
RDF Isolation API
James Leigh and David Wood, Zepheira

{jleigh, dwood}@zepheira.com

Introduction
This document proposes a RESTful API for RDF stores that supports revision isolation. This proposed API
combines basic CRUD operations over RDF services and queries and mandates RDF descriptions of services.
The SPARQL 1.1 protocol includes the ability to modify an RDF store's state. With the ability to change state
comes the challenge of managing store versions and the need to manage those versions (and their differences)
over HTTP.

The SERVICE keyword is part of SPARQL 1.1 Federation Extensions[1] and is used here to link named queries
and services. In this way the SPARQL language becomes the hypermedia linking services and graphs together.

An RDF store may have zero or more services. A service is an exposed branch of an RDF store. Just as a version
control repository can have multiple parallel branches sharing much of the data, so too can conceptual RDF
stores. Each service can have zero or more graphs, each graph can have zero or more triples.

Because each query, service, and graph are self describing they can exist in a peer-distributed network
interlinked using the SERVICE and GRAPH keywords.

Background
Other RESTful APIs for RDF have been proposed and implemented. Notable among these are the RESTful API
to the Mulgara Semantic Store [2], the more recent Linked Data API proposed at the Second Linked Data
Meetup London [3] and Pubby [4].

Mulgara's REST API allows basic CRUD operations via the issuing of HTTP verbs to URIs addressing RDF
statements or graphs. Mulgara implements its REST operations by calling either its TQL query language features
(that allow full CRUD operations) or its SPARQL endpoint (that has until recently been read-only). By contrast,
the proposed Linked Data API and Pubby operate over SPARQL endpoints and provide read-only interfaces to
RDF data. Pubby and the proposed Linked Data API address objects (in a Linked Data sense) by URI and map
them to parameterized SPARQL queries.

The REST API proposed in this document is intended to provide a consistent, fully RESTful API to RDF data
that supports CRUD operations at the query, graph and service levels and revision isolation. SPARQL 1.1 is used
to define both queries and update graphs where necessary.

Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

An implementation is not compliant if it fails to satisfy one or more of the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said to be "unconditionally compliant"; one that
satisfies all the MUST level requirements but not all the SHOULD level requirements for its protocols is said to
be "conditionally compliant."

All RDF results MUST be able to respond with application/rdf+xml if at all and MAY respond with text/turtle or
other RDF type. All operations that respond with the application/sparql-query content type MUST return
application/sparql-query if the request prefers it as the response type. All operation that POST or PUT the

application/sparql-query content type MUST accept application/sparql-query if anything.

Throughout this document the example URI paths such as /query, /branch and /service should be replaced with
actual non-trivial URI paths. The example paths are meant to be just that and should not be taken literally. This
document contains no “well-known locations;” any resource may exist on any HTTP accessible host.

All responses MAY respond with 401 Not Authorized and 403 Forbidden instead. All 2xx responses to GET,
HEAD, PUT, and POST must include an Etag.

Named Query Resources

Create a Named Query
PUT of a SPARQL query SHOULD create a new named query. The "SERVICE" keywords are used to indicate
which store branch the query will use during evaluation. In the absence of SERVICE keywords the default
service should be used. The cache-control request header on PUT may be used in subsequent GET responses.
Update queries MUST not be permitted as named queries.

Query parameters can be of the form <$name>, "$name", or "$name"^^<datatype>. URI bindings values are
relative to the named query uri. If a binding has no value, it never matches. If a binding has multiple values, any
and all values could match.

Example Request Example Response

PUT /query HTTP/1.1
Content-Type: application/sparql-query
Cache-Control: max-age=30

DESCRIBE ?book
FROM </graph>
WHERE {
 SERVICE </service> {
 ?book dc:creator "$author" .
 }
}

HTTP/1.1 201 Created

View a Named Query
GET on a query SHOULD returns the query itself, along with the service(s) it uses; if agent prefers it.

Example Request Example Response

GET /query HTTP/1.1
Accept: application/sparql-query

HTTP/1.1 200 Ok
Content-Type: application/sparql-query

DESCRIBE ?book
FROM </graph>
WHERE {
 SERVICE </service> {
 ?book dc:creator "$author”
 }
}

View the Results of a Named Query
GET of a SPARQL query with an accept type of boolean, tuples or RDF (other than application/sparql-query)
SHOULD evaluate the query using a configured cache-control or responds with a previous evaluation. The query
must be evaluated as if all combinations of query parameters were used in a BINDINGS clause[5]. The Age
header must be used to indicate how long ago these results were evaluated. If the query cannot produce the
expected output (indicated by the request Accept header) of 406 Not Acceptable is returned. This response and
other responses MAY be the result of a redirect. The Etag used in the response must change every time the

results change as specified by HTTP.

Example Request Example Response

GET /query?author=A.N.Other HTTP/1.1
Accept: text/turtle

HTTP/1.1 200 Ok
Content-Type: text/turtle
Cache-Control: max-age=30
Age: 0

<http://example.com/book3> dc:title "A new book" ;
 dc:creator "A.N.Other" .

Evaluate Named Query
POST to a SPARQL query SHOULD evaluate the query serially using the bindings provided. The query must be
evaluated as if all combinations of query parameters were used in a BINDINGS clause[5].

Example Request Example Response

POST /query HTTP/1.1
Accept: text/turtle
Content-Type: application/x-www-form-urlencoded

author=A.N.Other

HTTP/1.1 200 OK
Content-Type: text/turtle
Cache-Control: no-store

<http://example.com/book3> dc:title "A new book" ;
 dc:creator "A.N.Other" .

Remove Named Query
DELETE of a query MUST remove the query or respond with 401/403.

Example Request Example Response

DELETE /query HTTP/1.1 HTTP/1.1 204 No Content

Store Service

Create a New Service
PUT of a SPARQL insert MUST create a new RDF store branch at the target URI that is initialized with the
request body or respond with 401/403. If no SERVICE keyword is used the branch is a branch of the default
service or an empty store. A service graph is automatically created when the service is created, this graph cannot
be removed.

Example Request Example Response

PUT /service HTTP/1.1
Content-Type: application/sparql-query

PREFIX dc:<http://purl.org/dc/elements/1.1/>
INSERT DATA {
 <http://example.com/book3> dc:title "A new book";
 dc:creator "A.N.Other" .
}

HTTP/1.1 201 Created

View All Data
GET of a service SHOULD returns the entire contents of the service. The commands in this response if replayed
would restore the service to its current state.

Example Request Example Response

GET /service HTTP/1.1
Accept: application/sparql-query

HTTP/1.1 200 OK
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
CREATE SILENT GRAPH <>
WITH <>
INSERT DATA {
 <http://example.com/book3> dc:title "A new book";
 dc:creator "A.N.Other" .
}

View Description
GET of a service for RDF (of a format that does not support named graphs such as rdf+xml and turtle) MUST
return the contents of the named graph of the service name. This named graph SHOULD be used to describe the
service, related services, available named queries, and relevant named graphs.

Any queries referenced in this service graph MUST implement View the Results of a Named Query. An RDF
vocabulary to describe services must be developed for this function to be completely defined.

Implementation of the View Description function is REQUIRED.

Example Request Example Response

GET /service HTTP/1.1
Accept: application/rdf+xml

HTTP/1.1 200 OK
Content-Type: application/rdf+xml

<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#">
<rdf:Description
 rdf:about="http://example.com/book3">
 <dc:title>A new book</dc:title>
 <dc:creator>A.N.Other</dc:creator>
</rdf:Description>
</rdf:RDF>

Evaluate Query
POST to a service MUST evaluate the query serially. This is provided (in contrast to named queries) to ensure
that queries are evaluated in the correct sequence among other update operations.

Implementation of the Evaluate Query function is REQUIRED.

Example Request Example Response

POST /service HTTP/1.1
Accept: text/turtle
Content-Type: application/sparql-query

DESCRIBE ?book
WHERE {
 ?book dc:title "A new book" ;
 dc:creator "A.N.Other" .
}

HTTP/1.1 200 OK
Content-Type: text/turtle

<http://example.com/book3>
 dc:title "A new book" ;
 dc:creator "A.N.Other" .

Modify State
POST of an update to a service MUST evaluate the operation serially or return 403 Forbidden. Inserted triples
default to the service graph unless otherwise indicated using the WITH keyword. Inserted triples default to being
stored in the current service unless otherwise indicated using the WITH SERVICE keywords.

http://purl.org/dc/elements/1.1/
http://example.com/book3

Example Request Example Response

POST /service HTTP/1.1
Accept: text/turtle
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA {
 <http://example.com/book3> dc:title "A book" ;
 dc:creator "A.Other" .
}

HTTP/1.1 204 No Content

Remove Service
DELETE to a service MUST remove the branch from the RDF store or respond with 401 Not Authorized or 403
Forbidden.

Example Request Example Response

DELETE /service HTTP/1.1 HTTP/1.1 204 No Content

Virtual Store Service

Branch a Service
PUT (with SERVICE) MAY branch an existing store revision to a new store revision (a copy). Although a copy
is made available before the 201 response is received, there is no guarantee when the state will be copied. The
copied state maybe a copy of the past, present, or future state of the service.

Example Request Example Response

PUT /branch HTTP/1.1
Content-Type: application/sparql-query

INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 ?s ?p ?o
 }
}

HTTP/1.1 201 Created

Include a Service
POST (with SERVICE) MAY incorporate the content of another service into an already existing service.

Example Request Example Response

POST /branch HTTP/1.1
Content-Type: application/sparql-query

INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 ?s ?p ?o
 }
}

HTTP/1.1 204 Not Content

Branch a Dataset
A service may constrain the triples that are included from the other service. The new service will only expose
matching triples in the target service.

Example Request Example Response

PUT /branch HTTP/1.1
Content-Type: application/sparql-query

INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 ?s ?p ?o
 FILTER regex(str(?s), “^http://example.com/”)
 }
}

HTTP/1.1 201 Created

View Changes
GET of a service SHOULD only return the delta changes since the branch was created and what services were
copied. The service response contains a sequence of commands that recreate the current state of the service.

Example Request Example Response

GET /branch HTTP/1.1
Accept: application/sparql-query

HTTP/1.1 200 OK
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
CREATE SLIENT GRAPH <>
INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 ?s ?p ?o
 }
}
WITH <>
INSERT DATA {
 <http://example.com/book3> dc:title "A new book";
 dc:creator "A.N.Other" .
}

Proxy changes
POST of an update to a service MAY proxy changes to a backing service if the changes would be viewable in
this service.

Example Request Example Response

POST /service HTTP/1.1
Accept: text/turtle
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
WITH SERVICE </service>
INSERT DATA {
 <http://example.com/book3> dc:title "A book" ;
 dc:creator "A.Other" .
}

HTTP/1.1 204 No Content

Verify Revision

POST with a content-location of a revision branch MAY return 202 Accepted if the observed content revision
state is consistent and the agent should resend the request to complete the merge.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

Example Request Example Response

POST /service HTTP/1.1
Content-Location: /branch
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 ?s ?p ?o
 }
}
CREATE SLIENT GRAPH <>
WITH <>
INSERT DATA {
 <http://example.com/book3> dc:title "A new book";
 dc:creator "A.N.Other" .
}

HTTP/1.1 202 Accepted

Apply Revision
POST with a content-location of a revision branch MAY not succeed if the observed content revision state is
inconsistent with the target revision state otherwise the service should be merged and 204 response is given.

Example Request Example Response

POST /service HTTP/1.1
Content-Location: /branch
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 ?s ?p ?o
 }
}
CREATE SLIENT GRAPH <>
WITH <>
INSERT DATA {
 <http://example.com/book3> dc:title "A new book";
 dc:creator "A.N.Other" .
}

HTTP/1.1 204 No Content

Graph Services

Create a Graph Service
A service can expose a named graph of the same name in a different service.

Example Request Example Response

PUT /graph HTTP/1.1
Content-Type: application/sparql-query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT { ?s ?p ?o }
WHERE {
 SERVICE </service> {
 SELECT ?s ?p ?o {
 GRAPH <> { ?s ?p ?o }
 }
 }
}

HTTP/1.1 201 Created

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

View Graph
GET of a service MUST returns the contents of the service graph, which may be stored in another service.

Example Request Example Response

GET /graph HTTP/1.1
Accept: application/rdf+xml

HTTP/1.1 200 OK
Content-Type: application/rdf+xml

<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#">
<rdf:Description
 rdf:about="http://example.com/book3">
 <dc:title>A new book</dc:title>
 <dc:creator>A.N.Other</dc:creator>
</rdf:Description>
</rdf:RDF>

Update Graph Data
POST to a service MAY be applied using the default graph (same name as target), but against another service
(provided the other service is visible from the target service).

Example Request Example Response

POST /graph HTTP/1.1
Content-Type: application/sparql-query

WITH SERVICE </service>
DELETE {
 ?book dc:title "A new book" ;
 dc:creator "A.N.Other" .
}
WITH SERVICE </service>
INSERT DATA {
 <http://example.com/book3> dc:title "A new book";
 dc:creator "A.N.Other" .
}

HTTP/1.1 204 No Content

Remove Graph Service
DELETE to a service MUST not modify any other services and MUST only remove the service and any state
stored exclusively within it. In the case of a remote service graph, the remote graph is not removed.

Example Request Example Response

DELETE /graph HTTP/1.1 HTTP/1.1 204 No Content

References
[1] http://www.w3.org/TR/sparql11-federated-query/

[2] Paul Gearon, Mulgara REST API, http://www.mulgara.org/trac/wiki/RESTInterface

[3] Dave Reynolds, Jeni Tennison and Leigh Dodds, Linked Data API: http://code.google.com/p/linked-data-
api/wiki/Specification

[4] Richard Cyganiak and Chris Bizer, Pubby: http://www4.wiwiss.fu-berlin.de/pubby/

[5] http://www.w3.org/TR/sparql11-query/#rBindingsClause

http://www4.wiwiss.fu-berlin.de/pubby/

	RDF Isolation API
	Introduction
	Background
	Requirements
	Named Query Resources
	Create a Named Query
	View a Named Query
	View the Results of a Named Query
	Evaluate Named Query
	Remove Named Query

	Store Service
	Create a New Service
	View All Data
	View Description
	Evaluate Query
	Modify State
	Remove Service

	Virtual Store Service
	Branch a Service

	Include a Service
	Branch a Dataset
	View Changes
	Proxy changes
	Verify Revision
	Apply Revision

	Graph Services
	Create a Graph Service
	View Graph
	Update Graph Data
	Remove Graph Service

	References

