataChannelEventInit Members
· 11. Event summary
· 12. Change Log
· A. Acknowledgements
· B. References
· B.1 Normative references
· B.2 Informative references
6 1. Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.
The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].
Implementations that use ECMAScript to implement the APIs defined in this specification must implement them in a manner consistent with the ECMAScript Bindings defined in the Web IDL specification [WEBIDL], as this specification uses that specification and terminology. 	Comment by Li Li: Do we also allow WEBIDL bindings other than ECMAScript for implementations? If not, we should mandate ECMAScript binding for all implementations. 	Comment by Li Li: reference to ECMAScript should be included.
7 2. Introduction
This section is non-normative.
There are a number of facets to video-conferencing in HTML covered by this specification:
· Representing a multimedia stream (video, audio, or both) from local devices (video cameras, microphones, Web cams) or from prerecorded files provided by the user.
· Connecting to remote peers using NAT-traversal technologies such as ICE, STUN, and TURN.
· Sending the locally-produced streams to remote peers and receiving streams from remote peers.
· Sending arbitrary data directly to remote peers.
This document defines the APIs used for these features. This specification is being developed in conjunction with a protocol specification developed by the IETF RTCWEB group and an API specification to get access to local media devices developed by the Media Capture Task Force.
8 3. Network Stream API
9 3.1 Introduction
The MediaStream interface, as defined in the [GETUSERMEDIA] specification, typically represents a stream of data of audio and/or video. A MediaStream may be extended to represent a stream that either comes from or is sent to a remote node (and not just the local camera, for instance). The extensions required to enable this capability on the MediaStream object will be described in this document.	Comment by Li Li: the link is broken.
A MediaStream as defined in [GETUSERMEDIA] may contain zero or more MediaStreamTrack objects. A MediaStreamTrack sent to another peer will appear as one and only one MediaStreamTrack to the recipient.	Comment by Li Li: The concept of peer is not defined. Is it a synonym of "user agent"?
Channels are the smallest unit considered in the MediaStream specification. Channels are intended to be encoded together for transmission as, for instance, an RTP payload type. All of the channels that a codec needs to encode jointly must be in the same MediaStreamTrack and the codecs should be able to encode, or discard, all the channels in the track.	Comment by Li Li: This paragraph should be removed from this spec because: 1) channel has no defined interface here; 2) it duplicates the content from GETUSERMEDIA.
The concepts of an input and output to a given MediaStream apply in the case of MediaStream objects transmitted over the network as well. A MediaStream created by a PeerConnection object (later described in this document) will take as input the data received from a remote peer. Similarly, a MediaStream from a local source, for instance a camera via [GETUSERMEDIA] will have an output that represents what is transmitted to a remote peer if the object is used with a PeerConnection object.
The concept of duplicating MediaStream objects as described in [GETUSERMEDIA] is also applicable here. This feature can be used, for instance, in a video-conferencing scenario to display the local video from the user’s camera and microphone in a local monitor, while only transmitting the audio to the remote peer (e.g. in response to the user using a "video mute" feature). Combining tracks from different MediaStream objects into a new MediaStream is useful in certain cases.
10 3.2 Interface definitions
In this section, we only specify aspects of the the following objects that are relevant when used along with a PeerConnection. Please refer to the original definitions of the objects in the [GETUSERMEDIA] document for general information on using MediaStream and MediaStreamTrack both in and outside the context of PeerConnection.	Comment by Li Li: "the the"->"the".	Comment by Li Li: Why would we want to specify the use of these objects with PeerConnection in two different specs? Furthermore, GETUSERMEDIA does not specify such uses. It is better to define such uses in one spec, preferrably here.
3.2.1 MediaStream	Comment by Li Li: WEBIDE definition is missing.
3.2.1.1 label
The label attribute specified in MediaStream returns a label that is unique to this stream, so that streams can be recognized after they are sent through the PeerConnection API.
When a MediaStream is created to represent a stream obtained from a remote peer, the label attribute is initialized from information provided by the remote source.
The label of a MediaStream object is unique to the source of the stream, but that does not mean it is not possible to end up with duplicates. For example, a locally generated stream could be sent from one user to a remote peer using PeerConnection , and then sent back to the original user in the same manner, in which case the original user will have multiple streams with the same label (the locally-generated one and the one received from the remote peer).	Comment by Li Li: Should be "user agent".	Comment by Li Li: same as above.
3.2.1.2 Events on MediaStream
A new media component may be associated with an existing MediaStream . This happens, e.g., on the A-side when the B-side adds a new MediaStreamTrack object to one of the track lists of a MediaStream that is being sent over a PeerConnection . If this happens for the reason exemplified, or for any other reason than the add() [GETUSERMEDIA] method being invoked locally on a MediaStreamTrackList or tracks are being added as the stream is created (i.e. the stream is initialized with tracks), the user agent must run the following steps:	Comment by Li Li: Just say "track" or define "component" before use.	Comment by Li Li: The terms are not consistent: some time we use peer to mean B-side. Better to stick to one throughout the spec.
1. Create a MediaStreamTrack object track to represent the new media component.
2. If track’s kind attribute equals "audio", add it to the MediaStream object’s audioTracks MediaStreamTrackList object. [[OPEN ISSUE: Is there a way to generalize this so that if we add a "smell" track this continues to work.]]
3. If track’s kind attribute equals "video", add it to the MediaStream object’s videoTracks MediaStreamTrackList object.
4. Fire a track event named addtrack with the newly created track at the MediaStreamTrackList object.
An existing media component may also be disassociated from a MediaStream . If this happens for any other reason than the remove() [GETUSERMEDIA] method being invoked locally on a MediaStreamTrackList or the stream is being destroyed, the user agent must run the following steps:	Comment by Li Li: just say "track" or defined the term "component" first.
1. Let track be the MediaStreamTrack object representing the media component about to be removed.
2. Remove track from the MediaStreamTrackList object.
3. Fire a track event named removetrack with track at the MediaStreamTrackList object.
The event source for the onended event in the networked case is the PeerConnection object.
3.2.2 MediaStreamTrack	Comment by Li Li: WEBIDE definition is missing.
A MediaStreamTrack object’s reference to its MediaStream in the non-local media source case (an RTP source, as is the case for a MediaStream received over a PeerConnection) is always strong.
When a track belongs to a MediaStream that comes from a remote peer and the remote peer has permanently stopped sending data the ended event must be fired on the track, as specified in [GETUSERMEDIA]. [[OPEN ISSUE: How do you know when it has stopped? This seems like an SDP question, not a media-levelquestion.]]
A track in a MediaStream , received with a PeerConnection , must have its readyState attribute [GETUSERMEDIA] set to MUTED (1) until media data arrives.
In addition, a MediaStreamTrack has its readyState set to MUTED on the B-side if the A-side disables the corresponding MediaStreamTrack in the MediaStream that is being sent. When the addstream event triggers on a PeerConnection , all MediaStreamTrack objects in the resulting MediaStream are muted until media data can be read from the RTP source. [[OPEN ISSUE: How do you know when it has been disabled? This seems like an SDP question, not a media-levelquestion.]] 	Comment by Li Li: As before, these terms need to be defined or used consistently.
11 3.3 AudioMediaStreamTrack
The AudioMediaStreamTrack is a specialization of of a normal MediaStreamTrack that only carries audio and is extended to have the capability to send and/or receive DTMF codes.	Comment by Li Li: "of of"->"of".
interface AudioMediaStreamTrack : MediaStreamTrack {	Comment by Li Li: The MediaStreamTrack interface is referenced without being defined first in WEBIDL.
 readonly attribute boolean canInsertDTMF;
 void insertDTMF (DOMString tones, optional long duration);
};
3.3.1 Attributes
canInsertDTMF of type boolean, readonly
The canInsertDTMF attribute must indicate if the AudioMediaStreamTrack is capable of sending DTMF.
3.3.2 Methods
insertDTMF
When a AudioMediaStreamTrack object’s insertDTMF() method is invoked, the user agent must queue a task that that sends the DTMF tones.	Comment by Li Li: "that that"->"that".
The tone parameters is treated as a series of characters. The characters 0 to 9, A to D, #, and * generated the associated DTMF tones. The characters a to d are equivalent to A to D. The character , indicates a an delay of 2 seconds before processing the next character in the tones parameter. Unrecognized characters are ignored.
The duration parameters indicates the duration in ms to play the each DTMF passed in the tones parameters. The duration can not be more than 6000 or less than 70. The default duration is 100 ms for each tone. The gap between tones must be at least 50 ms but should be as short as possible. [[OPEN ISSUE: How are invalid values handled?]]	Comment by Li Li: "can not"->"cannot".
If insertDTMF is called on the same object while an existing task for this object is generate DTMF is still running, the previous task is canceled. Calling insertDTMF with an empty tones parameter can be used to cancel any tones currently being send.	Comment by Li Li: is->to.	Comment by Li Li: send->sent
Editor Note: We need to add a callback that is set on the object that is called after the tones are sent. This is needed to allow the application to know when it can send new tones without canceling the tones that are currently being sent.
Editor Note: It seems we would want a callback or event for incoming tones. The proposal sent to the list had them played as audio to the speaker but I don’t see how that is useful.
	Parameter	Comment by Li Li: Why not put the parameter table with the method before the text?
	Type
	Nullable
	Optional
	Description

	tones
	DOMString
	✘
	✘
	

	duration
	long
	✘
	✔
	

Return type: void
12 4. Peer-to-peer connections	Comment by Li Li: Why not put PeerConnection WEBIDL upfront, instead of a forward link, to give us the needed context for the following text? I think a top-down linear presentation style is easier to follow than a mixture of cross-linking, bottom-up and top-down.
A PeerConnection allows two users to communicate directly, browser to browser. Communications are coordinated via a signaling channel which is provided by unspecified means, but generally by a script in the page via the server, e.g. using XMLHttpRequest.
Calling new PeerConnection(configuration) creates a PeerConnection object.
The configuration has the information to find and access the [STUN] and [TURN] servers. There may be multiple servers of each type and any TURN server also acts as a STUN server.
A PeerConnection object has an associated ICE Agent, PeerConnection state, and ICE State. These are initialized when the object is created.
When the PeerConnection() constructor is invoked, the user agent must run the following steps. This algorithm has a synchronous section (which is triggered as part of the event loop algorithm).
1. Create an ICE Agent and let connection’s PeerConnection ICE Agent be that ICE Agent and provide it the STUN and TURN servers from the configuration array. The [ICE] will proceed with gathering as soon as the IceTransports constraint is not set to "none". At this point the ICE Agent does not know how many ICE components it needs (and hence the number of candidates to gather) but it can make a reasonable assumption and as the PeerConnection object gets more information, it can adjust the number of components.
2. Set connection’s PeerConnection readiness state to "new" .
3. Set connection’s PeerConnection ice state to "new" .
4. Let connection’s localStreams attribute be an empty read-only MediaStream array.
5. Let connection’s remoteStreams attribute be an empty read-only MediaStream array.
6. Return connection, but continue these steps asynchronously.
7. Await a stable state. The synchronous section consists of the remaining steps of this algorithm.
During the lifetime of the PeerConnection object, the following procedures are followed:
1. If the ice state is "new" and the IceTransports constraint is not set to "none", it must queue a task to start gathering ICE address and set the ice state to "gathering".	Comment by Li Li: The term is not consistent: ICE State, ice state, iceState, ...
2. If the ICE Agent has found one or more candidate pairs for any MediaTrack that forms a valid connection, the ICE state is changed to "connected". 	Comment by Li Li: "MediaTrack" is not defined anywhere in this spec.
3. When the ICE Agent finishes checking all candidate pairs, if at least one connection has been found for some MediaTrack, the iceState is changed to "completed" and if no connection has been found for any MediaTrack, the iceState is changed to "failed". [[OPEN ISSUE: Note that this means that if I was able to negotiate audio but not video via ICE, then iceState == "completed". Is this really what is desired?]]
4. If the iceState is "connected" or "completed" and both the local and remote session descriptions are set, the peerState is set to "active". 	Comment by Li Li: PeerState is not in the previously defined states for PeerConnection.
5. If the iceState is "failed", a task is queued to calls the close method. Open Issue: CJ - this seems wrong to me.
User agents negotiate the codec resolution, bitrate, and other media parameters. User agents are encouraged to initially negotiate for the maximum resolution of a video stream. For streams that are then rendered (using a video element), user agents are encouraged to renegotiate for a resolution that matches the rendered display size.	Comment by Li Li: we should use one of standard modal verbs: must, should, recommended, etc. here.
Starting with the native resolution means that if the Web application notifies its peer of the native resolution as it starts sending data, and the peer prepares its video element accordingly, there will be no need for a renegotiation once the stream is flowing.
The word "components" in this context refers to an RTP media flow and does not have anything to do with how [ICE] uses the term "component".
When a user agent has reached the point where a MediaStream can be created to represent incoming components, the user agent must run the following steps:
1. Let connection be the PeerConnection expecting this media.
2. Create a MediaStream object to represent the media stream. [[OPEN ISSUE: What if one already exists?]]
3. Run the following steps for each component in the media stream.
1. Create a MediaStreamTrack object track to represent the component. [[EDITORIAL: Can we just reference 3.2.1.2 here?]]
2. If track's kind attribute equals "audio", add it to the MediaStream object's audioTracks MediaStreamTrackList object.
3. If track's kind attribute equals "video", add it to the MediaStream object's videoTracks MediaStreamTrackList object.
The creation of new incoming MediaStreams may be triggered either by SDP negotiation or by the receipt of media on a given flow.
The internal order in the MediaStreamTrackList objects on the receiving side should reflect the order on the sending side. One way to enforce this is to specify the order in the SDP.
4. Queue a task to run the following substeps:
1. If the connection’s PeerConnection readiness state is CLOSED (3), abort these steps.
2. Add the newly created MediaStream object to the end of connection’s remoteStreams array.
3. Fire a stream event named addstream with the newly created MediaStream object at the connection object.
When a user agent has negotiated media for a component that belongs to a media stream that is already represented by an existing MediaStream object, the user agent must associate the component with that MediaStream object.
When a PeerConnection finds that a stream from the remote peer has been removed , the user agent must follow these steps:
1. Let connection be the PeerConnection associated with the stream being removed.
2. Let stream be the MediaStream object that represents the media stream being removed, if any. If there isn't one, then abort these steps.
3. By definition, stream is now finished.
A task is thus queued to update stream and fire an event.
4. Queue a task to run the following substeps:
1. If the connection’s PeerConnection readiness state is CLOSED (3), abort these steps.
2. Remove stream from connection’s remoteStreams array.
3. Fire a stream event named removestream with stream at the connection object.
The task source for the tasks listed in this section is the networking task source.
If something in the browser changes that causes the PeerConnection object to need to initiate a new session descipriton negotiation, an renegotiationneeded event is fired at the PeerConnection object. 	Comment by Li Li: "descipriton"->"description".
In particular, if a PeerConnection object is consuming a MediaStream and a track is added to one of the stream's MediaStreamTrackList objects, by, e.g., the add() method being invoked, the PeerConnection object must fire the "renegotiationneeded" event. Removal of media components must also trigger "renegotianneeded".
To prevent network sniffing from allowing a fourth party to establish a connection to a peer using the information sent out-of-band to the other peer and thus spoofing the client, the configuration information should always be transmitted using an encrypted connection.
13 4.1 PeerConnection
The general operation of the PeerConnection is described in [RTCWEB-JSEP].
4.1.1 SdpType
The SdpType enums serve as arguments to setLocalDescription and setRemoteDescription. They provide information as to how the SDP should be handled.
 enum SdpType { "offer", "pranswer", "answer" }
"offer"
An SdpType of "offer" indicates that a description should be treated as an [SDP] offer.
"pranswer"
An SdpType of "pranswer" indicates that a description should be treated as an [SDP] answer, but not a final answer. A description used as a SDP "pranswer" may be applied as a response to a SDP offer, or an update to a previously sent SDP "pranswer".
"answer"
An SdpType of "answer" indicates that a description should be treated as an [SDP] final answer, and the offer-answer exchange should be considered complete. A description used as a SDP answer may be applied as a response to a SDP offer, or an update to a previously send SDP "pranswer".
4.1.2 SessionDescription Class
The SessionDescription() constructor takes one argument, description, whose content is used to construct the new SessionDescription object. This class is a future extensible carrier for for the data contained in it and does not perform any substantive processing. 	Comment by Li Li: "for for"->"for".
[Constructor (DOMString description)]
interface SessionDescription {
 attribute SdpType type;
 attribute DOMString sdp;
 stringifier DOMString ();
};
4.1.2.1 Attributes
sdp of type DOMString
The string representation of the SDP [SDP]
type of type SdpType
What type of SDP this SessionDescription represents.
4.1.2.2 Methods
DOMString
Objects that implement the SessionDescription interface must stringify as [SDP].
No parameters.
Return type: stringifier
4.1.3 SessionDescriptionCallback
 callback SessionDescriptionCallback = void (SessionDescription
 sdp)
SessionDescription sdp
The object containing the SDP [SDP].
4.1.4 PeerConnectionErrorCallback
 callback PeerConnectionErrorCallback = void (DOMString errorInformation)

DOMString errorInformation
Information about what went wrong. Open Issue: How does this work? Is it human readable? I18N? ENUM?
TODO: Open Issue: should this be defined as event like NavigatorUserMediaErrorCallback in getusermedia
4.1.5 PeerState Enum
enum PeerState { "new" "opening", "active", "closing", "closed"
 }
"new"
The object was just created, and no networking has yet occurred.
"opening"
The user agent is attempting to establish an connection with the ICE Agent and waiting for local and remote SDP to be set. (Open Issue: do we need more states between "opening" and "active")
"active"
The ICE Agent has found a connection both the local and remote SDP have been set. It is possible for media to flow.
"closing"
The PeerConnection object is terminating all media and is in the process of closing the connection.
"closed"
The connection is closed.
4.1.6 IceState Enum
 enum IceState { "new" "gathering", "waiting", "checking",
 "connected", "completed","failed", "closed" }
"new"
The PeerConnection object was just created, and no networking has yet occurred.
"gathering"
The ICE Agent is attempting to gather addresses.
"waiting"
The ICE Agent is not gathering any addresses and is waiting for candidates from the other side before it can start checking.
"checking"
The ICE Agent is checking candidate pairs but has not yet found a connection. In addition to checking, it may also still be gathering.
"connected"
The ICE Agent has found a connection but is still checking other candidate pairs to see if there is a better connection. It may also still be gathering.
"completed"
The ICE Agent has finished gathering and checking and found a connection.
"failed"
The ICE Agent is finished checking all candidate pairs and failed to find a connection.
"closed"
The ICE Agent has shut down and is no longer responding to STUN requests.
4.1.7 IceCandidate Type
The IceCandidate() constructor takes one argument, candidate, whose content is used to construct the new IceCandidate object. This class is a future extensible carrier for for the data contained in it and does not perform any substantive processing. 	Comment by Li Li: "for for"->"for".
[Constructor (DOMString candidate)]
interface IceCandidate {
 attribute DOMString candidate;
 stringifier DOMString ();
};
4.1.7.1 Attributes
candidate of type DOMString
This carries the candidate-attribute as defined in section 15.1 of [ICE]. (TODO - need to add more information to allow this to match to correct m line - Open Issue: How to correlate. Need to wait for the mapping from media tracks to SDP to be resolved in IETF before tackling this problem).
4.1.7.2 Methods
DOMString
Objects that implement the IceCandidate interface must stringify as the candidate-attribute as defined in section 15.1 of [ICE].
No parameters.
Return type: stringifier
4.1.8 IceCandidateCallback
 callback IceCandidateCallback = void (IceCandidate candidate)

IceCandidate candidate
The new ICE candidate.
4.1.9 IceServers Type - Option 1
Open Issue: choose option 1 or option 2 for IceServers Type.
interface IceServers {
 attribute DOMString servers[][];
};
4.1.9.1 Attributes
servers[][] of type DOMString
The IceServers type is an array of pairs where each pair is defined as an array. Each pair provides the information to reach and use one STUN or TURN server. The first element in each pair is a stun or turn URIs as defined in [STUN-URI] and [TURN-URI]. If the first element of the pair is TURN URI, then the second element of the pair is the credential to use with that TURN server.
In network topologies with multiple layers of NATs, it is desirable to have a STUN servers between every layer of NATs in addition to the TURN servers to minimize the number peer to peer network latency.
An example configuration object is:
{ servers:[["stun:stun.example.net"] , ["turn:user@turn.example.org","myPassword"]]}
4.1.10 IceServers Type - Option 2
Open Issue: choose option 1 or option 2 for IceServers Type.
interface IceServers {
 attribute DOMString servers[];
};
4.1.10.1 Attributes
servers[] of type DOMString
The IceServers type is an array of strings where each string provides the URL and credentials for a server. Each string is either a the URL to reach a STUN server ad defined in [STUN-URI] or is the URL of a TURN server as defined in [TURN-URI] followed by a single space and then the rest of the string is the credential used to access that server. Note the credential may contains spaces.
In network topologies with multiple layers of NATs, it is desirable to have a STUN servers between every layer of NATs in addition to the TURN servers to minimize the number peer to peer network latency.
An example configuration object is:
{ servers:["stun:stun.example.net" , "turn:user@turn.example.org myPassword"]}
4.1.11 PeerConnection Interface
Open Issue: should we collapse some of these functions a single "processRemoteSignal" method?
[Constructor (IceServers configuration, optional MediaConstraints constraints)]
interface PeerConnection {
 void createOffer (SessionDescriptionCallback successCallback, optional PeerConnectionErrorCallback failureCallback, optional MediaConstraints constraints);
 void createAnswer (SessionDescription offer, SessionDescriptionCallback successCallback, optional PeerConnectionErrorCallback failureCallback, optional MediaConstraints constraints, optional Boolean createProvisionalAnswer=false);
 void setLocalDescription (SdpType action, SessionDescription description);
 readonly attribute SessionDescription localDescription;
 void setRemoteDescription (SdpType action, SessionDescription description);
 readonly attribute SessionDescription remoteDescription;
 readonly attribute PeerState readyState;
 void updateIce (optional IceServers configuration, optional MediaConstraints constraints, optional Boolean restart=false);
 void addIceCandidate (IceCandidate candidate);
 readonly attribute IceState iceState;
 readonly attribute MediaStream[] localStreams;
 readonly attribute MediaStream[] remoteStreams;
 DataChannel createDataChannel ([TreatNullAs=EmptyString] DOMString? label, optional DataChannelInit? dataChannelDict);
 attribute Function? ondatachannel;
 void addStream (MediaStream stream, optional MediaConstraints constraints);
 void removeStream (MediaStream stream);
 void close ();
 attribute Function? onrenegotationneeded;
 attribute Function? onicecandidate;
 attribute Function? onconnecting;
 attribute Function? onopen;
 attribute Function? onstatechange;
 attribute Function? onaddstream;
 attribute Function? onremovestream;
 attribute Function? onicechange;
};
4.1.11.1 Attributes
iceState of type IceState, readonly
The iceState attribute must return the state of the PeerConnection ICE Agent ICE state.
localDescription of type SessionDescription, readonly
The localDescription method returns a copy of the SessionDescription that was most recently passed to setLocalDescription, plus any local candidates that have been generated by the ICE Agent since then.
A null object will be returned if the local description has not yet been set.
localStreams of type array of MediaStream, readonly
Returns a live array containing the local streams (those that were added with addStream()).
onaddstream of type Function, nullable
This event handler, of event handler event type addstream , must be supported by all objects implementing the PeerConnection interface. Open Issue: It seems like this even handler needs to be fired when the first of two things happens - the remote side sends signaling indicating a media will be sent, or the side that sent an offer start receiving media in reply to that offer. 	Comment by Li Li: Do we mean "fired" instead of "supported"? "Support" may mean "implement" which is not what we want here.	Comment by Li Li: "side"->"local side"
onconnecting of type Function, nullable
This event handler, of event handler event type connecting , must be supported by all objects implementing the PeerConnection interface.	Comment by Li Li: Should specify when this event handler is called. Same for all callbacks.
ondatachannel of type Function, nullable
This event handler, of type datachannel , must be supported by all objects implementing the PeerConnection interface.
onicecandidate of type Function, nullable
This event handler, of event handler event type onicecandidate , must be supported by all objects implementing the PeerConnection interface. It is called any time there is a new ICE candiate can be added to the a previos offer or answer. 	Comment by Li Li: "candiate"->"candidate".	Comment by Li Li: "can be"->"".	Comment by Li Li: "the a previos"->"a previous".
onicechange of type Function, nullable
This event handler, of event handler event type icechange , must be supported by all objects implementing the PeerConnection interface. It is called any time the iceState changes.
onopen of type Function, nullable
This event handler, of event handler event type open , must be supported by all objects implementing the PeerConnection interface.
onremovestream of type Function, nullable
This event handler, of event handler event type removestream , must be supported by all objects implementing the PeerConnection interface.
onrenegotationneeded of type Function, nullable
This event handler, of event handler event type renegotiationneeded , must be supported by all objects implementing the PeerConnection interface. Open Issue: Need to sort out which things should be Function and which should be a Callback.
onstatechange of type Function, nullable
This event handler, of event handler event type statechange , must be supported by all objects implementing the PeerConnection interface. It is called any time the readyState changes.
readyState of type PeerState, readonly
The readyState attribute must return the PeerConnection object's PeerConnection readiness state.
remoteDescription of type SessionDescription, readonly
The remoteDescription method returns a copy of the current remote the SessionDescription that was most recently passed to setRemoteDescription, plus any remote candidates that have been supplied via addIceCandidate since then.
A null object will be returned if the remote description has not yet been set.
remoteStreams of type array of MediaStream, readonly
Returns a live array containing the streams that the remote streams. (those that were added by the remote side).
This array is updated when addstream and removestream events are fired.
4.1.11.2 Methods
addIceCandidate
The addIceCandidate method provides a remote candidate to the ICE Agent, which will be added to the remote description. Connectivity checks will be sent to the new candidates as long as the "IceTransports" constraint is not set to "none". This call will result in a change to the state of the ICE Agent, and may result in a change to media state if it results in different connectivity being established.
A TBD exception will be thrown if candidate parameter is malformed.
	Parameter	Comment by Li Li: move the parameters close to their method?
	Type
	Nullable
	Optional
	Description

	candidate
	IceCandidate
	✘
	✘
	

Return type: void
addStream
Adds a new stream to the PeerConnection.
When the addStream() method is invoked, the user agent must run the following steps:
1. If the PeerConnection object's PeerConnection readiness state is CLOSED (3), throw an INVALID_STATE_ERR exception.
2. If stream is already in the PeerConnection object's localStreams object, then abort these steps.
3. Add stream to the end of the PeerConnection object's localStreams object.
4. Parse the constraints provided by the application and apply them to the MediaStream, if possible. NOTE - need to deal with throwing an exception here.
5. Fire a renegotiationneeded event. [[OPEN ISSUE: Should this fire if the PeerConnection is in "new"?]]
	Parameter
	Type
	Nullable
	Optional
	Description

	stream
	MediaStream
	✘
	✘
	

	constraints
	MediaConstraints
	✘
	✔
	

Return type: void
close
When the close() method is invoked, the user agent must run the following steps:
1. If the PeerConnection object's PeerConnection readiness state is CLOSED (3), throw an INVALID_STATE_ERR exception.
2. Destroy the PeerConnection ICE Agent, abruptly ending any active ICE processing and any active streaming, and releasing any relevant resources (e.g. TURN permissions).
3. Set the object's PeerConnection readiness state to CLOSED (3).
No parameters.
Return type: void
createAnswer
The createAnswer method generates a [SDP] answer with the supported configuration for the session that is compatible with the parameters supplied in offer. Like createOffer, the returned blob contains descriptions of the local MediaStreams attached to this PeerConnection, the codec/RTP/RTCP options negotiated for this session, and any candidates that have been gathered by the ICE Agent. The constraints parameter may be supplied to provide additional control over the generated answer.
As an answer, the generated SDP will contain a specific configuration that, along with the offer, specifies how the media plane should be established. The generation of the SDP must follow the appropriate process for generating an answer or provisional answer.
Session descriptions generated by createAnswer must be immediately usable by setLocalDescription without generating an error if setLocalDescription is called from the successCallback function. Like createOffer, the returned description should reflect the current state of the system. The session descriptions must remain usable by setLocalDescription without causing an error until at least the end of the successCallback function. Calling this method is is needed to get the ICE user name fragment and password. Provisional offers, as described in [RTCWEB-JSEP], are created if and only if the createProvisionalOffer flag is true. 	Comment by Li Li: "is is"->"is".
The failureCallback will be called if the system can not generate an appropriate answer given the offer. 	Comment by Li Li: "can not"->"cannot".
A TBD exception is thrown if the constraints parameter is malformed.
	Parameter
	Type
	Nullable
	Optional
	Description

	offer
	SessionDescription
	✘
	✘
	

	successCallback
	SessionDescriptionCallback
	✘
	✘
	

	failureCallback
	PeerConnectionErrorCallback
	✘
	✔
	

	constraints
	MediaConstraints
	✘
	✔
	

	createProvisionalAnswer=false
	Boolean
	✘
	✔
	

Return type: void
createDataChannel
Creates a new DataChannel object with the given label. The DataChannelInit dictionary can be used to configure properties of underlying channel such as data reliability. A corresponding DataChannel object is dispatched at the other peer if the channel setup was successful.
When the createDataChannel() method is invoked, the user agent must run the following steps.
1. If the PeerConnection object’s PeerConnection readiness state is CLOSED (3), throw an INVALID_STATE_ERR exception.
2. Let channel be a newly created DataChannel object.
3. Initialize channel’s label attribute to the value of the first argument.
4. Initialize channel’s reliable attribute to true.
5. If the second argument is present and it contains a reliable dictionary member, then set channel’s reliable attribute to the dictionary member value.
6. Return channel and continue these steps in the background.
7. Create channel’s associated underlying data transport.
	Parameter
	Type
	Nullable
	Optional
	Description

	label
	DOMString
	✔
	✘
	

	dataChannelDict
	DataChannelInit
	✔
	✔
	

Return type: DataChannel
createOffer
The createOffer method generates a blob of SDP that contains a RFC offer with the supported configurations for the session, including descriptions of the local MediaStreams attached to this PeerConnection, the codec/RTP/RTCP options supported by this implementation, and any candidates that have been gathered by the ICE Agent. The constraints parameter may be supplied to provide additional control over the offer generated. 	Comment by Li Li: missing RFC number.
As an offer, the generated SDP will contain the full set of capabilities supported by the session (as opposed to an answer, which will include only a specific negotiated subset to use); for each SDP line, the generation of the SDP must follow the appropriate process for generating an offer. In the event createOffer is called after the session is established, createOffer will generate an offer that is compatible with the current session, incorporating any changes that have been made to the session since the last complete offer-answer exchange, such as addition or removal of streams. If no changes have been made, the offer will be include the capabilities of the current local description as well as any additional capabilities that could be negotiated in an updated offer.
Session descriptions generated by createOffer must be immediately usable by setLocalDescription without causing an error as long as setLocalDiscription is called within the successCallback function. If a system has limited resources (e.g. a finite number of decoders), createOffer needs to return an offer that reflects the current state of the system, so that setLocalDescription will succeed when it attempts to acquire those resources. The session descriptions must remain usable by setLocalDescription without causing an error until at least end of the successCallback function. Calling this method is needed to get the ICE user name fragment and password.
The failureCallback will be called if the system can not generate an appropriate offer given the state of the PeerConnection.
A TBD exception is thrown if the constraints parameter is malformed. [[OPEN ISSUE: How are errors reported?]]
To Do: Discuss privacy aspects of this from a finger printing point of view - it's probably around as bad as access to a canvas :-)
	Parameter
	Type
	Nullable
	Optional
	Description

	successCallback
	SessionDescriptionCallback
	✘
	✘
	

	failureCallback
	PeerConnectionErrorCallback
	✘
	✔
	

	constraints
	MediaConstraints
	✘
	✔
	

Return type: void
removeStream
Removes the given stream from the localStream array in the PeerConnection and fires 'renegotiationneeded.
When the other peer stops sending a stream in this manner, a removestream event is fired at the PeerConnection object.
When the removeStream() method is invoked, the user agent must run the following steps:
1. If the PeerConnection object's PeerConnection readiness state is CLOSED (3), throw an INVALID_STATE_ERR exception.
2. If stream is not in the PeerConnection object's localStreams object, then abort these steps. TODO: Do we need an exception here?
3. Remove stream from the PeerConnection object's localStreams object.
4. Fire a renegotiationneeded event.
	Parameter
	Type
	Nullable
	Optional
	Description

	stream
	MediaStream
	✘
	✘
	

Return type: void
setLocalDescription
The setLocalDescription method instructs the PeerConnection to apply the supplied [SDP] description as the local offer or answer. The type parameter indicates whether the description should be processed as an offer, provisional answer, or final answer. [[OPEN ISSUE: The type appears as both the "action" argument and in the struct. That is redundant and just sort of crazy. We need to pick one.]]
This API changes the local media state. In order to successfully handle scenarios where the application wants to offer to change from one media format to a different, incompatible format, the PeerConnection must be able to simultaneously support use of both the old and new local descriptions (e.g. support codecs that exist in both descriptions) until a final answer is received, at which point the PeerConnection can fully adopt the new local description, or roll back to the old description if the remote side denied the change.
Open issues: how to indicate to roll back?
To Do: specify what parts of the SDP can be changed between the createOffer and setLocalDescription
Changes to the state of media transmission will occur when a final answer is successfully applied.
A TBD exception is thrown if sdp is invalid. A TBD exception is thrown if there are insufficient local resources to apply the sdp.
Open Issues: for setLocal and setRemote, discuss how to return erro codes and if they need to be asynchronous.
	Parameter
	Type
	Nullable
	Optional
	Description

	action
	SdpType
	✘
	✘
	

	description
	SessionDescription
	✘
	✘
	

Return type: void
setRemoteDescription
The setRemoteDescription method instructs the PeerConnection to apply the supplied [SDP] in the description. As in setLocalDescription, the action parameter indicates how the blob should be processed. This API changes the local media state. 	Comment by Li Li: add "as the remote offer or answer".
Changes to the state of media transmission will occur when a final answer is successfully applied.
A TBD exception is thrown if the sdp parameter is invalid. A TBD exception is thrown if there are insufficient local resources to apply the SDP.
	Parameter
	Type
	Nullable
	Optional
	Description

	action
	SdpType
	✘
	✘
	

	description
	SessionDescription
	✘
	✘
	

Return type: void
updateIce
The updateIce method restarts or updates the ICE Agent process of gathering local candidates and pinging remote candidates. If there is a mandatory constraint called "IceTransports" it will control which how the ICE engine can act. This can be used to limit the use to TURN candidates by a callee to avoid leaking location information prior to the call being accepted. 	Comment by Li Li: "which how"->"how".
This call may result in a change to the state of the ICE Agent, and may result in a change to media state if it results in connectivity being established.
If the restart parameter is set to true, the ICE state machine discards all candidates it has gathered, allocates new ports for the host candidates, and restarts ICE as if there had been no previos ICE session. Applications can use this to reset all ICE negotiation when something has gone terribly wrong. 	Comment by Li Li: "previos"->"previous".
A TBD exception will be thrown if constraints parameter is malformed.
	Parameter
	Type
	Nullable
	Optional
	Description

	configuration
	IceServers
	✘
	✔
	

	constraints
	MediaConstraints
	✘
	✔
	

	restart=false
	Boolean
	✘
	✔
	

Return type: void
PeerConnection implements EventTarget;
14 5. IANA Registrations
IANA is requested to register the constraints defined in Constraints Section as specified in [RTCWEB-CONSTRAINTS].
15 5.1 Constraints
TOOD: Need to change the naming and declaration of these constraints to match the constraints draft once that is a bit further along. The names here now are likely not quite right but they serve as a place holder. [[OPEN ISSUE: there are multiple ways to add constraints. How are multiple values reconciled?]]
The following new constraints are defined that can be used with a PeerConnection object:
OfferToReceiveVideo
This is a enum type constraint that can take the values "true" and "false". The default is a non mandatory "true" for a PeerConnection object that has a video stream at the point in time when the constraints are being evaluated and is non mandatory "false" otherwise.
In some cases, a PeerConnection may wish to receive video but it is not going to send any video. The PeerConnection needs to know if it should signal to the remote side if it wishes to receive video or not. This constraints allows an application to indicate its preferences for receiving video when creating an offer. 	Comment by Li Li: "constraints"->"constraint".
OfferToReceiveAudio
This is a enum type constraint that can take the values "true" and "false". The default is a non mandatory "true".
In some cases, a PeerConnection may wish to receive audio but it is not going to send any audio. The PeerConnection needs to know if it should signal to the remote side if it wishes to receive audio. This constraints allows an application to indicate its preferences for receiving audio when creating an offer.
VoiceActivityDetection
This is a enum type constraint that can take the values "true" and "false". The default is a non mandatory "true".
Many codecs and system are capable of detecting "silence" and changing there behavior in this case by doing things such as not transmitting any media. In many cases, such as when dealing with sounds other than spoken voice or emergency calling, it is desirable to be able to turn off this behavior. This constraints allows the application to provide information about if it wishes this type of processing enable or disabled. 	Comment by Li Li: "there"->"their".
IceTransports
This is a enum type constraint that can take the values "none", "relay", and "all". The default is a non mandatory "all".
This constraints indicates which candidates the ICE engine is restricted use. The value "none" means the ICE engine must not send or receive any packets at this point. The value "relay" indicates the ICE engine must only using media relay candidates such as candidates passing through a TURN server. This can be used to reduce leakage of IP addresses in certain use cases. The value of "all" indicates all values can be used. 	Comment by Li Li: "constraints"->"constraint"	Comment by Li Li: "use"->"to use".	Comment by Li Li: "using"->"use"
TODO items - need to register with IANA.
16 6. Simple Example
When two peers decide they are going to set up a connection to each other, they both go through these steps. The STUN/TURN server configuration describes a server they can use to get things like their public IP address or to set up NAT traversal. They also have to send data for the signaling channel to each other using the same out-of-band mechanism they used to establish that they were going to communicate in the first place.
NOTE: TODO - This code does not match the API yet and might have a few other problems.
var signalingChannel = createSignalingChannel();
var pc;

// set up the call, get access to local media, and establish connectivity
function start(isCaller) {
 // Create a PeerConnection and hook up the IceCallback
 pc = new PeerConnection("", function (candidate) {
 signalingChannel.send(JSON.stringify({ "type": "candidate", "sdp": candidate }));
 });

 // get the local stream and show it in the local video element
 navigator.getUserMedia({"audio": true, "video": true}, function (stream) {
 selfView.src = URL.createObjectURL(stream);
 pc.addStream(stream);

 var type;
 if (isCaller) {
 pc.createOffer(gotDescription);
 type = "offer";
 } else {
 pc.createAnswer(pc.remoteDescription, gotDescription);
 type = "answer";
 }

 function gotDescription(desc) {
 pc.setLocalDescription(type, desc);
 signalingChannel.send(JSON.stringify({ "type": type, "sdp": desc }));
 }
 });

 // once remote stream arrives, show it in the remote video element
 pc.onaddstream = function (evt) {
 remoteView.src = URL.createObjectURL(evt.stream);
 };
}

signalingChannel.onmessage = function (evt) {
 var msg = JSON.parse(evt.data);
 var sdp = SessionDescription(msg.sdp)
 switch (msg.type) {
 case "offer":
 // create the PeerConnection
 start(false);
 // feed the received offer into the PeerConnection
 pc.setRemoteDescription(msg.type,SessionDescription(msg.sdp));
 break;
 case "answer":
 pc.setRemoteDescription(msg.type,SessionDescription(msg.sdp));
 break;
 case "candidate":
 pc.addIceCandidate(IceCandidate(msg.sdp));
 break;
 }
};
17 7. Advanced Example
This example shows the more comples functionality.
TODO
18 8. Peer-to-peer Data API
The Peer-to-peer Data API lets a web application send and receive generic application data peer-to-peer.
Open issues (this should not be considered as a complete list of open issues)
· Data channel setup signaling (signaling via SDP and application specific signaling channel or first channel via SDP and consecutive channels via internal signalling).
· What can be shared with the WebSocket API specification regarding actual interfaces.
19 8.1 DataChannel
The DataChannel interface represents a bi-directional data channel between two peers. A DataChannel is created via a factory method on a PeerConnection object. The corresponding DataChannel object is then dispatched at the other peer if the channel setup was successful.	Comment by Li Li: In this spec, we use different terms for the same thing in different context: user agent, browser, peer, a/b-side, caller/callee. we should either choose a defined term, such as user agent, or define our new terms before using them. Suggest we have a terminology section to define the terms we want to use in the spec.
Each DataChannel has an associated underlying data transport that is used to transport actual data to the other peer. The transport properties of the underlying data transport, such as reliability mode, are configured by the peer taking the initiative to create the channel. The other peer cannot change any transport properties of a offered data channel. The actual wire protocol between the peers is out of the scope for this specification. Open Issues: this needs to explain how the configuration state is passed between the peers. Open Issues: this type of design where one side can pick anything and the other side much support everything has proven to make future upgrades very difficult.
A DataChannel created with createDataChannel() must initially be in the CONNECTING (0) state. If the DataChannel object’s underlying data transport is successfully set up, the user agent must announce the DataChannel as open.
When the user agent is to announce a DataChannel as open, the user agent must queue a task to run the following steps:
1. If the associated PeerConnection object’s PeerConnection readiness state is CLOSED (3), abort these steps.
2. Let channel be the DataChannel object to be announced.
3. Set channel’s readyState attribute to OPEN (1).
4. Fire a simple event named open at channel.
When an underlying data transport has been established, the user agent, of the peer that did not initiate the creation process must queue a task to run the following steps:
1. If the associated PeerConnection object’s PeerConnection readiness state is CLOSED (3), abort these steps.
2. Let configuration be an information bundle with key-value pairs, received from the other peer as a part of the process to establish the underlying data channel.
3. Let channel be a newly created DataChannel object.
4. Initialize channel’s label attribute to value that corresponds to the "label" key in configuration.
5. Initialize channel’s reliable attribute to true.
6. If configuration contains a key named "reliable", set channel’s reliable attribute to the corresponding value.
7. Set channel’s readyState attribute to OPEN (1).
8. Fire a datachannel event named datachannel with channel at the PeerConnection object.
When the process of tearing down a DataChannel object’s underlying data transport is initiated, the user agent must run the following steps:
1. If the associated PeerConnection object’s PeerConnection readiness state is CLOSED (3), abort these steps.
2. Let channel be the DataChannel object which is about to be closed.
3. If channel’s readyState is CLOSING (2) or CLOSED (3), then abort these steps.
4. Set channel’s readyState attribute to CLOSING (2).
5. Queue a task to run the following steps:
6.
1. Close channel’s underlying data transport.
The data transport protocol will specify what happens to, e.g. buffered data, when the data transport is closed.
2. Set channel’s readyState attribute to CLOSED (3).
3. Fire a simple event named close at channel.
interface DataChannel {
 readonly attribute DOMString label;
 readonly attribute boolean reliable;
 const unsigned short CONNECTING = 0;
 const unsigned short OPEN = 1;
 const unsigned short CLOSING = 2;
 const unsigned short CLOSED = 3;
 readonly attribute unsigned short readyState;
 readonly attribute unsigned long bufferedAmount;
 [TreatNonCallableAsNull]
 attribute Function? onopen;
 [TreatNonCallableAsNull]
 attribute Function? onerror;
 [TreatNonCallableAsNull]
 attribute Function? onclose;
 void close ();
 [TreatNonCallableAsNull]
 attribute Function? onmessage;
 attribute DOMString binaryType;
 void send (DOMString data);
 void send (ArrayBuffer data);
 void send (Blob data);
};
8.1.1 Attributes
binaryType of type DOMString
FIXME: align behavior with WebSocket API
bufferedAmount of type unsigned long, readonly
FIXME: align behavior with WebSocket API
label of type DOMString, readonly
The DataChannel.label attribute represents a label that can be used to distinguish this DataChannel object from other DataChannel objects. The attribute must return the value to which it was set when the DataChannel object was created.
onclose of type Function, nullable
This event handler, of type close , must be supported by all objects implementing the DataChannel interface.
onerror of type Function, nullable
This event handler, of type error , must be supported by all objects implementing the DataChannel interface.
onmessage of type Function, nullable
This event handler, of type message , must be supported by all objects implementing the DataChannel interface.
onopen of type Function, nullable
This event handler, of type open , must be supported by all objects implementing the DataChannel interface.
readyState of type unsigned short, readonly
The DataChannel.readyState attribute represents the state of the DataChannel object. It must return the value to which the user agent last set it (as defined by the processing model algorithms). The attribute can have the following values: CONNECTING, OPEN, CLOSING or CLOSED.
reliable of type boolean, readonly
The DataChannel.reliable attribute returns true if the DataChannel is reliable, and false otherwise. The attribute must return the value to which it was set when the DataChannel was created.
8.1.2 Methods
close
Closes the DataChannel . It may be called regardless if the DataChannel object was created by this peer or the remote peer.
When the close() method is called, the user agent must initiate the process of tearing down the DataChannel object’s underlying data transport.
No parameters.
Return type: void
send
FIXME: align behavior with WebSocket API
	Parameter
	Type
	Nullable
	Optional
	Description

	data
	DOMString
	✘
	✘
	

Return type: void
send
FIXME: align behavior with WebSocket API
	Parameter
	Type
	Nullable
	Optional
	Description

	data
	ArrayBuffer
	✘
	✘
	

Return type: void
send
FIXME: align behavior with WebSocket API
	Parameter
	Type
	Nullable
	Optional
	Description

	data
	Blob
	✘
	✘
	

Return type: void
8.1.3 Constants
CLOSED of type unsigned short
The underlying data transport has been closed or could not be established.
CLOSING of type unsigned short
The process of closing down the underlying data transport has started.
CONNECTING of type unsigned short
The user agent is attempting to establish the underlying data transport. This is the initial state of a DataChannel object created with createDataChannel() .
OPEN of type unsigned short
TODO - theses constants need to be changed to an enum.
The underlying data transport is established and communication is possible. This is the initial state of a DataChannel object dispatched as a part of a DataChannelEvent .
dictionary DataChannelInit {
 boolean reliable;
};
8.1.4 Dictionary DataChannelInit Members
reliable of type boolean
-
20 8.2 Examples
This simple example shows how to create a DataChannel, register an event listener to handle incoming data, and how to send a message.
var chan = peerConn.createDataChannel("mylabel");
chan.onmessage = function (evt) {	Comment by Li Li: missing closing }.
 // use evt.data };
 chan.send("hello");
This simple example shows how to register an event listener to handle the case when a remote peer creates a new DataChannel.
peerConn.ondatachannel = function (evt) {
 var chan = evt.channel;
 chan.onmessage = function (evt) {
 // use evt.data
 };
 chan.onclose = function () {
 // remote side closed the data channel
 };
};
> 	Comment by Li Li: remove ">".
21 9. Garbage collection
A Window object has a strong reference to any PeerConnection objects created from the constructor whose global object is that Window object.
22 10. Event definitions
23 10.1 PeerConnectionEvent
Several of the PeerConnection events use the PeerConnectionEvent interface.
Firing a PeerConnectionEvent event named e with a PeerConnection peer means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the PeerConnectionEvent interface with the peer attribute set to the PeerConnectio object, must be created and dispatched at the given target.	Comment by Li Li: "PeerConnectio"->"PeerConnection".
[Constructor(DOMString type, PeerConnectionEventInit eventInitDict)]
interface PeerConnectionEvent : Event {
 readonly attribute PeerConnection peer;
};
dictionary PeerConnectionEventInit : EventInit {
 PeerConnection peer;
};
10.1.1 Attributes
peer of type PeerConnection, readonly
The peer attribute represents the PeerConnection object associated with the event.
10.1.2 Dictionary PeerConnectionEventInit Members
peer of type PeerConnection
24 10.2 PeerConnectionIceEvent
The onicecandidate event of the PeerConnection uses the PeerConnectionIceEvent interface.
Firing a PeerConnectionIceEvent event named e with a PeerConnection peer means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the PeerConnectionIceEvent interface with the peer attribute set to the PeerConnection object, and the candidate attribute set to the new ICE candiate must be created and dispatched at the given target.	Comment by Li Li: "candiate"->"candidate".
[Constructor(DOMString type, PeerConnectionIceEventInit eventInitDict)]
interface PeerConnectionIceEvent : Event {
 readonly attribute PeerConnection peer;
 readonly attribute IceCandidate candidate;
};
10.2.1 Attributes
candidate of type IceCandidate, readonly
The candidate attribute is the IceCandidate object with the new ICE candiate that caused the event.	Comment by Li Li: "candiate"->"candidate".
peer of type PeerConnection, readonly
The peer attribute represents the PeerConnection object associated with the event.
dictionary PeerConnectionEventIceInit : EventInit {
 PeerConnection peer;
 IceCandidate candidate;
};
10.2.2 Dictionary PeerConnectionEventIceInit Members
candidate of type IceCandidate
peer of type PeerConnection
25 10.3 MediaStreamTrackEvent
The addtrack and removetrack events use the MediaStreamTrackEvent interface.
Firing a track event named e with a MediaStreamTrack track means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the MediaStreamTrackEvent interface with the track attribute set to track, must be created and dispatched at the given target.
[Constructor(DOMString type, MediaStreamTrackEventInit eventInitDict)]
interface MediaStreamTrackEvent : Event {
 readonly attribute MediaStreamTrack track;
};
dictionary MediaStreamTrackEventInit : EventInit {
 readonly MediaStreamTrack? track;
};
10.3.1 Attributes
track of type MediaStreamTrack, readonly
The track attribute represents the MediaStreamTrack object associated with the event.
10.3.2 Dictionary MediaStreamTrackEventInit Members
track of type readonly MediaStreamTrack, nullable
26 10.4 MediaStreamEvent
The addstream and removestream events use the MediaStreamEvent interface.
Firing a stream event named e with a MediaStream stream means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the MediaStreamEvent interface with the stream attribute set to stream, must be created and dispatched at the given target.
[Constructor(DOMString type, MediaStreamEventInit eventInitDict)]
interface MediaStreamEvent : Event {
 readonly attribute MediaStream? stream;
};
dictionary MediaStreamEventInit : EventInit {
 MediaStream stream;
};
10.4.1 Attributes
stream of type MediaStream, readonly, nullable
The stream attribute represents the MediaStream object associated with the event.
10.4.2 Dictionary MediaStreamEventInit Members
stream of type MediaStream
27 10.5 DataChannelEvent
The datachannel event use the DataChannelEvent interface.
Firing a datachannel event named e with a DataChannel channel means that an event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the DataChannelEvent interface with the channel attribute set to channel, must be created and dispatched at the given target.
[Constructor(DOMString type, DataChannelEventInit eventInitDict)]
interface DataChannelEvent : Event {
 readonly attribute DataChannel channel;
};
dictionary DataChannelEventInit : EventInit {
 DataChannel channel;
};
10.5.1 Attributes
channel of type DataChannel, readonly
The channel attribute represents the DataChannel object associated with the event.
10.5.2 Dictionary DataChannelEventInit Members
channel of type DataChannel
28 11. Event summary
This section is non-normative.
The following event fires on MediaStream objects:
	Event name
	Interface
	Fired when...

	ended
	Event
	The MediaStream finished as a result of all tracks in the MediaStream ending.

The following event fires on MediaStreamTrack objects:
	Event name
	Interface
	Fired when...

	muted
	Event
	The MediaStreamTrack object's source is temporarily unable to provide data.

	unmuted
	Event
	The MediaStreamTrack object's source is live again after having been temporarily unable to provide data.

	ended
	Event
	The MediaStreamTrack object's source will no longer provide any data, either because the user revoked the permissions, or because the source device has been ejected, or because the remote peer stopped sending data, or because the stop() method was invoked.

The following event fires on MediaStreamTrackList objects:
	Event name
	Interface
	Fired when...

	addtrack
	MediaStreamTrackEvent
	A new MediaStreamTrack has been added to this list.

	removetrack
	MediaStreamTrackEvent
	A MediaStreamTrack has been removed from this list.

The following event fires on DataChannel objects:
	Event name
	Interface
	Fired when...

	open
	Event
	The DataChannel object’s underlying data transport has been established (or re-established).

	MessageEvent
	Event
	A message was successfully received. TODO: Ref where MessageEvent is defined?

	error
	Event
	TODO.

	close
	Event
	The DataChannel object’s underlying data transport has was closed.

The following events fire on PeerConnection objects:
	Event name
	Interface
	Fired when...

	connecting
	Event
	TODO

	open
	Event
	TODO

	addstream
	MediaStreamEvent
	A new stream has been added to the remoteStreams array.

	removestream
	MediaStreamEvent
	A stream has been removed from the remoteStreams array.

	renegotiationneeded
	PeerConnectionEvent
	The browser wishes to inform the application that session negotiation needs to be redone at some point in the near future. Open Issue: should this be moved to "Negotiation Needed" instead of "Re-Negotiation Needed"?

	statechange
	PeerConnectionEvent
	TODO

	icechange
	PeerConnectionEvent
	TODO

	icecandidate
	PeerConnectionIceEvent
	TODO

29 12. Change Log	Comment by Li Li: Add a section for Securiy Considerations before this.
This section will be removed before publication.
30 Changes since May 28, 2012
1. TODO
31 Changes since April 27, 2012
1. Major rewrite of PeerConnection section to line up with IETF JSEP draft.
2. Added simple PeerConnection example. Initial update of SessionDescription and IceCandidate to support serialization and construction.
32 Changes since 21 April 2012
1. Moved MediaStream and related definitions to getUserMedia.
2. Removed some left-overs from the old Data Stream API.
3. Initial import of new Data API.
4. Renamed "underlying data channel" to "underlying data transport". Fixed closing procedures. Fixed some typos.
33 Changes since 12 January 2012
1. Clarified the relation of Stream, Track, and Channel.
34 Changes since 17 October 2011
1. Tweak the introduction text and add a reference to the IETF RTCWEB group.
2. Changed the first argument to getUserMedia to be an object.
3. Added a MediaStreamHints object as a second argument to PeerConnection.addStream.
4. Added AudioMediaStreamTrack class and DTMF interface.
35 Changes since 23 August 2011
1. Separated the SDP and ICE Agent into separate agents and added explicit state attributes for each.
2. Removed the send method from PeerConenction and associated callback function.
3. Modified MediaStream() constructor to take a list of MediaStreamTrack objects instead of a MediaStream. Removed text about MediaStream parent and child relationship.
4. Added abstract.
5. Moved a few paragraphs from the MediaStreamTrack.label section to the MediaStream.label section (where they belong).
6. Split MediaStream.tracks into MediaStream.audioTracks and MediaStream.videoTracks.
7. Removed a sentence that implied that track access is limited to LocalMediaStream.
8. Updated a few getUserMedia()-examples to use MediaStreamOptions.
9. Replaced calls to URL.getObjectURL() with URL.createObjectURL() in example code.
10. Fixed some broken getUserMedia() links.
11. Introduced state handling on MediaStreamTrack (removed state handling from MediaStream).
12. Reintroduced onended on MediaStream to simplify checking if all tracks are ended.
13. Aligned the MediaStreamTrack ended event dispatching behavior with that of MediaStream.
14. Updated the LocalMediaStream.stop() algorithm to implicitly use the end track algorithm.
15. Replaced an occurrence the term finished track with ended track (to align with rest of spec).
16. Moved (and extended) the explanation about track references and media sources from LocalMediaStream to MediaStreamTrack.
17. Removed section "Obtaining local multimedia content".
18. Updated getUserMedia() calls in examples (changes in Media Capture TF spec).
19. Introduced MediaStreamTrackList interface with support for adding and removing tracks.
20. Updated the algorithm that is run when PeerConnection receives a stream (create new stream when negotiated instead of when data arrives).
36 A. Acknowledgements
The editors wish to thank the Working Group chairs, Harald Alvestrand and Stefan Håkansson, for their support.
37 B. References
38 B.1 Normative references
[GETUSERMEDIA]
D. Burnett, A. Narayanan. getusermedia: Getting access to local devices that can generate multimedia streams 22 December 2011. W3C Editors draft (Work in progress.) URL: http://dev.w3.org/2011/webrtc/editor/getusermedia.html
[ICE]
J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols. April 2010. Internet RFC 5245. URL: http://tools.ietf.org/html/rfc5245
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt
[RTCWEB-CONSTRAINTS]
D. Burnett. IANA Registry for RTCWeb Media Constraints. URL: http://datatracker.ietf.org/doc/draft-burnett-rtcweb-constraints-registry/
[SDP]
J. Rosenberg, H. Schulzrinne. An Offer/Answer Model with the Session Description Protocol (SDP). June 2002. Internet RFC 3264. URL: http://tools.ietf.org/html/rfc3264
[STUN]
J. Rosenberg, R. Mahy, P. Matthews, D. Wing. Session Traversal Utilities for NAT (STUN). October 2008. Internet RFC 5389. URL: http://tools.ietf.org/html/rfc5389
[STUN-URI]
S. Nandakumar, G. Salgueiro, P. Jones, and M. Petit-Huguenin. URI Scheme for Session Traversal Utilities for NAT (STUN) Protocol. 12 March 2012. Internet Draft (work in progress). URL: http://tools.ietf.org/html/draft-nandakumar-rtcweb-stun-uri
[TURN]
P. Mahy, P. Matthews, J. Rosenberg. Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). April 2010. Internet RFC 5766. URL: http://tools.ietf.org/html/rfc5766
[TURN-URI]
M. Petit-Huguenin, S. Nandakumar, G. Salgueiro, and P. Jones. Traversal Using Relays around NAT (TURN) Uniform Resource Identifiers. 12 March 2012. Internet Draft (work in progress). URL: http://tools.ietf.org/html/draft-petithuguenin-behave-turn-uris
[WEBIDL]
Cameron McCormack. Web IDL. 27 September 2011. W3C Working Draft. (Work in progress.) URL: http://www.w3.org/TR/2011/WD-WebIDL-20110927/
39 B.2 Informative references
[RTCWEB-JSEP]
J. Uberti, C. Jennings. Javascript Session Establishment Protocol. URL: http://datatracker.ietf.org/doc/draft-ietf-rtcweb-jsep/

	2012-07-03
	Huawei Proprietary - Restricted Distribution
	Page43, Total43

image1.png

image2.jpeg
\
)

LHUAWEI

