B

PRD - RIF http:/fwww.w3.org/2005/rules/wiki/PRD

PRD

From RIF

Document title:
RIF Production Rule Dialect

Editors
Christian de Sainte Marie, ILOG
Adrian Paschke, Free University Berlin
Gary Hallmark, Oracle

Abstract :

This document specifies RIF-PRD, a Rule Interchange Format (RIF) (http LIwww.w3.org

/2005/rules) dialect to enable the interchange of production rules. W W

Status of this Document _
@@update This is an automatically generated Mediawiki page, made from some sort of W3C-style

spec.

Copyright (http://www.w3.org/Consortium/Legal/ipr-notice#Copyright) © 2008 W3C

(http://www.w3.org/) ® (MIT (http://www.csail.mit.edw/) , ERCIM (http://www.ercim.org/) , Keio
(http://www keio.ac.jp/)), All Rights Reserved. W3C liability (http://www.w3.org/Consortium/Legal
fipr-notice#Legal Disclaimer) , trademark (http://www.w3.org/Consortium/Legal
fipr-notice#W3C_Trademarks) and document use (http://www.w3.org/ Consortium/Legal/copyright-

documents) rules apply. :

Contents

x | Overview
= 2 Conditions
m 2.1 Abstract syntax
a 2.1.1 Terms
s 2.1.2 Atomic formulas
» 2.1.3 Formulas
m 2.1.4 Well-formed formulas
= 2.2 Semantics of condition formulas
» 2.2.1 Semantic structures
» 2.2.2 Interpretation of condition formulas
m 2.2.3 Satisfaction of a condition
= 2.2.4 Matching substitution
= 3 Actions
= 3.1 Abstract syntax

1 of49 12/01/2009 9:22 PM

PRD - RIF

2 of 49

= 3.1.1 Atomic actions
= 3.1.2 Action blocks
» 3.1.3 Well-formed action blocks
a 3.2 Operational semantics of atomic actions
m 4 Production rules and rulesets
= 4.1 Abstract syntax
= 4.1.1 Rules
= 4.1.2 Groups
n 4.1.3 Well-formed rules and groups
» 4.2 Operational semantics of rules and rule sets
n 4.2.1 Motivation and example
a 4.2.2 Definitions and notational conventions
» 4.2.3 Operational semantics of a production rule system
» 4.2 4 Conflict resolution
» 4.2.5 Halting test
= 5 XML Syntax
= 5.1 Notational conventions
= 5.1.1 Namespaces
= 5.1.2 BNF pseudo-schemas
= 5.1.3 Syntactic components
m 5.2 Conditions
s 5.2.1 TERM
= 52.1.1 Const
m 5.2.1.2 Var
= 5.2.1.3 External
u 52.2 ATOMIC
= 5.2.2.1 Atom
5.2.2.2 Equal
n 5.2.2.3 Member
5.2.2.4 Subclass
w 52.2.5 Frame
5.2.2.6 External
= 5.2.3 FORMULA
= 52.3.1 ATOMIC
5.2.3.2 And
m 52330r
5.2.3.4 NmNot
m 5.2.3.5 Exists
= 5.3 Actions
» 5.3.1 ATOMIC_ACTION
= 5.3.1.1 Assert
= 5.3.1.2 Retract
n 5.3.2 INITIALIZATION
s 5.3.2.1 New
n 5.3.2.2 Frame
» 5.3.3 ACTION BLOCK
» 53.3.1Do
» 53.3.2 And

http:/fwww.w3.0rg/2005/rules/wiki/PRD

12/01/2009 9:22 PM

PRD - RIF. http://www.w3.0org/2005/rules/wiki/PRD

» 5.3.3.3 ATOMIC
= 5.4 Rules and Groups
» 54.1 RULE
» 54.1.1 ACTION_BLOCK
m 5.4.1.2 Implies
» 5.4.1.3 Forall
» 5.4.2 Group
» 5.5 Constructs carrying no semantics
» 5.5.1 Document
» 5.5.2 Metadata
» 6 Presentation syntax
s 7 References
» § Appendix: XML schema
= 9 Appendix: Compatibility with RIF-BLD
= 9.1 Syntactic compatibility between RIF-PRD and RIF-BLD
= 9.2 Semantic compatibility between RIF-PRD and RIF-BLD

1 Overview

This document specifies the production rule dialect of the W3C rule interchange format (RIF-PRD), a
standard XML serialization format for many production rule languages.

Production rules are rule statements defined in terms of both individual facts or gbjects, and groups of :/é‘
facts or classes of objects. They have an if part, or condition, and a then paft, or action. The condition is

 like the condition part of logic rules (as covered by the Basicdogic didlect of the W3C rule interchange [
format, RIF-BLD). The ther part contains actions, which is different to the conclusion part of logic rules #
which contains only a logical statement. Actions can add, delete, or modify facts in the knowledge base,

and have other side-effects. -
st 2

Example 1.1. «4 customer becomes a "Gold" customer as soon as his cumulative purchases during the
current year top $5000»; «Customers that become "Gold" customers must be notified immediately, and
a golden customer card will be printed and sent to them within one weeky; «For shopping carts worth
more than $1000, "Gold" customers receive an additional discount of 10%of the total amount», are all

examples of production rules. [

As a production rule interchange format, RIF-PRD specifies an abstract syntax that shares most features
with many concrete production rule languages, and it associates each abstract construct with normative

semantics and a normative XML concrete syntax. ST
. erqplatren,

Production rules are statements of programming logic that specify the execution of one or more actions in
the case that their conditions are satisfied. Production rules therefore have an operational semantic

(formalizing state changes, e.g., on the basis of a state transition mfﬁ—rg‘alism). The OMG
Production Rule Representation specification [PRR] summarizes it as follows:

1. Match: the rules are instantiated based on the definition of the rule conditions and the current state

of the data source;
2. Conflict resolution: a decision algorithm, often called the conflict resolution strategy, is applied to

3 of 49 12/01/2609 9:22 PM

PRD - RIF http:/fwww.w3.org/2005/rules/wiki/PRD

select the rule instances to be executed;
3. Act: the state of the data source is changed, by executing the selected rule instances’ actions. If a
terminal state has not been reached, the control loops back to the first step (Match).

In the section Operational semantics of rules and rule sets, the semantics for rules and rule sets is
specified, accordingly, as a labeled terminal transition system (PLO04), where state a§1{ansitions result
. . . . A
from executing the action part of instantiated rules. When several rules are deemed able to be Executed
during the rule execution process, a conflict resolution strategy is used to determine the order of rules to
] execute Sub-section Instance Selection specifies how an intended conflict resolution strategy can be
attached to a rule set interchanged with RIF-PRD, and defines a default conflict resolution strategy.

However, as a RIF dialect, RIF-PRD has also been designed to allow interoperability between rule
languages over the World Wide Web. In RIF, this is achieved by sharing the same syntax for constructs
that have the same semantics across multiple dialects. As a consequence, RIF-PRD shares most of the
syntax for rule conditions with RIF-BLD [RIF-BLD], and the semantics associated to the syntactic
constructs used for representing the condition part of rules in RIF-PRD is specified, in Section Semantics
of condition formulas, in terms of a model theory, as it is in the specification of RIF-BLD as well. In
addition to exploiting similarities between the two dialects, it allows them to share the same RIF

definitions for dat%}ypes and built-ins [RIF-DTB].

In the section Operational semantics of actions, the semantics associated with the constructs used to
represent the action part of rules in RIF-PRD is specified in terms of a transition relation between
successive states of the data source, as defined by the condition formulas that they entail, thus making
the link between the model-theoretic semantics of conditions and the operational semantics of rules and

rulesets.

The abstract syntax is specified in mathematical ngh'sh, and the abstract syntactic constructs defined in
the sections Abstract Syntax of Conditions, Abstract Syntax of Actions and Abstract Syntax of Rules and
Rulesets, are mapped one to one onto the concrete XML syntax in Section XML syntax. A lightweight
notation is also defined along with the abstract syntax, to allow for a human-friendlier specification of the
semantics. A more complete presentation syntax is specified using an EBNF in Section Presentation
Syntax. However, only the XML syntax and the associated semantics are normative. A normative XML
schema will also be provided in future versions of the document.

Example 1.2. In RIF-PRD presentation syntax, the first rule in example 1.1. might be represented as
follows:

:Prefix(exl http://exampie.com/2008/prd#)

:(* exl:rule_ 1 *)

Wworall ?customer ?purchasesYTD

:If And({ ?customerfexl:Customer

1 ?customer [exl:purchasesYTD~>?purchasesYTD]

External (pred:numeric-greater-than{?purchases¥YTD 5000)))

Then exl:Gold(?customer))
A

The condition languages of RIF-PRD and RIF-BLD have much in common, including much of their
semantics. Although theix, abstraé‘%{yntax and rule semaﬁic?%é “dif?é?ent, due to the operational nature
of the actions in production rules, there is a subset for which they are equivalent: essentially, rules with
no negation and no uninterpreted functions in the condition, and with only assertions in the action patt.
For that subset, the XML syntax is the same, so many XML documents are valid in both dialects and
have the same meaning. The correspondence between RIF-PRD and RIF-BLD is detailed in Appendix

4 of 49 12/01/2009 9:22 PM

PRD - RIF http://www.w3.0rg/2005/rules/wiki/PRD

5 of49

Compatibility with RIF-BLD.

This document is mostly intended for the designers and developers of RIF-PRD implementations, that is,
applications that serialize production rules as RIF-PRD XML (producer applications) and/or that
deserialize RIF-PRD XML documents into production rules (consumer applications).

2 Conditions

This section specifies the language of the rule conditions that can be serialized using RIF-PRD, by
specifying:

= the abstract syntax that all production rule languages interchanging rules using RIF-PRD must have

i in common for expressing conditions;
/ = /anﬂ the intended semantics of the condition formulas in a RIF-PRD document.

Note to the reader: this section depends on Section Constants, Symbol Spaces, and Datatypes of RIF data
types and builtins [RIF-DTB].

2.1 Abstract syntax

For a production rule language to be able to interchange rules using RIF-PRD, its alphabet for expressing
the condition parts of a rule must, at the abstract syntax level, consist of:

a countably infinite set of constant symbols Const;
a countably infinite set of variable symbols var (disjoint from const);
a countably infinite set of argument names, ArgNames (disjoint from Const and var);
syntactic constructs to denote:
= Function calls;
» Relations, including equality, class membership and subclass relations;
» conjunction, disjunction and negation;
» existential conditions.

For the sake of readibility and simplicity, this specification introduces a notation. for these constructs.
That notation is not intended to be a concrete syntax, so it leaves out many details: the only concrete
syntax for RIF-PRD is the XML syntax.

Notice that the production rule systems for which RIF-PRD aims to provide a common XML serialization
use only externally specified functions, e.g. builtins. RIF-BLD specifies, in addition, a construct to denote
uninterpreted function symbols, which RIF-PRD does not require: this is one of two differences between
the alphabets used in the condition languages of RIF-PRD and RIF-BLD. 3 [pec'?asf 2,

support negation because logic rule languages use many-different kinds of negations, none of them
prevalent enough to justify inclusion in the basic logic dialect of RIF (see also the RIF framework for

logic dialects). Bt iRt m PRD A W y: ~
2.1.1 Terms ,@1&(“ "Vu?g.)& are e FLIDL :

The second point of difference is that RIF-PRD does support a form of negation. RIF-BLD does not 7

The most basic construct that can be serialized using RIF-PRD is the ferm. RIF-PRD provides for the

12/01/2009 9:22 PM

PRD - RiF http://www.w3.0org/2005/rules/wiki/PRD

representation and interchange of several kinds of terms: constants, variables, positional terms and terms
with named arguments

Definition (Term).

1. Constants and variables. If t € Const or t € var then t is a simple term.

2. Positional terms. If t € const and t1, ..., tp, n20, are terms then t (t1 ... ty) is a positional

. e— —

ferm.
Here, the constant t represents a function and t1, ..., tp represent argument values.

3. Terms with named arguments. A term with named arguments is of the form t (s1->v1 ...
sn—->vp), where n20, t € Const and v1, ..., vy are terms and s1, ..., sy, are pairwise distinct symbols

from the set ArgNames.
The constant t here represents a function; si, ..., s, represent argument names; and v1, ..., v

represent argument values. The argument names, s1, ..., sp, are required to be pairwise distinct.
Terms with named arguments are like positional terms except that the arguments are named and
their order is immaterial. Note that a term of the form £ () is, trivially, both a positional term and a

term with named arguments. 0

2.1.2 Atomic formulas
The atomic truth-valued constructs that can be serialized using RIF-PRD are called atomic formulas.

Definition (Atomic formula). An afomic formula can have several different forms and is defined as
follows:

1. Positional atomic formulas. If t € Const and t1, ..., tpn, n20, are termsthen t (t1 ... tp) isa

Pos Teter= | | y
Dpositional atomic formula (or simply a positional atom).
2. Atomic formulas with named arguments. An atomic formula with named arguments (or simply a

Tequ w atom with named arguments) is of the form t (s1->v1 ... sp->vn), where n20, t € Const and
- m/aﬁ

V1, ..., Vp are terms and sy, ..., sp are pairwise distinct symbols from the set ArgNames.

6 0f49 12/01/2009 9:22 PM

PRD - RIF http://www.w3.0rg/2005/rules/wiki/PRD

Vipwea |

7 of49

The constant t here represents a predicate; s1, ..., sp represent argument names; and v1, ..., vn
represent argument values. The argument names, s1, ..., sp, are required to be pairwise distinct.
Atoms with named arguments are like positional Atoms except that the arguments are named and
their order is immaterial. Note that an atom of the form t () is, trivially, both a posmonal atom and
an atom with named arguments.
3. Equality atomic formulas. ¢ = s is an equality atomic formula (or, simply, an equality), if t and
s are terms. s %\
4. Class membership atomic formulas (or just membership). t#s is a membership atomic formula it V=-~"
t and s are terms. the term t is the object and the term s is the class. ‘7[2})"/’” . %{rbﬂ;
. Subclass atomic formulas. t##s is a subclass atomic formula if t and s are terms. /?’ud% {
6. Frame atomic formulas. t [p1->v1 ... pn->vn] iS a frame atomic formula (or simply a frame) if)
t, Pls ever Pris V1, ooy Vi, 1t 2 0, are terms. The term t is the object of the frame; the p; are the
property or attribute names; and the v; are the property or attribute vafues. In this document, an
W pair is sometimes called a s/of.
Membership, subclass, and frame atomic formulas are used to describe objects, classifications and

class hierarchies.
7. Externally dgziged atomic formulas. If t is a positional, named-argument, or a frame atomic

formula then External (t) is an externally Wa. Such atomic formulas are
. . . . CC Sf)
used for representing built-in predicates. O A RLD. € ~ m,e?f;_ O‘Pm ¢

Lh

Note that not only predicates, but also frame atomic formulas can be extemally“g\%. Therefore,
external information sources can be modeled in an object-oriented way via frames.

Editor's Note: Objects are commonly used in PR systems. In this draft, we reuse frame, membership,
and subclass formulas (from RIF-BLD) to model objects. We are aware of current limits, such as
difficulty expressing datatype and cardinality constraints. Future drafts will address that problem. We

are interested in feedback on the merits and limitations of this approach. _ BD:
Observe that the argument names of frames, p1, ..., pp, are terms and so, as a special case, can be /W
variables. In contrast, atoms with named arguments can use only the symbols from ArgNames to represent

their argument names, which can neither be constants from Const nor variables from var.

Note that atomic formulas are sometimes also called ferms, e.g. in the realm of logic languages: the
specification of RIF-BLD, in particular, follows that usage. The abstract syntactic elements that are
called ferms in this spemﬁcat;on are called W in the specification of RIF-BLD.

2.1.3 Formulas
Composite truth-valued constructs that can be serialized using RIF-PRD are called formulas.

Note that terms (constants, variables and functions) are nof formulas.

More general formulas are constructed out of ?4 atomic formulas with the help of logical connectives.

Definition (Condition formula). A condition formula can have several different forms and is defined as
follows:

1. Atomic formula: If ¢ is an atomic formula then it is also a condition formula.

12/01/2009 9:22 PM

PRD - RIF http://www.w3.0rg/2005/rules/wiki/PRD

8 0f49

2. Conjunction: If 91, ..., on, n 2 0, are condition formulas then so is And{¢1 ... ¢n},calleda
conjunctive formula. As a special case, And () is allowed and is treated as a tautology, i.e., a

formula that is always true. :
3. Disjunction: If 91, ..., on, n 2 0, are condition formulas then so is Ox (p1 ... on),calleda

disjunctive formula. As a special case, or () is permitted and is treated as a contradiction, i.e., a

formula that is always false.
4. Negation: If ¢ is a condition formula, then so is Not (), called a negative formula.
5. Existentials: If ¢ is a condition formula and ?v4, ..., 7V, n>0, are variables then Exists ?v3

.. ?Vn(e) is an existential formula. O

In the definition of a formula, the component formulas ¢ and ¢; are said to be subformulas of the
respective condition formulas that are built using these components.

The function Var(e) that maps a term, atomic formula or formula e to the set of its free variables is
defined as follows:

= if e € Const, then Var(e) = {};

w if e € Var, then Var(e) = {e};
ey,

m if p and arg;, i = 0...n, are terms, then, Var(p(argy = Var(p) Vi=0..n Var(argy;

w if p and arg;, i = 0...n, are terms, then, Var(External(p(arg;)) = Var(p) Ui=0..n Var(arg);

w if t7 and 1, are terms, then Var(t; [=|#|##] t2) Var(r1) U Var(t2);

» if o', kj, i= 1..n, and vj, i = 1...n, are terms, then Var(o[k1->v I kn->vn]) Var(o) Ui=1..n Var(k;

Ui=1..n Var(vy; AL
n if f;, i = 0...n, are condition formulas, then Var([AND|OR|NOT](fﬁ) Ul_o qa Var(fy);

niffisa condition formula and x; € Var for i = 1..n, then, Var(Exists xj ... xn (f}) = Var(f) - {xi | i =
~— _

1..n}.

Definition (Ground formula). A condition formula ¢ is a ground formula if and only if Vare = {} and ¢

does not contain any existential subformula, O S

In other words, a ground formula does not contain any variable term.

2.1.4 Well-formed formulas
The specification of RIF-PRD does not assign a standard meaning to all the formulas that can be

serialized using its concrete XML syntax: formulas that can be meaningfully serialized are called -
well-formed. Not all formulas are well-formed with respect to RIF-PRD: it is required that no constant

12/01/2009 9:22 PM

PRD - RIF hitp://www.w3.0rg/2005/rules/wiki/PRD

appear in more than one context. What this means precisely is explained below.

The set of all constant symbols, Const, is partitioned into several subsets as follows:

= A subset of individuals.
The symbols in const that belong to the primitive datatypes are required to be mdmduals

= A number of subsets for predicate symbols such that there is one subset per symbol arity (defined
below) for externally defined predicates and one for non-external predicates.
Note that this implies that symbols used for external predicate names cannot be used for other
predicates. Also, the definition of arity, below, implies that the arities for positional predicate
symbols and for predicate symbols with named arguments are distinct even if the numbers of
arguments are the same. Therefore, symbols that are used for positional predicates cannot be used
for predicates with named arguments, and vice versa. . ,

= A number of subsets of function symbols (only externally defined functi@can be serialized using
RIF-PRD). As with predicate symbols, there are separate subsets for symbols with different arities;
function symbols with named arguments are in their own subsets. The only exception is the case of
nullary symbols, which take zero arguments as in £ (), since they are considered to be both
positional and named-argument symbols.

Each predicate and function symbol that takes at least one argument has precisely one arity. For
positional predicate and function symbols, an arity is a non-negative integer that tells how many
arguments the symbol can take. For symbols that take named arguments, an arity isa set {s1 ... sk} of
argument names (s; € ArgNames) that are allowed for that symbol. Nullary symbols (which take zero
arguments) are said to have the arity 0.. 10 e vsed

- An important point is that neither the above partitioning of constant symbols nor the arity are specified
explicitly. Instead, the arity of a symbol and its type is determined by the context in which the symbol is

used,

_Deﬁmtlon (Context of a symbol). The context of an occurrence of a symbol, s€const, ina formuia, ?,
is determined as follows:

s If s occurs as a function symbol in a term of the form s (.. .) with arity « then s occurs in the
context of an external function symbol with arity o (or szmpiy the context of a function symbol
with arity o, since RIF-PRD knows only external functions);

» If s occurs as a predicate in an atomic subformula of the form s (.. .) with arity « then s occurs in
the context of a predicate symbol with arity o
» If s occurs as a predicate in an atomic subformula External(s(...}) with arity « then s occurs in
the context of an external predicate symbol with arity «,
= If s occurs in any other context (ina frame:s[...], ... [s->...],0r ...[...->s];0rina
positional/named argument term: p(...s...), q(...->s...}), it is said to occur as an individual.
a _

Definition (Well-formed formula). A formula ¢ is well-formed iff:

(@ﬁry constant symbol mentioned in ¢ occurs in exactly one context.

enever a formula contains a function term t or an external atomic formula External (t), t
must be an instance of the coherent set of external schemas (Section Schemas for Externally
Defined Terms of RIF data types and builtins [RIF-DTB]) associated with the language of

i wed i TRD

90f49 : 12/01/2009 9:22 PM

PRD - RIF http:/fwww.w3.0rg/2005/rules/wiki/PRD

RIF-PRD.
= If t is an instance of the coherent set of external schemas associated with the language then t can

occur only as a function term t or as an external atomic formula External (t), i.€., as an external
term or atomic formula. O

Definition (RIF-PRD condition language). The RIF-PRD condition language consists of the set of all
well-formed formulas. O

2.2 Semantics of condition formulas
This section specifies the intended semantics of the condition formulas in a RIF-PRD document.

For compatibility with other RIF specifications (in particular, RIF data types and builtins), and to 4m,}(al§z,
the interoperability with RIF logic dialects (in particular RIF Core [RIF-Core] and RIF-BLD), the
intended semantics for RIF-PRD condition formulas is specified in terms of a model theory.

2.2.1 Semantic structures

Definition (Semantic structure). A semantic structure, I, is a tuple of the form <TV, DTS, D, Dind,
Dfine, Ic, Iv, I, Iname, INF, Isub, fisa, I=, Iexternal, Truty>. Here D is a non-empty set of elements called
the Herbrand domain of 'I, i.e., the set of all ground terms which can be formed by using the elements of
Const. Dind, Dfinc are nonempty subsets of D. Dind is used to interpret the elements of Const that are
individuals and Dgyc is used to interpret the elements of const that are function symbols. Const denotes
the set of all constant symbols and var the set of all variable symbols. TV denotes the set of truth values

that the semantic structure uses and DTS is a set of identifiers for primitive datatypes (please refer to
Section Datatypes of RIF data types and builtins [RIF-DTB] for the semantics of datatypes). The set of
all ground (positionalinamed|frame|external) formulas which can be formed by using the function symbols-
with the ground terms in the Herbrand domain is the Herbrand base, Hp. A semantic structure I'is a

" Herbrand interpretation, Iy, if the corresponding subset of Hp is the set of all ground formulas which

are true with respect to . -

As far as the assignment of a standard meaning to formulas in the RIF-PRD condition language is
concerned, the set TV of truth values consists of just two values, t and f.

The other components of I are tofal mappings defined as follows:

1. Ic maps Const to D.

- This mapping interprets constant symbols. In addition:

= [fa constant, c € const, is an individual then it is required that Ic(c) € Dind.

10 of 49 12/01/2009 9:22 PM

PRD - RIF . htip://www.w3.0rg/2005/rules/wiki/PRD
» If ¢ € Const, is a function symbol (positional or with named arguments) then it is required

that Ic(c) € Dfinc.

2. Iy maps var to Djpd.
This mapping interprets variable symbols.

3. Ir maps D to functions D*pg — D (here D*jy is a set of all sequences of any finite length over the
domain Dingd).

This mapping interprets positional terms and gives meaning to positional predicate function.
4. INr maps D to the set of total functions of the form Set0OfFiniteSets(argNames X Dind) — D.

This mapping interprets function symbols with named arguments and gives meaning to named
argument functions. This is analogous to the interpretation of positional terms with two differences:

» Each pair <s, v> € ArgNames X Dind represents an argument/value pair instead of just a

value in the case of a positional term.
» The arguments of a term with named arguments constitute a finite set of argument/value
pairs rather than a finite ordered sequence of simple elements. So, the order of the arguments

does not matter.
5. Iframe maps Dind to total functions of the form SetOfFiniteBags(Dind X Pind) — D.

This mapping interprets frame terms and gives meaning to frame functions. An argument, d € Dind,
to Iame represents an object and the finite bag {<a1, v1>, ..., <ak, vk>} represents a bag of
attribute-value pairs for d. Frame is used to determine the truth valuation of frame terms.

Bags (multi-sets) are used here because the order of the attribute/value pairs in a frame is
immaterial and pairs may repeat; ofa—>e~a==b]. Such repetitions arise naturaily when variables
are instantiated with constants. For instance, o [?A->?B ?C->?D] becomes o[a->b a->b] if
variables 22 and »c are instantiated with the symbol a and 28, 2D with b.

6. Isyb gives meaning to the subclass relationship. It is a mapping of the form Dijnd X Dind — D.

Thc operator ## is required to be transitive, i.e., c1 ## c2and c2 ## c3 mustimply c1 ## c3.
TThis is ensured by a restriction in Section Interpretation of condition formulas; -

7. Iisa gives meaning to class membership. It is a mapping of the form Dind X Dind — D.

11 of 49 12/01/2009 9:22 PM

PRD - RIF

10.

http://www.w3.org/2005/rules/wiki/PRD

The relationships # and #4# are required to have the usual property that all members of a subclass
are also members of the superclass, i.e., o # cl and c1 ## scl mustimply o # scl. Thisis
ensured by a restriction in Section Interpretation of condition formulas;

I- is a mapping of the form Djnd X Dind — D.
It gives meaning to the equality operator.
Liryth is a mapping of the form D — TV.

It is used to define truth valuation for formulas.

Texternal is a mapping from the coherent set of schemas for externally defined functions to total
functions D* — D, For each external schema o = (?X1 ... ?Xn; t) inthe coherent set of

external schemas associated with the language, Texternal(o) is a function of the form D" - D.

For every external schema, o, associated with the language, Texternal(c) is assumed to be specified
externally in some document (hence the name external schema). In particular, if o is a schema of a

RIF built-in predicate or function, Jexternal(c) is specified in [RIF-DTB] so that:

= If o is a schema of a built-in function then Texternal(c) must be the function defined in the

aforesaid document.
» If 5 is a schema of a built-in predicate then Fryth o (Zexternal(o)) (the composition of Jyuth

and Iexternal{c), a truth-valued function) must be as specified in [RIF-DTB].

For convenience, we also define the following mapping I from terms to D:

n J(x) = Ic(x), if k is a symbol in const;

a J(?v) = Iy(2v), if ?v is a variable in var;

 fp(t: ... tn))=Ip(I(e)I(t1),...J(tn));

 I(p(s1->vi ... sp—>vy)) = INF(I(p))({<s10(v1)>,....<sn.H(vn)>})

Here we use {...} to denote a set of argument/value pairs;

8 Jofa1—>v1 ... ax->vk]) = Igame(I(oN({<l(a1).l(v1)>, ..., <Kan),Il(vn)>})

Here {...} denotes a bag of attribute/value pairs.

8 I(cl##c2) = Isw(I(c1), Kc2));
8 J(o#c) = Lisa(l{0), I(c));

o I(x=y) = I=(I(x), I(y));
n J(External (t)) = Jexternal(c)({(s1); ..., I(sn)), if t is an instance of the external schema o = (?x3

vo. 2Xn; T} by'substitution ?¥1/81 ... ?Xn/s1.
Note that, by definition, External (t) is well-formed only if t is an instance of an external
schema. Furthermore, by the definition of coherent sets of external schemas, t can be an instance

of at most one such schema, so J(External (t)) is well-defined.

The effect of datatypes. The set DTS must include the datatypes described in Section Primitive
Datatypes of RIF data types and builtins [RIF-DTB].

The datatype identifiers in DTS impose the following restrictions. Given dt € DTS, let LSyt denote the
lexical space of dt, VSq; denote its value space, and Lqi: LSdt — VSt the lexica_l-to-value—space mapping .

12/01/2009 9:22 PM

PRD - RIF hitp:/fwww.w3.0rg/2005/rules/wiki/PRD

(for the definitions of these concepts, see Section Primitive Datatypes of RIF data types and builtins
[RIF-DTB]. Then the following must hold:

» VSdt € Ding; and

» For each constant "1it"~~dt such that 1it € LSqg;, Ic("1it"~~dt) = La1it).

That is, Ic must map the constants of a datatype dt in accordance with L.

RIF-PRD does not impose restrictions on I¢ for constants in symbol spaces that are not datatypes
included in DTS.

2.2.2 Interpretation of condition formulas

This section defines how a semantic structure, I, determines the truth value TVali(¢) of a condition
formula, ¢. In PRD a semantic structure is represented as a Herbrand interpretation.

We define a mapping, TValy, from the set of all condition formulas to TV. Note that the definition implies
that TVali(¢) is defined only if the set DTS of the datatypes of I includes all the datatypes mentioned in ¢
and Texternal is defined on all externally defined functions and predicates in ¢.

Definition (Truth valuation). Truth valuation for well-formed condition formulas in RIF-PRD is
determined using the following function, denoted TValy:

w Positional atomic formulas: TVali(r (t1 ... tn)) = Fah{{x (t1 ... tn)));
» Atomic formulas with named arguments: TVali(p (s1->v1 ... sx->vx))= Iyuh(f(p (s1->v1 ...
sk=>v)));

n Equality: TVal(x = y) = Ieunl{I(x = v)).
To ensure that equality has precisely the expected properties, it is required that:
m fruh(I(x = v)) = tif Kx) = Ky) and that Fpyih(f(x = y)) = fotherwise. This is tantamount to
saying that TVal[(x = y) = tiff Ix) = Ky);
» Subclass: TVali(sc ## c1) = hruh(I(sc ## c1)).
To ensure that the operator ## is transitive, i.e., c1 ## c2 and c2 ## c3 imply cl #4 c3, the
following is required:

m Forallci, c2,c3 € D, if TVali(c1 ## c2)=TVali(c2 ## c3)=t then TVali(cl #% c3)=

t;
» Membership: TVali(o # c1) = Fuh(I(o # c1)).
To ensure that all members of a subclass are also members of the superclass, i.e., 0 # cl and

13 of 49 7 12/01/2009 9:22 PM

PRD - RIF

14 of 49

http:/fwww.w3.0rg/2005/rales/wiki/PRD

cl ## sclimplieso # scl, the following is required:
m Forallo, cl,sc1 €D, ifTValo # cl1)=TVali(cl #4# scl)=t then

TVali(o # scl)=t;
» Frame: TValola1->v1 ... ax->vx])=Fnuh(lola1->v1 ... ax=>vki))
Since the bag of attribute/value pairs represents the conjunctions of all the pairs, the following is

required, if kx > o:

® TVali(o(a1->v1 ... ax->vk))=tifand only if TVal(c{a1->v1]) = ... = TVali(o [ax~>vy])
m Externally defined atomic formula: TValy(External (t)) = FeuthTexternal(0)(I{(s1), ..., (sn))), if t
is an atomic formula that is an instance of the external schema ¢ = (?X1 ... ?%qp; 1) by

substitution ?X1/s1 ... ?Xn/si.
Note that, by definition, External (t) is well-formed only if t is an instance of an external
schema. Furthermore, by the definition of coherent sets of external schemas, t can be an instance

of at most one such schema, so I{External (t}) is well-defined;
» Conjunction: TValy(and (c1 ... cp)) = tif and only if TVali(c1) = ... = TVali(cy) = t. Otherwise,

TVali(and(cy ...cn)) =1
The empty conjunction is treated as a tautology, so TVali(and ()) = t;
w Disjunction: TVali(or (c1 ... cn)) = fif and only if TVali(c1) = ... = TVali(cy) = £ Otherwise,

TValfor(ct ...cp)=t
The empty disjunction is treated as a contradiction, so TVali(or ()} =£;
m Negation: TVali(Not (¢)) = fif and only if TVali(c) = t. Otherwise, TVali(Not (¢)) = t;
w Existence: TVali(Exists 2vi ... ?vn (9))=tif and only if for some I*, described below,

TVal(p) = t. :
Here I* is a semantic structure of the form <TV, DTS, D, Dind, Dpred, I, I*v, Ip, Iframe, INP, Isub,

Tisa, I=, Iexternal, Itrutty>, which is exactly like I, except that the mapping I*v, is used instead of Iv.
I*y is defined to coincide with Iy on all variables except, possibly, on ?v1,...,?vn. O

2.2.3 Satisfaction of a2 condition

We now define what it means for a set of ground formulas to satisfy a condition formula. The satisfaction
of condition formulas by a set of ground formulas provides formal underpinning to the operational
semantics of rulesets interchanged using RIF-PRD,

Definition (State). A state .S is a Herbrand Interpretation Iy. O

Definition (Condition Satisfaction). A condition formula, ¢ is satisfied under variable assignment ¢ in a
state S, written as S |= ¢[o], iff TVals(p[c]) =t. O

2.2.4 Matching substitution

At the syntactic level, the interpretation of the variables by a valuation function Iv is realized by a

12/01/2009 9:22 PM

PRD - RIF http:/fwww.w3.org/2005/rules/wiki/PRD

substitution. The matching substitution of constants to variables, as defined below, provides the formal
link between the model-theoretic semantics of condition formulas and the operational semantics of rule

sets in RIF-PRD.

Let Term be the set of the terms in the RIF-PRD condition language (as defined in section Terms).

Definition (Substitution). A substitution is a finitely non-identical assignment of terms to variables; i.c.,
a function ¢ from var to Term such that the set {x € var | x # o(x)} is finite. This set is called the domain
of o and denoted by Dom(c). Such a substifution is also written as a set such as o = {f;/x;}i=0. n Where

Dom(o) = {x;}i=o.nand o(x;)=¢;, i=0..,n. O

Definition (Ground Substitution). A ground substitution is a substitution o that assigns only ground
terms to the variables in Dom(c): V x € Dom(c), Var(c(x))=@ O

Notice that since RIF-PRD covers only externally defined interpreted functions, a ground term can
always be replaced by a constant. In the remainder of this document, it will always be assumed that a
ground substitution assigns only constants to the variables in its domain.

Definition (Matching Substitution). Let y be a condition formula, and ¢ be a set of ground formulas
that satisfies . We say that y matches ¢ with substitution ¢ : Var -> Terms if and only if there is a
syntactic interpretation / such that for all /?5ci in Var(a), I(Fxi) = I(c%i)). O

3 Actions

This section specifies the action part of the rules that can be serialized using RIF-PRD (the conclusion of
a production rule is often called the action part, or, simply, the action; the then part, with reference to the
if-then form of a rule statement; or the right-hand side, or RHS. In the latter case, the condition is usually
called the left-hand side of the rule, or LHS). Specifically, this section specifies:

w the abstract syntax that all production rule languages interchanging rules using RIF-PRD must have

in common for expressing actions;
» and the intended semantics of the individual action formulas in a RIF-PRD document.

in the data sourc€)with respect to which the condition of rules are evaluated and the rules instantiated. As
a rule interchange format, RIF-PRD does not make any assumption regarding the nature of the data
1 sourc§ that the producer or the consumer of a RIF-PRD document uses {e.g. a rule engine's working
menory, an external data base, etc). As a consequence, the syntax of the actions that RIF-PRD supports
. l are defined with respect to the RIF-PRD condition formulas that represent? the facts that the actions are

\ In production rule systems, the action part of the rules is used, in particular, to add, delete or modify facts

intended to affect. In the same way, the semantics of the actions is specified in terms of how the effects
of their execution are intended to affect the evaluation of rule condition.

Editor's Note: This version of the draft specifies only a very limited set of basic atomic actions. Future
draft will extend that set, in particular to support actions whose effect is not, or not only, to modify the

fact base.

3.1 Abstract syntax

15 of 49 12/01/2009 9:22 PM

PRD - RIF : - http://www.w3.0org/2005/rules/wiki/PRD

For a production rule language to be able to interchange rules using RIF-PRD, its alphabet for expressing
the action part of a rule must, at the abstract syntax level, consist of syntactic constructs to denote:

7 = the assertion of a positional atom, an atom with named arguments, or a frame, membership, or
: ' B S N
subclass atomic formula;
= the retraction of a positional atom, an atom with named arguments, or a frame;
s the addition of a new frame object;
= the removal of a frame object and the retraction of the corresponding frame and class atomic

formulas;
= a sequence of these actions, including local variables and a mechanism to bind a local variable to a

frame slot value or a new frame object.

Editor's Note: These actions may seem foreign to a reader who is familiar with typical production rule
language actions, such as assert an object, modify/update a field of an object, and retract/remove an
object. As noted in Section Atomic formulas, in this draft, objects are modeled using frame,
membership, and subclass formulas that are re-used from RIF-BLD and RIF-Core. Therefore, the
object-oriented actions are defined to act upon frame, membership, and subclass relations. Mappings
from a typical Java-like object model to RIF-PRD maps "instanceof" to membership, "extends" and
"implements" to subclass, and object properties/fields to frame slots. To assert an object requires
asserting both its class membership and its frame slots. To modify a slot, e.g. change color from red to
blue, requires retracting the old frame slot and asserting the new frame slot. Indeed, frame slots are
multi-valued and, therefore, merely asserting a frame slot does not overwrite a prior value, it adds to the
set of values. Frame slots do not inherently constrain either the datatype or the cardinality of their
values. Future drafts will address the issue of object representation in RIF-PRD. We are open to
suggestions.

3.1.1 Atomic actions

Atomic action constructs take constructs from the RIF-PRD condition language as their arguments.
Definition (Atomic action). An afomic action can have several different forms and is defined as follows:

1. Assert: If ¢ is a positional atom, an atom with named arguments, a frame, a membership atomic
formula, or a subclass atomic formula in the RIF-PRD condition language, then assert (¢) isan
atomic action. o is called the rarget of the action.

2. Retract: If ¢ is a positional atom, an atom with named arguments, or a frame in the RIF-PRD
condition language, then Retract (¢) is an atomic action. ¢ is called the fargef of the action.

3. Retract object: If t is a term in the RIF-PRD condition language, then Retract (t) is an atomic

action. t is called the fargef of the action. O

Editor's Note: Whether and under what restrictions, if any, membership and subclass atomic formulas
are allowable targets for atomic assert actions is still under discussion in the working group. We
welcome feedback on that issue.

Definition (Ground atomic action). An atomic action with target t is a ground atomic action if and
only if Var(t)=@. O

3.1.2 Action blocks

16 of 49 12/01/2009 9:22 PM

PRD - RIF hitp:/fwww.w3.0rg/2005/rules/wiki/PRD

The action block is the top level construct to represent the conclusions of the production rules that can be
serialized using RIF-PRD. An action block contains a non-empty sequence of atomic actions. It may also
include action variable. declarations.

The action variable declaration construct is used to declare variables that are local to the action block,
called action variables, and to assign them a value within the action block.

Editor's Note: This version of RIF-PRD supports only a limited mechanism to initialize local action
variables. Action variables may be bound to newly created frame objects or to slot values of frames.
Future versions may support different or more elaborate mechanisms.

Definition (Action variable declaration). An action variable declaration is a pair, (v p) made of an
action variable, v, and an action variable binding (or, simply, binding), p, where p has one of two forms:

1. frame object declaration: if the action variable, v, is to be assigned the identifier of a new frame,
then the action variable binding is a frame object declaration: New (v). In that case, the notation

[for the action variable declaration is: (20 New(?0});
~ 2. frame slot value: if the action variable, v, is to be assigned the value of a slot of a ground frame,

then the action variable binding is a frame: p = o [s->v], where o is a term that represents the
identifier of the ground frame and s is a term that represents the name of the slot. The associaed

notation is: (?value o[s->?value}). O

Definition (Action block). If (v1 p1), ..., (vn pn),# 20, are action variable declarations, and if
a1, ..., am, M > 1, are atomic actions, then
Do({vi p1), ..., (Vn pn) a1 ... af) denotes an action block. O

——

- 3.1.3 Well-formed action blocks
:/'

The specification fo RIF-PRD does not assign a standard meaning to all the action blocks that can be
standardized usingts concrete XML syntax. Action blocks that can be meaningfully serialized are called
well-formed. The notion of well-formedness, already defined for condition formulas, is extended to
atomic actions, action variable declarations and action blocks. :

The main restrictions are that one and only one action variable bindings can assign a value to each action
variable binding, and that the assertion of a membership atomic formula is meaningful only if for a new

frame object.

Definition (Well-formed atomic action). An atomic action is well-formed if and only if one of the
following is true: :

® it is an Assert and its target is a well-formed atom (positional or with named arguments), or a

well-formed frame, membership or subclass atomic formula;
® it is a Retract and its target is a well-formed term or a well-formed atom (positional or with named

arguments), or a well-formed frame atomic formula. O

Definition (Well-formed action variable declaration). An action variable declaration (2v p) is
well-formed if and only if one of the following is true:

w the action variable binding, p, is the declaration of a new frame object: p = New (?v), and its

17 of 49 12/01/2009 9:22 PM

PRD - RIF http://www.w3.0rg/2005/rules/wiki/PRD

argument is the action variable that is declared in the same action variable declaration, 2v;
= the action variable binding, p, is a well formed frame atomic formula,
P=olai->t1...an->tp), 7 > I, and the action variable, v occurs in the position of a slot value,

and nowhere else, that is: v & Var(o) UVar(a;) U... UVar(ap) andv € {t; ... tp}. O

For the definition of a well-formed action block, the function Var(f), that has been defined for condition
formulas, is extended to atomic actions and frame object declarations as follows:

= if fis an atomic action with target ¢, then Var(f) = Var(t);
m if f'is a frame object declaration, New (2?v), then Var(f) = { 2v}.

Definition (Well-formed action block). An action block is well-formed if and only if all of the following

is true:
= all the action variable declarations, if any, are well-formed; N0 m\(/uQ /@\
= cach action variable, if any, is assigned a value by one and only one action binding, that is: if 57 =
(vi p1) and b2 = (v, p2) are two action variable declarations in the action block, then

vz & Var(py) if vi € Var(p), and, reciprocally, v; & Var(py) if vo € Var(pi);

= all the actions in the action block are well-formed atomic actions;
= if an atomic action in the action block, a, asserts a membership atomic formula,
a = Assert (t1 # t2),then the object term in the membership atomic formula, t, is an action

variable that is declared in the actlon block and the action variable binding is the declaration of a

/é\frame oggfgt UCEI b o /. SNy ()

Definition (RIF-PRD action ianguage) The RIF-PRD action language consists of the set of all the
well-formed action blocks. O

3.2 Operational semantics of atomic actions
This section specifies the intended semantics of the atomic actions in a RIF-PRD document.

The effect intended of the ground atomic actions in the RIF-PRD action language is to modify the state
of the fact base, in such a way that it changes the set of conditions that are satisfied before and after each

atomic action is performed.

As a consequence, the intended semantics of the ground atomic actions in the RIF-PRD action language
determines a relation, called the RIF-PRD transition relation: — i ooy © W % L x W, where W denotes
the set of all the states of the)glct base, and where L denotes the set of all the ground atomic actions in
the RIF-PRD action language

-w—gl—lﬁ/”\:‘(‘
7*' T —_

{grouﬁd formulas (Section Satisfaction of a condition), we will assume in the following that the states of

18 of 49 12/01/2009 9:22 PM

PRD - RIF http:/fwww.w3.0rg/2005/rules/wiki/PRD

the fact base are represented by such sets, for the purpose of specifying the intended operational
semantics of atomic actions, or rules and of rule sets serialized using RIF-PRD. '

Definition (RIF-PRD transition relation). The intended semantics of RIF-PRD atomic actions is
completely specified by the transition relation —gpppp © W % L X W. (W, o, W) € — g ppp if and only
ifwe W, w'€ W, o is a ground atomic action, and one of the following is true:

l. oisAssert (), where ¢ is a ground atomic formula, and w=w+tg; v {
2. «isRetract (¢), where @ is a ground atomic formula, and w'=w - ¢; N3 f
3. «is Retract (o), where o is a constant, and w' = w¢ {o[s ->v] | for all the values of terms s and

L v} - {fo#c | for all the values of term c}. [™~

c/
(/\ B/Lge 1 says that all the condition formulas that were satisfied before an asseruon will be satisfied after,
and that, in addition, the condition formulas that are satisfied by the asserted ground formula will be
satisfied after the assertion.

Rule 2 says that all the condition formulas that were satisfied before a retraction will be satisfied after,
/\ﬁéept if they are satisfied only by the retracted fact.
\’v\/\/\/\/

Rule 3 says that all the condition formulas that were satisfied before the removal of a frame object will be
satisfied after, except if they are satisfied only by one of the frame or membership formulas about the
removed object or a conjunction of such formulas.

4 Production rules and rulesets

This section specifies the rules and rulesets that can be serialized using RIF-PRD, by specifying:

» the abstract Syntax that all production rule languages interchanging rules using RIF-PRD must have

in common for rules and rule sets;
= and the intended semantics of the rules and ruleset in a RIF-PRD document.

4.1 Abstract syntax

For a production rule language to be able to interchange rules using RIF-PRD, in addition to the
RIF-PRD condition and action languages, its alphabet must, at the abstract syntax level, contain syntactic
constructs:

» to associate a condition and an action block into a rule;

= to declare the variables that are free in a rule, to specify their bindings, and to associate them with
that rule into a rule with less free variables;

= to group rules and to associate specific operational semantics to groups of rules.

4.1.1 Rules

Definition (Rule). A rule can be either:
m an unconditional action block;

s a conditional action block: if condition is a formula in the RIF-PRD condition language, and if
action is a well-formed action block, then If condition, Then action is a conditional action;

19 of 49 , ' ' 12/01/2009 9:22 PM

PRD - RIF hitp:/iwww . w3.0rg/2005/rules/wiki/PRD

w a rule with bound variables: if vy ... ?vpn, n> 0, are variables; p1 ... pm, m > 0, are condition
formulas (called binding patterns), and rule is a rule, then
Forall ?vi...?vnp (p1...pm) (rule) isarule. O

RIF-BLD compatibility. A rule 1f condition, Then action can be equivalently written

action :- condition, that is, using RIF-BLD notation. Indeed, the normative XML syntax is the same
for a conditional assertion in RIF-BLD and for a conditional action in RIF-PRD. The use of RIF-BLD
notation is especially useful if the condition formula, condi tion, contains no negation, and if the action
block, action, contains only Assert atomic actions. The use of the_samc notation emphasizes that such a
rule has the same semantics in RIF-PRD and RIF-BLD. ’

v

Editor's Note: At this stage, the above assertion regarding the equivalence of a specific fragment of
RIF-PRD and RIF-BLD is mostly the statement of an objective of the working group. That issue will be
addressed more completely in a future version of this document.

i

WWM

To emphasize that equivalence even further, an action blogk cansbe written as simply And (1 ... on),
if it contains only atomic assert actions: Do (Assert (p1) ... Assert (on)),n > I. Ifthe action block

consists of a single atomic assert action: bo {Assert (¢)7, then it can be written as simply o.

Notice that the notation for a rule with bound variables uses the keyword Fora11l for the same reasons,
that is, to emphasize the overlap with RIF-BLD. Indeed, Forall does not indicate the universal
quantification of the declared variables, in RIF-PRD, but merely that the execution of the rule must be
considered for all their bindings as constrained by the binding patterns. However, when no negation is
used in the conditions and only assertions in the actions, the XML serialization of a RIF-PRD rule with
bound variables is exactly the same as the XML serialization of a RIF-BLD universally quantified rule,

and their semantics coincide.

4.1.2 Groups

As was already mentioned in Section Overview, production rules have an operational semantics that can
be described in terms of matching rules against states of the fact base, selecting rule instances to be
executed, and executing rule instances' actions to transition to new states of the fact base.

When production rules are interchanged, the intended rule instance selection strategy, often called the
conflict resolution strategy, need be interchanged along with the rules : in RIF-PRD, the group is the

- construct that is used to group sets of rules and to associate them with a conflict resolution strategy.
Many production rule systems use priorities associated with rules as part of their conflict resolution
strategy: in RIF-PRD, the group is also used to carry the priority information that may be associated to
the interchanged rules.

Definition (Group). If strategy is an IRI that denotes a conflict resolution strategy, if priority is an
integer, and if each rg5, 0 <j <, is either a rule or a group, then any of the following is a group:

® Group lrgg ... rgA, n=0
| ™ Group strategy rgg ... rgn,7>0;
! ® Group priority rgo ... rgn, #>0;
(i ® Group strategy priority rgg ... rgp,n=0. O

20 0f49 12/01/2009 9:22 PM

PRD-RIF http://www.w3.org/2005/rules/wiki/PRD

4.1.3 Well-formed rules and groups

The function Var(f), that has been defined for condition formulas and extended to actions, is further
extended to rules, as follows:

a1 ... am,m=> 1, then Var(f) =@5,‘5m Var(a;) Of2vi ... ?va};

}' » if fis an action block that declares action variables ?v1 ... ?vn, # >0, and that contains actions
[wiff iﬁ conditional action where ¢ is the condition formula and a is the action, then Var(f) =

Var(c) UVar(a),

= if /'is a quantified rule where ?vy ... ?vp, 7> 0, are the declared variables; p1 ... pm, m20,
are the binding patterns, and r is the rule, then Var(f) = (Var(s) UVar(py) U... U Var(pm)ﬁ {?v;

?Vn}.

Definition (Well-formed rule). A rule, x, is a well-formed rule if and only if it contains no free variable,
that is, Var(r) = &, and either:

» it is an unconditional well-formed action block, a;
= or it is a conditional action where the condition formula, ¢, is a well-formed condition formula, and
the action block, a¢as a well-formed action block, and no atomic action in a has a subclass atomic

formula as its target; ,
woritisa quantified rule, Forall Vv (P} (r), and the quantified rule, r isa well-formed rule, and

each of the declared variablesinv = {?vi}o < i < nis free in some of the binding patterns in p

= {pjlo < j < mor in the quantified rule, r; that is, v & Var(x) U Var(p1) U ... U Var(po), m >0.

O

Definition (Well-formed group). A well-formed group is either a group that contains only well-formed
rules and well-formed groups, or a group that contains no rule or group (an empty group). O

The set of the well-formed groups contains all the production rulesets that can be meaningfully
interchanged using RIF-PRD.

4.2 Operational semantics of rules and rule sets

4.2.1 Motivation and example

As already mentioned in Section Overview, the description of a production rule system as a transition
system can be used to specify the intended semantics that is associated with production rules and rulesets

21 of 49 12/01/2009 9:22 PM

PRD - RIF ' http:/fwww.w3.0org/2005/rules/wiki/PRD

interchanged using RIF-PRD.

The intuition of describing a production rule system as a transition system is that, given a set of
production rules RS and a fact base wy, the rules in RS that are satisfied, in some sense, in wg determine
an action a;, whose execution results in a new fact base wy; the rules in RS that are satisfied in wy
determine an action gy to execute in wy, and so on, until the system reaches a final state and stops. The

result is the fact base wy, when the system stops.

Example 3.1. Judicael, a chicken and potato farmer, uses a rule based system to decide on the daily grain
allowance for each of her chicken. Currently, Judicael's rule base contains one single rule, the chicken
and mashed potatoes rule:

1
1{* ex:ChickenAndMashedPotatoes *)
(Forall ?chicken ?potato ?weight
(And{?chicken#ex:Chicken
(Exists ?age
And{?chicken[ex:age~>7age]
External (pred:numeric-greater-than{?age, 8)))))
And (?potato#ex:Potato
ex:owns {(?chicken ?potato)
{Exists ?weight
And(?potato[ex:weight->?weight]
External (pred:numeric-greater-than{?weight External (func:numeric-divide(?age 2
If And (External (pred:string-not-equals(External{ex:today{)}, "Tuesday"))
Not (External {ex: foxAlarm())})

Then Do{ {(?allowance ?chicken{ex:allowance->%allowancel)
Execute (ex:mash (?potato))
"Rettact (?potato)
Retract (ex:owns (?chicken ?potato}}
Retract{?chicken[ex:allowance->?allowance]}
Assert{?chicken{ex:allowance->External {func:numeric-multiply(?allowance 1.1})]1})

&,

v e s e e e e e e A = w a w wm

Judicael has four chickens, Jim, Jack, Joe and Julia, that-own three potatoes (BigPotato, SmallPotato,
UglyPotato) among them:

» Jim (daily grain allowance = 10) is 12 months old, Jack (daily grain allowance = 12) is 9 months
old, Joe (daily grain allowance = 6) is 6 months old and Julia (daily grain allowance = 14) is 10
months old;

= BigPotato weights 70g, SmallPotato weights 10g, UglyPotato weights 50g;

» Jim owns BigPotato, Jack and Woof own SmallPotato jointly (Woof is the farm's dog. It inherited

joint ownership of SmallPotato from its aunt Georgette) and Joe owns UglyPotato.
—f topy 1 dlely Fraes/atod 1o TRD —
That istthe initial set of facts wy.

When the rule is applied to wg:

n the first pattern selects {Jim/?chicken, Jack/?chicken, Julia/?chicken} as possible values for
variable ?chicken (Joe is too young);

= the second pattern selects {(Jim/?chicken, BigPotato/?potato)} as the only possible substitution for
the variables ?chicken and ?porato (UglyPotato does not belong to either Joe, Jack or Julia and

SmallPotato is too small);

Suppose that Judicael's implementation of foday() returns Monday and that the foxAlarm() is false when
the Chicken and mashed potatoes rule is applied: the condition is satisfied, and the actions in the
conclusion are executed with BigPotato substituted for ?potato, Jim substituted for ?chicken, and 10

22 of 49 12/01/2009 9:22 PM

PRD - RIF http://www.w3.org/2005/rules/wiki/PRD

substituted for ?allowance. This results in the following changes in the set of facts:

= BigPotato is mashed (and removed from the list of potatoes to be considered in future applications
of the Chicken and mashed potatoes rule);

= the daily grain allowance of Jim is now 11;

» Jim does not own a potato anymore.

The resulting set of facts wy is thus:

= Jim (daily grain allowance = 11) is 12 months old, Jack (daily grain allowance = 12} is 9 months
old, Joe (daily grain allowance = 6) is 6 months old and Julia (daily grain allowance = 14) is 10

months old; ,
= SmallPotato weights 10g, UglyPotato weights 50g;
w Jack and Woof own SmallPotato jointly and Joe owns UglyPotato.

When the Chicken and mashed potatoes rule in applied to wy, the first pattern still selects {Jim/?chicken,
Jack/?chicken, Julia/?chicken} as possible values for variable ?chicken, but the second pattern does not
select any possible substitution for the couple (?chicken, ?potato) anymore: the rule cannot be satisfied,
and the system, having detected a final state, stops.

The result of the execution of the system iswy. O

4.2.2 Definitions and notational conventions

More precisely, a production rule system is defined as a labeled terminal transition system (e.g. PLO04),
for the purpose of specifying the intended semantics of a RIF-PRD rule or group of rules. cj/te,

~

Definition (labeled terminal transition system): A labeled terminal transition system is a structure {C,

L, —, T}, where mk
QLT

» C is a set of elements, c, called configurations, or states;
» L is a set of elements, a, called labels, or actions;

» — C C x L x C is the transition relation, that is: (¢, g, ¢') € — iff there is a transition labeled a

from the state ¢ to the state ¢’ or, more appropriately in the case of a production rule system, the
execution of action a in the state ¢ causes a transition to state ¢';

» T C C is the set of final states, that is, the set of all the states ¢ from which there are no transitions:

T={ceC|VaelL,vc'eC,(caqc)¢g—} O

For many purposes, a representation of the states of the fact base is an appropriate representation of the

23 of 49 12/01/2009 9:22 PM

PRD - RIF

24 of 49

htp:/fwww.w3.org/2005/rules/wiki/PRD

staté;}\g)roduction rule system seen as a transition system. However, the most widely used conflict
resolution strategies require information about the history of the system, in particular with respect to the
rule instances that have been selected for execution in previous states. Therefore, each state of the
transition system used to represent a production rule system must keep a memory of the previous states
and the rule instances that where selected and triggered the transition in those states.

To av?j]dflé confusion between the states of the fact base and the states of the transition system, the
latter will be called production rule system states.

Definition (Production rule system state). A production rule system state (or, simply, a system state),
s, is characterized by '

m a state of the fact base, facts(s),
= if 5 is not the initial state: a previous system state, previous(s), such that, given two system states s;

and 52, 57 = previous(sy) if and only if the-prodixtien rule system the sequential execution of the
action parts of the rule instances in picked(s;) transitioned the system from system state 57 to

system state 52;
= if 5 is not the current state: the ordered set of rule instances, picked(s), that the conflict resolution

strategy picked, among the all the rule instances that matched facts(s). O
il the following, we will write previous(s) = NIL to denote that a system state s is the initial state.

Here, a rule instance isr defined as the result of the substitution of constants for all the rule variables in a
rule.

Let R denote the set of all the rules in the rule language under consideration.

Definition (Rule instance). Given a rule, r € Ryand a ground substitution, o, such that Var(r) < Dom(o),
where Var(r) denotes the set of the. rule variabies in #, the result, ri = o(r), of the substitution of the
constant o(?x) for each variable ?x € Var(r) is a rule instance (or, simply, an instance) of r. O

Given a rule instance ri, let rule(ri) identify the rule from which #i is derived by substitution of constants
for the rule variables, and let substitution(ri) denote the substitution by which #i is derived from rule(ri).

In the following, two rule instances #i; and riz of a same rule » will be considered different if and only if
substitution(riy) and substitution(riz) substitute a different constant for at least one of the rule variables

in Var(r).

In the definition of a production rule system state, a rule instance, 7, is said to match a state of a fact
base, w, if its defining substitution, substitution(ri), matches the RIF-PRD condition formula that
represents the condition of the instantiated rule, rule(ri), to the ground formula that represents the state
of facts w.

Let W denote the set of all the possible states of a fact base.

Definition (Matching rule instance). Given a rule, 7/, and a state of the fact base, w €W, riissaidto
match w if and only if one of the following is true:

» rule(ri) is an unconditional action block;
» rule(¥i) is a conditional action block: If condition, Then action, and substitution(ri) matches

12/01/2009 9:22 PM

PRD - RIF * hitpe/fwww.w3.orgf2005/rules/wiki/PRD

rd

250f49

the condition formula condition to the ground condition formula that represents w;

m rule(ri) is a rule with bound variables: Forall ?vi...%?vn {p1...pn) {r"),n=0, m> 0, and
substitution(ri) matches each of the condition formulas p;, 0 <i <m, to the ground condition
formula that represents w, and the rule instance »i' matches w, where #i'is the instance of rule #'

such that substitution(ri') = substitution(ri). 0O

Definition (Conflict set). Given a rule set, RS © R, and a system, s, the set, conflictSet(RS, s) of all the
different instances of the rules in RS that match the state of the fact base, facts(s) € W is called the

conflict set determined by RSins. O a/PW /&?A o G e s s

In each non-final state, s, of a production rule system, a subset, picked(s), of the rule instances in the
contlict set is selected and ordered; their action parts are instantiated, and they are executed. This is
sometimes called: firing the selected instances.

Definition (Action instance). Given a system state, s; given a rule instance, 7/, of a rule in a rule set, RS;
and given the action block in the action part of the rule rule(#i): bo((v1 p1)...(vn pn) a1...am), R
0, m > 1, where the (v1 p1), 0 <i<n, represent the action variable declarations and the a4, / <j <m,
represent the sequence of atomic actions in the action block; if 77 is a matching instance in the conflict set
determined by RS in system state s: ri € conflictSet(RS, s}, the substitution o = substitution(ri) is
extended to the action variables v;...vy, # 2> 0, in the following way:

m if v; is assigned the identifier of a new frame by the action variable declaration: (v; New (v}), then
o(Vi) = Cnew, Where cnew is a constant of type rif: IRI that does not occur in any subformula of

the ground formula that represents the state of the fact base that is associated to s, facts(s),
» if v; is assigned the value of a frame's slot by the action variable declaration: (v; o[s->v]), then
o(v;) is a constant such that the frame formula o [s—>v,-]/ matches the state of the fact base facts(s)

with subtitution o.

The sequence of ground atomic actions that is the result of substituting a constant for each variable in the
atomic actions of the action block of the rule instance, r7, according to the extended substitution, is the

action instance associated to ri. O

Let actions(ri) denote the action instance that is associated to a rule instance 7. By extension, given an
ordered set of rule instances, ori, actions(ori) denotes the sequence of ground atomic actions that is the
concatenation, preserving the order in ori, of the action instances associated to the rule instances in ori.

4.2.3 Operational semantics of a production rule system

All the elements that are required to define a production rule system as a labeled terminal transition
system have now been defined.

Definition (RIF-PRD Production Rule System). A RIF-PRD production rule system is defined as a
labeled terminal transition system PRS = {S, 4, —prs, T}, where :

» §is a set of system states;

m A is a set of transition labels, where each transition label is a sequence of ground RIF-PRD atomic
actions;

12/01/2009 9:22 PM

PRD-RIF hitp://www.w3.org/2005/rules/wiki/PRD
= The transition relation —ppg © S % 4 x S, is defined as follows:
V(s,a,s')ESxAxS,(s,a,5) E —pps if and only if all of the following hold:

L. (facts(s), a, facts(s’)) € ——)*RIF-PRD’ where —+*RIF_PRD denotes the transitive closure of the

transition relation — g prp, that is determined by the specification of the semantics of the

atomic actions supported by RIF-PRD;
2. a = actions(picked(s)),

s T <8, a set of final system states. O

Intuitively, the first condition in the definition of the transition relation — g states that a production rule

system can transition from one system state to another only if the state of facts in the latter system state
can be reached from the state of facts in the former by performing a sequence of ground atomic actions
supported by RIF-PRD, according to the semantics of the atomic actions. _

The second condition states that the allowed paths out of any given system state are determined only by
how ruie){ instances are picked from the conflict set for execution by the conflict resolution strategy.

RS

Given a ruleset RS < R, the associated conflict resolution strategy LS, and an initial state of the fact base,

w € W, the input function to a RIF-PRD production rule system is defined as:

v
Eval(RS, LS, w) —ppe s €8, such that facts(s) = w and previous(s) = NIL.

: 2
Given a set T of final system states, the output function is defined as:

26 of 49 12/01/2009 9:22 PM

PRD - RIF : ' : http://www.w3.0rg/2005/rules/wiki/PRD

.27 of 49

Vs' €T, s'— pps W= facts(s’)
Or, using — ¢ to denote the transitive closure of the transition relation — g

YweW, 3s' €T, Iw' € W, w'= facts(s)) and Eval(RS, LS, w) —>*PRS w'

Therefore, the exact behavior of a RIF-PRD production rule system depends on:

1. the conflict resolution strategy, that is, how rule instances are(ﬁreciselyz/s/elected for execution
from the rule instances that match a given state of the fact base;
2. and how the set 7 of final system states is},p{ecisel);(defmed.

4.2.4 Conﬂi.ct resolution

The process of selecting one or more rule instances from the conflict set for firing is often called: conflict
resolution.

In RIF-PRD the conflict resolution algorithm (or conflict resolution strategy) that is intended for a set of
rules is denoted by a keyword or a set of keywords that is attached to the rule set. In this version of the
RIF-PRD specification, a single conflict resolution strategy is specified normatively: it is denoted by the
keyword rif:forwardChaining (a constant of type #if-IRI), for it accounts for a common conflict

resolution strategy used in most forward-chaining production rule systems. R 7o, - W &Q
' et Y L

Future versions of the RIF-PRD specification/may specify normatively the intended conflict resolution
strategies to be attached to additional keywo}fis. In addition, RIF-PRD documents may include
non-standard keywords: it 'ﬁm of the producers and consumers of such document to
agree on the intended conflict resolution strategies that are denoted by such non-standard keywords.

Conflict resolution strategy: rif:forwardChaining

Most existing production rule systems implement conflict resolution algorithms that are a combination of
the following elements (under these or other, idiosyncratic names; and possibly combined with additional,
idiosyncratic rules): '
?—SF‘Q_CIT‘FF)CT{;/ : Mot spoec?FFQ rules ave ‘F}VQ//‘{)
= Refraction. The essential idea of refraction is that a given instance of a rule must not be fired more
than once as long as the reasons that made it eligible for firing hold. In other terms, if an instance
has been fired in a given state of the system, it is no longer eligible for firing as long as it satisfies
the states of facts associated to all the subsequent system states;
= Priority. The rule instances are ordered by priority of the instantiated rules, and only the rule

instances with the highest priority are eligible for firing;
s Recency. the rule instances are ordered by how long a rule instance has been continuously satisfied
in the states of facts associated to previous system states, and only the most recent ones are eligible

for firing, MW e — &% i//g:v-&a’: 7

§2/01/2009 9:22 PM

PRD - RIF htip://www.w3.0rg/2005/rules/wiki/PRD

The RIF-PRD keyword ri f: forwardChaining denotes the common conflict resolution strategy that can
be summarized as follows: given a conflict set

1. Refraction is apphed to the conflict set, that is, all the refracted rule instances are removed from

the conflict set;
2. The remaining rule instances are ordered by decreasing priority, and only the rule instances with

the highest priority are kept in the conflict set;
3. The remaining rule instances are ordered by decreasing recency, and only the most recent rule

instances are kept in the conflict set;
4. Any remaining tie is broken qa/r‘gl&ag;y and a single rule instance is kept for firing.

21
As specified earlier, picked(s) denotes the ordered list of the rule instances that were picked in a system

state, s. Under the conflict resolution strategy denoted by rif: forwardChaining, the list denoted by
picked(s) contains a single rule instance, for any given system state, s.

Given a system state, s, a rule set, RS, and a rule instance, i € conflictSet(RS, s), let recency(ri, 5)
denote the number of system states before s, in which 77 has been continuously a matching instance: if s
is the current system state, recency(ri, s) provides a measure of the recency of the rule instance i.
recency(ri, s) is specified recursively as follows:

w if previous(s) = NIL, then recency(ri, s) = 1,
m else if i € conflictSet(RS, previous(s)), then recency(ri, s) = 1 + recency(¥i, previous(s)),

n else, recency(ri, s) = 1.

In the same way, given afi rule instance, #i, and a system state, s, let lastPicked(ri, s) denote the number
of system states before $, since »i has been last fired. lastPicked(ri, s) is specified recursively as follows:

a if previous(s) = NIL, then lastPicked(ri, s) = I;
m clse if ri € picked(previous(s)), then lastPicked(ri, 5) = I;

w else, lastPicked(ri, s) = 1 + lastPicked(ri, previous(s)).

Finally, given a rule instance, ri, let priority(ri) denote the priority that is associated to rule(ri), or zero,
if no priority is associated to rule(ri). If rule(ri) is inside nested Groups, priority(ri) denotes the priority -

that is assoc1ated with the %1951 Grou to which a priority is explicitely associated, or zero. o
Freops Conridered
tirg- s

o

Givena confhct set, ¢s, the conflict resolutlon strategy rif:forwardChaining can now be described
with the help of four rules, where #i and ri’ are rule instances:

— = <z
P"r\ VA p/’e -
1. Refraction rule: if ri € cs and lastPicked(ri, s} < recency(ri, s), then cs = cs/ori,
AN

28 of 49 12/01/2009 9:22 PM

PRD - RIF http://www.w3.0rg/2005/rules/wiki/PRD
2. Priority rule; if ri €cs and ri' €cs and priority(ri) < priority(ri)), then cs = cs - ri;
3. Recency f\% if ri €Ecs and ri' € cs and recency(ri, s) > recency(ri', s), then cs = cs - ri;

4, Tie-break rule: if ri €cs, then cs = {ri}.
1% _

. The refraction ;1@ removes the instances that have been in the conflict set in all the system states at
least since they were last fired, that is, it removes the refracted instances from the current conflict set; the
priority rule removes the instances such that there is at least one instance with a higher priority; the
recency rule removes the instances such that there is at least one instance that is more recent; and the
tie-break rule keeps one rule from the set, arbitrarily.

AALAASN

To select the singleton rule instance, picked(s), to be fired in a system state, s, given a rule set, RS, the
\ conflict resolution strategy denoted by the keyword rif: forwardChaining consistsifl the following

sequence of steps: =4

1. start with the conflict set, cs, that gule set RS determines in a system state s: ¢s = conflictSet(RS,
s); p 7

apply the refraction ;,yAIeLtO all the rule instances in cs;

then apply the priority rule to all the remaining instances in cs; |gsve ! _5% o /gi
then apply the recency rule to all the remaining instances in cs; < '~ v be

then apply the tie-break rule. i/ 4
fOVW/Q_’?/O{ l?’/raep fag.eéf .
4.2.5 Halting test T wif ;-]CWJ . «©

SR wN

Editor's Note; This section is still under discussion (see ISSUE-65 (http://www.w3.0rg/2005/rules
/wgftrack/issues/65)). This version specifies a single, default halting test: future version of this draft
may specify additional halting tests, and/or a different default. The Working Group seeks feedback on
which halting tests and which combinations of tests should be supported by RIF-PRD and/or required
from RIF-PRD implementations; and which halting test should be the default, if any.

By default, a system state is final, given a rule set, RS, and a conflict resolution strategy, LS, if there is no
rule instance available for firing after application of the conflict resolution strategy. ‘

For the conflict resolution strategy identified by the RIF-PRD keyword rif: forwardChaining, a system
state, s, is final given a rule set, RS if and only if the remaining conflict set is empty after application of
the refraction rule to all the rule instances in conflictSet(RS, s). In particular, all the system states, s,
such that conflictSet(RS, s) = & are final.

29 of 49 12/01/2009 9:22 PM

PRD - RIF http:/fwww.w3.0rg/2005/rules/wiki/PRD

300f49

S XML Syntax

This section specifies a common concrete XML syntax to serialize any production rule set written in a
language that shareSthe abstract syntax(speicifed)in section 4.1, provided that its intended semantics
agrees with the semantics that is described in section 4.2. ’

In the following, after the notational conventions are introduced, we specify the RIF-PRD XML
constructs that carry a normative semantics with respect to the intended interpretation of the
interchanged rules. They are specified with respect to the abstract syntax, and their specification is
structured according to the specification of the abstract syntax in sections 2.1, 3.1 and 4.1.

The root elemeng of any RIF XML document, bocument and other XML constructs that do not carry a
normative semantics with respect to the intended interpretation of the interchanged rules are specified in
the last sub-section.

5.1 Notational conventions

5.1.1 Namespaces

Throughout this document, the xsd: prefix stands for the XML Schema namespace URI
http://www.w3.0rg/2001/XMLSchema#, the rdf: prefix stands for http: //www.w3.0rg/1999/02
/22-rdf-syntax-ns#, and rif: stands for the URI of the RIF namespace, http: //www.w3.o0rg

/2007/rif#.

Syntax such as xsd: string should be understood as a compact URI (CURIE) -- a macro that expands to
a concatenation of the character sequence denoted by the prefix xsd and the string string. The compact
URI notation is used for brevity only, and xsd: string should be understood, in this document, as an
abbreviation for http: //www.w3.0rg/2001/XMLSchema#string.

5.1.2 BNF pseudo-schemas

The XML syntax of RIF-PRD is specified for each component as a pseudo-schema, as part of the
description of the component. The pseudo-schemas use BNF-style conventions for attributes and
elements: "?" denotes optionality (i.e. zero or one occurrences), "*" denotes zero or more occurrences,
"+" one or more occurrences, " (" and "1" are used to form groups, and "|" represents choice. Attributes

are conventionally assigned a value which corresponds to their type, as defined in the normative schema.
Elements are conventionally assigned a value which is the name of the syntactic class of their content, as

defined in the normative schema.

L]

'1-- sample pseudo-schema -->

' <defined element

: required_attribute_of_type string="xs:string"
: optional_attribute_of_ type_int="xs:int"? >

' <required_element />

: <optional_element />?

1 <one_or_more_of these_elements />+

: [<choice_t /> | <choice 2 /> 1*

' </defined element>

12/01/2009 9:22 PM

PRD - RIF http:/fwww.w3.0rg/2005/rules/wiki/PRD

5.1.3 Syntactic components

Three kinds of syntactic components are used to specify RIF-PRD:
ot v <

w Abstract classes are defined only by their subclasses: the%ot visible in the XML markup and can
be thought of as extension points. In this document, abstract constructs will be denoted with
) all-uppercase names; ~ veacxos
]_ » Concrete classes have a concrete definition,and they are associated with specific XML markup. In
this document, concrete constructs will be denoted with CamelCase names with leading capital

letter;

= Properties, or roles, define how two classes relate to each other. They have concrete definitions
and are associated with specific XML markup. In this document, properties will be denoted with
camelCase names with leading smallcase letter. '

5.2 Conditions

This section specifies the XML constructs that are used in RIF-PRD to serialize condition formulas.

5.2.1 TERM

The TERM class of constructs is used to serialize terms, be they simple terms, that is, constants and
variables; or positional terms or terms with named arguments, both being, per the definition of a
well-formed formula, representations of externally defined functions.

As an abstract class, TERM is not associated with specific XML markup in RIF-PRD instance documents.

5.2.1.1 Const

In RIF, the const element is used to serialize a constant.
The const element has a required t ype attribute and an optional xm1: 1ang attribute:

= The value of the type attribute is the identifier of the Const symbol space. It must belong to the
type xsd:anyURL. In the RIF data types and builtins document, the section about
[DTB#Constants.2C_Symbol_Spaces.2C_and_Datatypes|Constants, Symbol spaces and
Datatypes]] lists the builtin symbol spaces and data types that all implementations of RIF-PRD
must support. Rule sets that are exchanged through RIF-PRD can use additional, user-defined
symbol spaces;

» The xml:1lang aftribute, as defined by 2.12 Language Identification (http://www.w3.0rg/TR/REC-
xml/#sec-lang-tag) of XML 1.0 (http://www.w3.org/TR/2000/REC-xml-20001006) or its successor
specifications in the W3C recommendation track, is optionally used to identify the language for the

* presentation of the Const to the user. It is allowed only in association with constants of the type
rif:text. A compliant implementation MUST ignore the xm1: 1ang attribute if the type of the
Const isnot rif:text,

The content of the Const element is the constant's l@eral, which can be any Unicode character string.

31 0f49 : 12/01/2009 9:22 PM

PRD - RIF http://www .w3.0rg/2005/rules/wiki/PRD

e e R 1

1
: <Const type=xsd:anyURI [xnl:lang=xsd:language]? > !
: Any Unicode string :
: </Const> '
i T TS A d

\{\M{ EdNote|text=The case of non-standard data types, that is, of constants that do not belong or cannot
be cast in one of RIF builtin types for interchange purposes, is still under discussion in the WG. The WG
seeks feedback on whether they should be allowed and why.\}\}

Example 2.1. In each of the examples below, a constant is first described, followed by its serialization in
RIF-PRD XML syntax. '

a. A constant with builtin type xsd:integer and value 723:

I T T N o T o e e e e e e F e e e e e e e e o = = e e s e e e e e e e e v e e e e 1
[} " 1
:<c0nst type="xsd:integer">123</Const> :
L e T S S -t

b. A constant which symbol foday is defined in Joe the Hen Public's namespace http://example.com
/2008/joe#. The type of the constant is rif:iri:

e el R R el R R 1
kCOnst type="rif:iri"> :
i http://example.com/2008/joe#today :
i</Const>) '
L T o
¢. A constant with symbol BigPotato that is local to the set of rules where it appears (e.g. a RuleSet
specific to Paula's farm). The type of the constant is rif:local:
e i R R T 1
] [}
:<Const type="rif:local">BigPotato</Const> :
o e e et e e et c mrmEEEEc Ccc e e ;. ——— - — -~ == =~ = = e e e e e m e e - -
d. A constant with non-builtin type xsd:int and value 123:
-2t R)
) E
5Const type="xsd:int">123</Const> .
L e -
5.2.1.2 Var
In RIF, the var element is used to serialize a variable.
The content of the var element is the variable's name, serialized as an Unicode character string.
e i e e D L e 1
1
E <Var> any Unicode string </Var> :
L e m m m r m m o e o o e et e o o m E E e o e e = = o e e e e = e e e e e .. o o
Example 2.2. The example below shows the XML serialization of a reference to a variable named:
?chicken.
L el i e R e 1
%Var> chicken <Var> '
L T -1
12/01/2009 9:22 PM

32 of49

PRD - RIF http:/fwww.w3.0org/2005/rules/wiki/PRD

5.2.1.3 External

' | exter nal

\ As a TERM, the External element is used to serialize d{positional term or a term with named arguments.
In RIF-PRD, a positional or a named-argument term represents always a call to an externally specified

] function, e.g. a builtin, a user-defined function, a query to an external data source...
o

The External element contains one content g}gment, which in turn contains one Expr e¢lement that
contains one op element, foﬂowg,dﬂ.gro orone args element or zero of more slot elements:

» The goptent and Expr element ensure compatibility with the RIF Basic Logic Dialect [RIF-BLD]

that aflows on-evaluated (that is, logic) functions fo be serialized using an Expr element;
- m The content of the op element must be a Const. When the External is a TERM, the content of the

\[op element serializes a constant symbol of type rif:iri tha/%ilst uniquely identify the evaluated
function to be applied to the args TERMSs. In the RIF data types and builtins document, the section
List of RIF Builtin Predicates and Functions lists the builtin functions that all implementations of
RIF-PRD must support. The content of the op element can also identify an user-defined function: it
is the responsibility of the producers and consumers of RIF-PRD rulesets that reference non-builtin
functions to agree on their semantics,

» The optional args element contains zero or more constructs from the TERM abstract class. The args
element is used to serialize the arguments of a positional term. The order of the args sub-elements
is, therefore, significant and MUST be preserved. This is emphasized by the n@guu;ed value "yes"
of the required attribute rif:ordered; o plieed

= Each optional s1ot element contains one required Name sub-element, that contains an Unicode
string that serializes the slot key, and a requlred TERM that serializes its value. The siot element is
used to serialize an argument name-value pair in a term with named arguments. The order of the
slot elements is, therefore, not significant;

<External>
<content>
<Expr>
<op> Const </op>
[<args rif:ordered="yes"> TERM* </args>?
|
<slot rif:ordered="yes">
<Name> Any Unicode string </Name>
TERM
<slot>*]
</ExXpr>
</content>
</External>

Editor's Note: The slotted, or named arguments form of the External TERM construct is still under
discussion (see also ISSUE-68 (http://www.w3.0rg/2005/rules/wg/track/issues/68)). The working group
seeks feedback on whether or not it should be included in PRD.

Example 2.3.

a. The first example below shows one way to serialize, in RIF-PRD, the sum of integer 1 and a variable
2x, where the addition conforms to the specification of the builtin fn:numeric-add.

The prefix £n is associated with the namespace http://www.w3.0rg/2007/rif-builtin~function.

33 of 49 ' 12/01/2009 9:22 PM

PRD - RIF hitp://www.w3.o0rg/2005/rules/wiki/PRD

,<Externa1>
! <content>

] <EXpr>

: <op> <Const type="rif:iri"> fn:numeric-add </Const> </op>
' <args rif:ordered="yes">

' <Const type="xsd:integer"> 1 </Const>

1 <Var> r </Var>

' </args>

: </Expr>

H </content>

</External>

MM M M s M e e T R M e e e v e e e M M 6 e B eR G M MR S MM M e e e e e e e e e e e e e = e e e e e M B s b e e

-

b. Another example, that shows the RIF XML serialization of a call to the application-specific nullary
function foday(), which symbol is defined in the example's namespace http://example.com/2008/joe#:

External> ‘
! <content> !
' <EXpr> s
: <op> :
1 <Const type="rif:iri"> 1
: http://example.com/2008/joe#today :
' </Const> :
: </op> '
t </Expr> :
i </content> '
'</External> '

-

5.2.2 ATOMIC

The atoMrc class is used to serialize atomic formulas: positional and named-arguments atoms, equality,
\ membership and subclass atomic formulas, frame atomic formulas,and externally defined atomic

formulas. —

As an abstract class, AToMIC is not associated with specific XML markup in RIF-PRD instance
documents.

5.2.2.1 Atom

In RIF, the atom element is used to serialize a positional atomic formula or an atomic formula with named
arguments.

‘The Atom element contains one op element, followed by zero or one args element or zero or mote slot

» The content of the op element must be a const. It serializes the predicate symbol (the name ofa
relation);

» The optional args element contains zero or more constructs from the TERM abstract class. The args
element is used to serialize the arguments of a posmonal atomic formula. The order of the arg's
sub-elements is, therefore, significant and MUST be preserved. This emphasized by the Jequired

value "yes" ofthe,\e/qg;e\d attribute rif:ordered; s 1 thed
{ = Each optional s1ot element contains one required Name sub-element, that contains gél Unicode
string that serializes the slot key, and a required TERM that serializes its value. The slot element is

34 of 49 12/01/2009 9:22 PM

PRD - RIF http://www.w3,0rg/2005/rules/wiki/PRD

used to serialize an argument name-value pair in an atomic formula with named arguments. The
order of the slot elements is, therefore, not significant;

<Atom>
.<op> Const </op>
[<args rif:ordered="yes"> TERM* </args>?
|
<slot rif:ordered="yes">
<Name> Any Unicode string </Name>
TERM
<slot>*]
</Atom>

Editor's Note: The slotted, or named arguments form of the Atom construct is still under discussion

(see also ISSUE-68 (http://www.w3.0rg/2005/rules/wg/track/issues/68)). The working group seeks
feedback on whether or not it should be included in PRD.

Example 2.4. The example below shows the RIF XML serialization of the positional atom owns(?¢ ?p),
where the predicate symbol owns is defined in the example namespace http.//example.com/2008/joet#.

o e e e e e e e e e e e e e e e RS e ke e AR MM M M e e e e M e e e RS A M e W e W S M e MM e 0e == 3

atom>
<op>
<Const type="rif:iri">
http://example.com/2008/joe#owns
</Const>
</op>
<args rif:ordered="yes">
<Var> ¢ </Var>
<Var> p </vVar>
</args>
< /Atom>

5.2.2.2 Equal

In RIF, the Equal element is used to serialize equality atomic formulas.

The Equal element must contain one left sub-element and one right sub-element. The content of the
left and right elements must be a construct from the TERM abstract class. The order of the
sub-elements is not significant.

3
; <Equal>

' <left> TERM </left>
‘

]

]

<right> TERM </right>
</Equal>

5.2.2.3 Member

In RIF, the Member element is used to serialize membership atomic formulas.

\ The Member element contains two Wred sub-elements:

» the instance elements must be a construct from the TERM abstract class. It is required;
» the class element must be a construct from the TERM abstract class. It is required as well.

35 of49 ‘ , 12/01/2009 9:22 PM

PRD - RIF http://www . w3.org/2005/rules/wiki/PRD

]
: <Member> :
1 <instance> TERM </instance> :
. <class> TERM </class> :
' </Member> !

Example 2.5. The example below shows the RIF XML serialization of a boolean expression that tests
whether the individual denoted by the variable ?c is a member of the class Chicken that is defined in the
example namespace http://example.com/2008/joe#.

FMember> E
1 <instance> <Var> c </Var> </instance> P
! <class> '
1 <Const type="rif:iri"> '
: http://example.com/2008/joe#Chicken !
1 </Const> 1
{ </class> .
i< /Member:> !

-

5.2.2.4 Subclass

In RIF, the subclass element is used to serialize subclass atomic formulas.
The subclass element contains two unordered sub-elements:

w the sub element must be a construct from the TERM abstract class. It is required;
» the super elements must be a construct from the TERM abstract class. It is required.

1
: <Subclass>

' _{TERM}

; <super> TERM </super>
! </Subclass>

5.2.2.5 Frame

In RIF, the Frame element is used to serialize frame atomic formulas.

Accordingly, a Frame element must contain:

m an object element, that contains an element of the TERM abstract class, the content of which

serializes the individual,
» 7ero to many slot elements, each containing a-recp-elementthatserializes-an attribute-value pair ¢

~as-apatr-of-elements-of the-Terirabstract-elass; the first pne-ﬁﬁi: serializes the name of the attribute

(or property); the second that serializes the attribute's value. The order of the s1lot's sub-elements
is significant and MUST be preserved. This is emphaswad by the W value "yes" of the

Wattrlbute rif:ordered. i ;/\/r/,_/)h ec{

<Frame>

<object> TERM </object>

<slot rif:ordered="yes"> TERM TERM </slot>*
</Frame>

Example 2.6. The example below shows the RIF XML syntax that serializes an expression that states

36 of 49 12/01/2609 9:22 PM

