	[image: image11.wmf]

	WSDL 2.0 to UDDI mapping

SAWSDL to UDDI mapping

	Type
	Technical Note
	Date
	29/05/06

	Author
	Pierre Châtel - SC2 Group
	Pages
	59

	Abstract
	This document is a technical note that defines a new approach to using WSDL 2.0 and SAWSDL in a UDDI registry.

	Status
	This document is updated periodically on no particular schedule. It has no official standing. Comments on this technical note should be sent to the author at pierre.chatel@fr.thalesgroup.com .

	Recipients

	Name
	Mail
	Goal

	HUYNH Tran - MSY
	tran.huynh@fr.thalesgroup.com
	For Information

	CACHEUX Claire - MSY
	claire.cacheux@fr.thalesgroup.com
	For Information

	Document evolution

	Version
	Status
	Date
	Observations

	0
	Creation
	29/05/06
	Document creation

	0.1
	N/A
	30/05/06
	WSDL 2.0 mapping added

	0.2-0.4
	N/A
	31/05/06 – 02/06/06
	WSDL 2.0 mapping modified

	0.5-0.6
	N/A
	05/06/06 – 06/06/06
	SAWSDL mapping modified

	0.7
	N/A
	07/06/06
	SAWSDL mapping modified and canonical tModels defined

	0.8
	N/A
	09/06/06
	SAWSDL mapping modified and specification of all the canonical tModels

	0.9
	N/A
	11/06/06 – 13/06/06
	French to English translation

	1.0
	Draft
	13/06/06
	First Public Draft

	1.1
	Draft
	14/06/06
	Document content and structural overhaul

	1.2
	Draft
	15/06/06 - 16/06/06
	Example and corrections

	1.3
	Draft
	19/06/06 – 20/06/06
	Sample V2 queries, external WSDL implementation, ontology sample and corrections

	1.4
	Draft
	22/06/06-23/06/06
	New example, corrections, interface categorization

	1.5
	Draft
	25/06/06-26/06/06
	New diagrams, examples. We are now using SAWSDL instead of WSDL-S

	1.6
	Draft
	26/06/06
	Modifications

	1.7
	Draft
	06/07/06
	Example Correction

	1.8
	Draft
	12/07/06
	Precondition and effect as attributes, multiple URIs handling, example update

	Table of contents

	51.
Introduction

51.1.
Goal of the study

51.2.
Context of the study

61.3.
Document content

62.
WSDL 2.0

62.1.
Goal and generalities

62.2.
Data Model

72.2.1.
Interface

72.2.2.
Operation

72.2.3.
Binding

72.2.4.
Service and endpoint

72.3.
Correspondences between WSDL 1.1 and 2.0 components

83.
UDDI

83.1.
Goal and generalities

83.2.
Data Model

93.2.1.
tModels

93.2.2.
tModels’ CategoryBags

103.2.3.
businessService & bindingTemplate

104.
WSDL 1.1 to UDDI mapping

125.
Running Example

136.
WSDL 2.0 to UDDI mapping

136.1.
Goal

136.2.
Mapping

146.2.1.
New Canonical tModels

146.2.2.
References to WSDL Components from UDDI

156.2.3.
WSDL 2.0 Import and Include directives

156.2.4.
wsdl:interface->uddi:tModel

176.2.5.
wsdl:binding->uddi:tModel

196.2.6.
wsdl:service->uddi:businessService

206.2.7.
wsdl:endpoint->uddi:bindingTemplate

226.2.8.
WSDL 2.0 Components not mapped to UDDI

227.
SAWSDL

227.1.
Goal

237.2.
Semantic annotations defined by SAWSDL

237.3.
Example

248.
SAWSDL to UDDI Mapping

248.1.
Goal

248.2.
Handled SAWSDL version

258.3.
Mapped semantic information

258.4.
WSDL 2.0 to UDDI mapping extensions

268.5.
Mapping

278.5.1.
New Canonical tModels

278.5.2.
SAWSDL Model Reference and URI extrapolation

278.5.3.
wsdl:interface->uddi:tModel [extension]

288.5.4.
wsdl:operation->uddi:tModel

319.
A complete example

319.1.
SAWSDL Sample

349.2.
UDDI V2 Model

349.2.1.
UDDI operation tModel

359.2.2.
UDDI interface tModel

359.2.3.
UDDI binding tModel

369.2.4.
UDDI BusinessService and bindingTemplate

379.3.
Sample V2 Queries

379.3.1.
Find tModel for interface name

389.3.2.
Find bindings for interface

389.3.3.
Find Implementations of interface

399.3.4.
Find implementations of binding

399.3.5.
Find SOAP Implementations of interface

399.3.6.
Find SOAP/HTTP Implementations of interface

409.3.7.
Find the interface of a binding

409.3.8.
Find the businessService for a WSDL service

409.3.9.
Find the operations of an interface

409.3.10.
Find the interface of an operation

409.3.11.
Find interface using categorization information

419.3.12.
Find operation based on its functional concept

419.3.13.
Find operation based on the semantic concepts of its inputs or outputs

429.3.14.
Find operation based on its precondition and/or effect(s)

439.3.15.
Obtain full service declaration after an operation, interface or binding tModelKey has been retrieved

4510.
Appendix A: Canonical tModels

4510.1.
Interface Category

4510.1.1.
Design Goals

4510.1.2.
Definition

4510.1.3.
V2 tModel Structure

4510.1.4.
Valid Values

4510.1.5.
Example of Use

4610.2.
WSDL Interface Reference

4610.2.1.
Design Goals

4610.2.2.
Definition

4610.2.3.
V2 tModel Structure

4610.2.4.
Valid values

4610.2.5.
Example of Use

4710.3.
WSDL Operation Reference

4710.3.1.
Design Goals

4710.3.2.
Definition

4710.3.3.
V2 tModel Structure

4810.3.4.
Valid values

4810.3.5.
Example of Use

4810.4.
Functionnal Concept

4810.4.1.
Design Goals

4810.4.2.
Definition

4810.4.3.
V2 tModel Structure

4910.4.4.
Valid values

4910.4.5.
Example of Use

4910.5.
Input

4910.5.1.
Design Goals

4910.5.2.
Definition

4910.5.3.
V2 tModel Structure

5010.5.4.
Valid values

5010.5.5.
Example of Use

5010.6.
Output

5010.6.1.
Design Goals

5010.6.2.
Definition

5010.6.3.
V2 tModel Structure

5110.6.4.
Valid values

5110.6.5.
Example of Use

5110.7.
Precondition

5110.7.1.
Design Goals

5110.7.2.
Definition

5110.7.3.
V2 tModel Structure

5210.7.4.
Valid values

5210.7.5.
Example of Use

5210.8.
Effect

5210.8.1.
Design Goals

5210.8.2.
Definition

5210.8.3.
V2 tModel Structure

5310.8.4.
Valid values

5310.8.5.
Example of Use

5411.
Appendix B: Comparison between WSDL 1.1 and WSDL 2.0 component models

5512.
Appendix C: WSDL 2.0 Components hierarchical view

5613.
Appendix D: External WSDL Implementation Documents

5613.1.
Capturing the URL

5613.2.
Obtaining the Port Address from WSDL

5713.3.
Querying Services that use a WSDL Implementation Document

5814.
Appendix E: Purchase Order Ontology

1. Introduction

1.1. Goal of the study

The SAWSDL mapping described in this technical note is in keeping with the general pattern of the global web-services and semantics effort: with the recent popularity increase of web-services, the ability to implement successful web processes by searching and using relevant services in a given domain will probably become the sinews of war in enterprise networks in the near future.

In this perspective, we wish to significantly improve the interoperability between web-services and raise their interpretability level. One approach is to develop semantic web-services by annotating their declarations with semantic information provided by ontologies.

How to semantically describe a web-service as already been, or is going to be, answered by several projects like OWL-S, DAML-S, WSDL-S or SAWSDL. But the first step toward obtaining a complete tooling of this approach consists of specifying a way to store, retrieve these descriptions and search for web-services based on these semantic descriptions.

We have chosen to ground our work on the SAWSDL service description language [see 7. SAWSDL] and we will define in this technical note how to map the syntactic and semantic information contained in a SAWSDL service description into UDDI.

The final goal of the study presented by this document is dual:

· First, by describing a mapping of SAWSDL into UDDI, giving web-service publishers a way to store their semantic service descriptions into any standard UDDI registry implementation.

· Secondly, by making this mapping expressive enough, to empower network clients to make efficient queries on UDDI registries based on a formal specification of their needs and a common knowledge background between publishers and clients.

1.2. Context of the study

The technological environment surrounding the study is composed of the following technologies:

· The WSDL v1.1 [WSDL1.1] and v2.0 [WSDL 2.0 Core Rec] specifications.

· The WSDL-S / SAWSDL specification [SAWSDL].

· The UDDI specification

· The OWL ontology langage specification.

Three versions of SAWSDL, and its predecessor WSDL-S, are actually available: each one specifies how and when to annotate a WSDL service definition in order to add references to semantic elements (concepts in ontologies):

· One using the extensibility elements offered by the WSDL 1.1 standard which has been created as an interim step of defining the final WSDL-S specification.
· One based on the 2.0 version of the WSDL specification. It’s the version that corresponds to the last W3C proposal of WSDL-S.

· At the time of the writing of this report, the future development of WSDL-S changed hands and is now being maintained by a specific W3C working group
. It was beforehand developed by the LSDID laboratory. Following this change, WSDL-S has been renamed to SAWSDL (« Semantic Annotations for WSDL »). See [SAWSDL] for more details on the subject.
We will use the SAWSDL denomination in the rest of this technical note.
1.3. Document content
Although the current SAWSDL specification does not bring many appreciable change to the last WSDL-S technical note, the mapping described by this document is based on SAWSDL. Some elements from the last WSDL-S specification that were removed from the current SAWSDL extension-set are still mapped for compatibility reasons, see [8.2.Handled SAWSDL version].

Since SAWSDL has been defined as an extension to the WSDL 2.0 specification, a preliminary step to the SAWSDL to UDDI mapping will be to define a WSDL 2.0 to UDDI mapping. It will keep all the mandatory elements from the previous WSDL 1.1 to UDDI mapping and will describe all the necessary syntactic and semantic aspects of a web service description.

The main parts of this document are organized as follows:

· A brief recap of the data models of both WSDL 2.0 and UDDI
[2. WSDL 2.0] [3. UDDI]

· A brief recap on the WSDL 1.1 to UDDI mapping.
[4. WSDL 1.1 to UDDI mapping]

· The development of a brand new WSDL 2.0 to UDDI mapping.
[6. WSDL 2.0 to UDDI mapping]

· The development of a SAWSDL to UDDI mapping as an extension to the WSDL 2.0 mapping.
[8. SAWSDL to UDDI Mapping]

2. WSDL 2.0

2.1. Goal and generalities

WSDL is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint. Related concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints and their messages regardless of what message formats or network protocols are used to communicate.

2.2. Data Model

This information comes from the [WSDL 2.0 Core Rec] W3C specification and is Copyright © 2006 W3C (MIT, ERCIM, Keio)

See [Appendix C: WSDL 2.0 Components hierarchical view] for a complete graphical view of the components containment hierarchy of WSDL 2.0.

2.2.1. Interface

An Interface component describes sequences of messages that a service sends and/or receives. It does this by grouping related messages into operations. An operation is a sequence of input and output messages, and an interface is a set of operations.

An interface can optionally extend one or more other interfaces. To avoid circular definitions, an interface MUST NOT appear as an element of the set of interfaces it extends, either directly or indirectly. The set of operations available in an interface includes all the operations defined by the interfaces it extends, along with any operations it directly defines. The operations directly defined on an interface are referred to as the declared operations of the interface

2.2.2. Operation

An Interface Operation component describes an operation that a given interface supports. An operation is an interaction with the service consisting of a set of (ordinary and fault) messages exchanged between the service and the other parties involved in the interaction.

2.2.3. Binding

A Binding component describes a concrete message format and transmission protocol which may be used to define an endpoint. That is, a Binding component defines the implementation details necessary to access the service.

Binding components can be used to describe such information in a reusable manner for any interface or specifically for a given interface. Furthermore, binding information MAY be specified on a per-operation basis within an interface in addition to across all operations of an interface.

2.2.4. Service and endpoint

A Service component describes a set of endpoints at which a particular deployed implementation of the service is provided. The endpoints thus are in effect alternate places at which the service is provided.

An Endpoint component defines the particulars of a specific endpoint at which a given service is available. Endpoint components are local to a given Service component.

2.3. Correspondences between WSDL 1.1 and 2.0 components

Refer to [Appendix B: Comparison between WSDL 1.1 and WSDL 2.0 component models] for more details.

	WSDL 1.1 component
	WSDL 2.0 component
	Note

	Message
	N/A
	The message element was removed from the WSDL 2.0 specification. You now have to use xsd type declarations to format operations’ inputs and outputs.

	PortType
	Interface
	PortType was renamed to interface in WSDL 2.0. Inheritance between interfaces in was added in WSDL 2.0.

	Operation
	Operation
	A WSDL 2.0 operation is semantically equivalent to a WSDL 1.1 operation. But its syntax and implementation are slightly different. It is now required to specify a message exchange pattern and operations are now making direct references to xsd types without using a message construct.

	Binding
	Binding
	The new binding component doesn’t necessarily needs to be associated to a given interface element (it is now an optional attribute). This new kind of binding can be used on multiple interfaces.

	Service
	Service
	A major difference between the WSDL 1.1 and 2.0 version of the service component is that it is now required to specify the interface that the service is an instance of. That makes it possible to guarantee a logical bond between the various endpoints of a given service.

Whereas, in the WSDL 1.1 specification, it was possible for a given service to bring together ports implementing different portTypes/interfaces.

	Port
	Endpoint
	Port was renamed to endpoint in the WSDL 2.0 specification. There are some syntax variations compared to the WSDL 1.1 version.

3. UDDI

3.1. Goal and generalities

UDDI is the specification of a multi-purpose web-service definition registry . It’s an OASIS recommendation that empowers users to make queries about services available on a given network (there are public and private registries) and that let developers publish their services by specifying in the registry any information related to these services (like their operations, prerequisites or specification conformity). The registry itself is based on multiple standards like HTTP, XML, XML Schema and SOAP.

In this technical note, UDDI will be used to store the syntactic and semantic information related to a given service and expressed in a SAWSDL or WSDL 2.0 declaration.

3.2. Data Model

This information comes from the [UDDIMAP] OASIS technical note and is Copyright © OASIS Open 2002-2004.

As an aid to understanding the sections ahead, we provide here a brief overview of two UDDI data structures that are particularly relevant to the use of WSDL in the context of a UDDI registry: the tModel and the businessService.

3.2.1. tModels

TModels are often referred to as service type definitions. TModels represent unique concepts or constructs. They are used to describe compliance with a specification, a concept, or a shared design. TModels have various uses in the UDDI registry. In the case of mapping WSDL-described Web services, tModels have two uses.

· First, tModels are used to represent technical specifications such as service types, bindings, and wire protocols.

· Second, tModels are used to implement category systems that are used to categorize technical specifications and services. This Technical Note defines a set of specification and category system tModels that are used when mapping WSDL 2.0 and SAWSDL entities to UDDI entities. These tModels are defined in Appendix A.

When a particular specification is registered in the UDDI registry as a tModel, it is assigned a unique key, called a tModelKey. This key is used by other UDDI entities to reference the tModel, for example to indicate compliance with the specification. Each specification tModel contains an overviewURL, which provides the address of the specification itself, for example, a WSDL document.

3.2.2. tModels’ CategoryBags

Additional metadata can be associated with a specification tModel using any number of identifier and category systems. Identifiers are grouped in a construct called an identifierBag, and categories are grouped in a construct called a categoryBag. These bags contain a set of keyedReference elements.

Each keyedReference specifies the tModelKey of the category system tModel and a name/value pair that specifies the metadata. For example, a keyedReference referencing the namespace category system can be used to specify a WSDL namespace. The metadata values specified in keyedReference elements can be used as selection criteria when searching UDDI.

In the two mappings described by this document, we use categoryBags to:

· Describe relationships between tModels, since UDDI does not provide such a built-in mechanism to do so.

· Store some of the syntactic and semantic meta-data associated to a WSDL 2.0 or SAWSDL service declaration.

3.2.3. businessService & bindingTemplate
[image: image2.png]businessEntity: Information about the
partywho publishes infomation about a

senice

tModel: Descriptions of specifications
for senvices of taxanorries. Basis for

technical fingerprints

businessService: Descriptive /
infornation about 3 particular ;
familyof technical senvices i

——
information about 3 service entry

L point and construction
specifications

bincingTempiete deta cortains
refererices fo hodels. These.
reforeres designate the nterface:
specifiations for a servie.

Services are represented in UDDI by the businessService data structure, and the details of how and where the service is accessed are provided by one or more bindingTemplate structures. The businessService might be thought of as a logical container of services. The bindingTemplate structure contains the accessPoint of the service, as well as references to the tModels it is said to implement.

4. WSDL 1.1 to UDDI mapping

There is an OASIS committee technical note [UDDIMAP] that specifies a simple implementation of a WSDL 1.1 to UDDI mapping. We are going to ground our own WSDL 2.0 mapping on this technical note.

A WSDL web service definition can be decomposed in two main parts: one called the “abstract definition” of the service, the other focused on the implementation aspects. In the following table, we present a quick summary of the mapping concerning the two parts that was specified by the OASIS technical note:

	WSDL Element
	Description
	Corresponding UDDI element
	Description

	Abstract definition

	PortType
	A portType is an abstract collection of operations

that may be supported by one or more Web services
	Tmodel (categorized as PortType)
	tModels represent unique concepts or

constructs. They are used to describe compliance with a specification, a concept, or a shared

design.

	Binding
	A WSDL binding specifies a specific set of encoding and transport protocols that may be used to

communicate with an implementation of a particular WSDL portType
	TModel (categorized as Binding)
	tModels represent unique concepts or

constructs. They are used to describe compliance with a specification, a concept, or a shared

design.

	Service implementation

	Service
	WSDL defines a Web service implementation as a service with a collection of named ports
	BusinessService
	Descriptive information about a particular family of technical services

	Port
	Each port implements a particular portType using the protocols defined by a named binding
	BindingTemplate
	Technical information about a service entry point and construction specification

[image: image1.png]THALES

[image: image9.wmf]

5. Running Example

In order to illustrate the concepts of this mapping, we will consider an arithmetic service providing a single operation: “division” which takes 2 parameters and returns a value. This simplistic service declaration is also annoted with semantic concepts extracted from a home-made arithmetic ontology shown in [7. SAWSDL]. The following figure is a complete overview of the service declaration and its mapping to UDDI. It will be explained in the rest of this technical note.

On the left hand side of the diagram is the SAWSDL declaration of the service and the XSD types used by the division operation. This declaration has been enhanced with semantic annotations as explained in [7. SAWSDL].

On the right is the result of the WSDL 2.0 to UDDI mapping presented in a simplified database-table form. The rules to translate the SAWSDL declaration to UDDI are explained in both [WSDL 2.0 to UDDI mapping] and [SAWSDL to UDDI Mapping]. The first section covers the standard syntactic aspects of the declaration whereas the second one is focused on mapping the semantic information in UDDI.

[image: image3.png]Dividend

type: Integer
modelReference: ArthmOnto#Dividend

Divisor

type: Integer
modelReference: ArthmOnto#Divisor

Result

type: Float
modelReference:ArithmOnto#Result

'WSDLS Service Declaration

targetNamespace: hitp:/example.org/arthmetics

Abstract

tModels
1o Name. Overviewurl CategoryBag
WSDL Type: operation
Namespace: hp://example.org/
arithmetics#
wuidoDivisionOper | 1. | hitpiiocation/ | Interface: wid:oMathFunctions
ation samplewsd! | Func. Concept: ArthmOnto#Division

Input: ArithmOnto#Dividend
Input: ArithmONto#Divisor
Output: ArthmOnto#Result

uuidtoMathFunctio

WSDL Type: interface

hitp:/ocation/ | Namespace: hitp:/iexample.org!

Operation
Name: division

modelReference: ArthmOnto#Division
Input: xsddividend

Input: xsddividend

Output: xsd:Result

Interface
Name: MathFunctions
modelReference: um:myCat

Binding
Name: MathBinding
Protocol: SOAP

mentafion

Service
Name: MathSenvice

Endpoint
Name: MathEndpoint

Address: hitp:/example.org/calc

ns MahFunctons | *amplewsdl | arthmetcs#
Interface Category: urn:myCat
WSDL Type: binding
Namespace: hp:/iexample.org/
hitp:/ocation/ | arithmetics#
uuidtoMathindng | MahBindng | "Ub TeSON | SRS
Transport: HTTP
Interface: uuid:toMathFunctions
businessServices
1o Name. CategoryBag
WSDL Type: operation
toMathService MathSenvice | Namespace: hp:/example.org/arithmetics#
Interface: uuid:toMathFunctions
bindingTemplates
1o AccessPoint thodelinstanceDetails
Name: MathEndpoint
toMathEndpoint | nttp:/example.orgicalc. | Binding: uuid:toMathBinding
Interface: uuid:oMathFunctions

MAPPING

> Relation

6. WSDL 2.0 to UDDI mapping

6.1. Goal

The primary goals of this mapping are:

1. To enable the automatic registration of WSDL 2.0 definitions in UDDI

2. To enable precise and flexible UDDI queries based on specific WSDL 2.0 artifacts and metadata.

3. To optimize the UDDI query processing performance by carefully choosing which WSDL 2.0 components will be mapped to UDDI.

4. To support any logical and physical structure of WSDL 2.0 description

6.2. Mapping

This mapping is not compatible with the following WSDL 1.1 based mappings:
1. The basic mapping which is registered as a “Best Practice” by the OASIS committee.
http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
2. The second mapping type which is more elaborate but has not been validated yet.
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
You can see in [Figure 2] a simplified view of the mapping that is described in this section. It indicates the correspondences between the WSDL 2.0 model and the fixed UDDI structures.

[image: image4.png]WSDL 2.0

operation

interface

upDI

Tmodel (type interface)

Binding

service

Tmodel {type binding)

endpoint

A

businessService

| bindingTemplete

Figure 2 - Simplified representation of the correspondences between WSDL 2.0 and UDDI structures

6.2.1. New Canonical tModels

This mapping introduces a number of canonical tModels that are used to represent WSDL 2.0 metadata and relationships. These tModels MUST be registered in the UDDI registry to support this mapping. Only the V1/V2 keys are given for these tModels.

We reuse all the canonical tModels defined by [UDDIMAP] to which we add the following tModels (see Appendix A for more details):

· WSDL Interface Reference (based on the WSDL portType Reference tModel)

6.2.2. References to WSDL Components from UDDI

A UDDI entity normally references technical specifications using the overviewURL element. As noted above, in this mapping a single WSDL document maps to multiple tModels, and each tModel refers to a particular WSDL entity within the file.

The particular WSDL entity is uniquely identified by the combination of its local name and the target namespace of the definitions element that contains the WSDL entity. This identity information SHOULD be determined from the UDDI entity, using the particular mapping for the namespace name and local name applicable to the particular UDDI entity type..

To sum up, 3 values are captured when mapping to a UDDI entity:

· The local name of the originating WSDL element

· The target namespace of this element (a mandatory attribute of the service description since WSDL 2.0).

· The location of the service definition itself via the overviewURL attribute.

6.2.3. WSDL 2.0 Import and Include directives

The WSDL 2.0 specification is introducing a new dependencies handling mechanism which complements the import element already defined by WSDL 1.1:

· The include element allows you to assemble the contents of a given WSDL 2.0 namespace from several WSDL 2.0 documents that define components for that namespace. The components defined by a given WSDL 2.0 document consist of those whose definitions are contained in the document and those that are defined by any WSDL 2.0 documents that are included in it via the include element. The effect of the include element is cumulative so that if document A includes document B and document B includes document C, then the components defined by document A consist of those whose definitions are contained in documents A, B, and C.

· In contrast, the import element does not define any components. Instead, the import element declares that the components whose definitions are contained in a WSDL 2.0 document for a given WSDL 2.0 namespace refer to components that belong to a different WSDL 2.0 namespace. If a WSDL 2.0 document contains definitions of components that refer to other namespaces, then those namespaces must be declared via an import element. The import element also has an optional location attribute that is a hint to the processor where the definitions of the imported namespace can be found. However, the processor may find the definitions by other means, for example, by using a catalog.

The mapping described in this document does not handle directly the import and include directives. It’s the responsibility of the preprocessor inside the tools based on this specification to assemble the various dependencies prior to publishing service definitions into UDDI. After processing any include elements and locating the components that belong to any imported namespaces, the WSDL 2.0 component model for a WSDL 2.0 document will contain a set of components that belong to the document’s WSDL 2.0 namespace and any imported namespaces. These components will refer to each other, usually via QName references. A WSDL 2.0 document is invalid if any component reference cannot be resolved, whether or not the referenced component belongs to the same or a different namespace.

6.2.4. wsdl:interface->uddi:tModel

A wsdl:interface MUST be modeled as a uddi:tModel.

The minimum information that must be captured about an interface is its entity type, its local name, its namespace, and the location of the WSDL document that defines the interface.

Capturing the entity type enables users to search for tModels that represents interface artifacts. Capturing the local name, namespace, and WSDL locations enables users to locate the definition of the specified interface artifact.

IF the wsdl:interface extends one or multiple wsdl:interface (new in WSDL 2.0), the tModel MUST contains references to these parent interfaces.

As in the WSDL 1.1 mapping where the operation elements of a specified portType where skipped when mapping to UDDI, the fault, operation, feature and property elements of a wsdl :interface won’t be mapped in UDDI.

The wsdl:interface information is captured as follows :

· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:interface.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL document that describes the wsdl:interface.

· The tModel MUST contain a categoryBag:

· the categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Entity Type category system and a keyValue of “interface”.

· the categoryBag MUST contain a keyedReference with a tModelKey of the XML Namespace category system and a keyValue of the target namespace of the wsdl:description element that contains the wsdl:interface.

· IF the wsdl:interface contains an extends attribute THEN the categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Interface Reference relationship tModel FOR EACH parent wsdl:interface. And the keyValue MUST be the tModelKey of the specified parent interface.

	Mapping

	WSDL 2.0
	UDDI

	Interface
	tModel (categorized as an interface)

	Namespace of interface
	KeyedReference in categoryBag

	Local name of interface
	TModel name

	Location of WSDL document
	OverviewURL

	Parent interface(s)
	KeyedReference(s) in categoryBag

	Example

	
	WSDL 2.0
	tModel

	Type
	Interface
	<keyedReference tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="interface"/>

	Namespace of interface
	http://example.org/arithmetics#
	<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/arithmetics#"/>

	Local name of interface
	MathFunctions
	<name> MathFunctions </name>

	Location of WSDL document
	http://location/sample.wsdl
	<overviewDoc>

<overviewURL>

 http://location/sample.wsdl

</overviewURL>

</overviewDoc>

6.2.5. wsdl:binding->uddi:tModel

A wsdl:binding MUST be modeled as a uddi:tModel.

The minimum information that must be captured about a binding is its entity type, its local name, its namespace, the protocol of the binding, and the location of the WSDL document that defines the interface.

Capturing the entity type enables users to search for tModels that represents binding artifacts. Capturing the local name, namespace, and WSDL locations enables users to locate the definition of the specified binding artifact.

IF the wsdl:binding specify an implemented wsdl:interface THEN the tModel MUST contain a reference to the tModel representative of this interface (it was a mandatory indication in WSDL 1.1).

As in the WSDL 1.1 mapping where the operation elements of a specified wsdl:binding where skipped when mapping to UDDI, the fault, operation, feature and property elements of a wsdl:binding won’t be mapped in UDDI.

The wsdl:binding information is captured as follows :

· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:binding.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL document that describes the wsdl:binding.

· The tModel MUST contain a categoryBag:

· the categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Entity Type category system and a keyValue of “binding”.

· the categoryBag MUST contain a keyedReference with a tModelKey of the XML Namespace category system and a keyValue of the target namespace of the wsdl:description element that contains the wsdl:binding.

· the categoryBag MUST include a keyedReference with a tModelKey of the Protocol Categorization category system and a keyValue of the tModelKey of the protocol tModel indicated by the type attribute of the wsdl:binding.

As specified by par [[WSDLADJ] – 5.2 Identifying the use of the SOAP binding] and [[WSDLADJ] – 6.1 Identifying the use of the HTTP binding], this indication is sufficient to distinguish between various binding types. The client of a web-service will need to check the full WSDL service definition in order to gather enough information to conduct a dialog with the service.

· IF the value of the type attribute of the wsdl:binding is “http://www.w3.org/2006/01/wsdl/soap” THEN we will use the tModelKey of the « SOAP Protocol » tModel.

Also, we need to add a keyedReference in the categoryBag with a tModelKey of the « Transport Categorization » canonical tModel and a keyValue of the tModelKey of the tModel standing for the transport type indicated by the protocol attribute defined in the SOAP namespace.

· IF the value of the type attribute of the wsdl:binding is “http://www.w3.org/2006/01/wsdl/http” THEN we will use the tModelKey of the “HTTP Protocol” tModel. In this case, there is no need to specify the transport type.

· Other values are handled in a similar fashion. It is assumed that vendors who provide other protocol or transport types will provide the appropriate tModels.

· IF the wsdl:binding has an interface attribute, THEN the categoryBag MUST contain a keyedReference keyedReference with a tModelKey of the WSDL Interface Reference relationship tModel and a keyValue of the tModelKey of the tModel standing for this interface.

	Mapping

	WSDL 2.0
	UDDI

	Binding
	tModel (categorized as a binding)

	Namespace of binding
	KeyedReference(s) in categoryBag

	Local name of binding
	TModel name

	Location of WSDL document
	OverviewURL

	Protocol of binding
	KeyedReference(s) in categoryBag

	Transport implemented by this binding (opt)
	KeyedReference(s) in categoryBag

	Interface linked to the binding (opt)
	KeyedReference(s) in categoryBag

	Example

	
	WSDL 2.0
	tModel

	Type
	Binding
	<keyedReference tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="binding"/>

	Namespace of binding
	http://example.org/arithmetics#
	<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/arithmetics#"/>

	Local name of binding
	MathBinding
	<name> MathBinding </name>

	Location of WSDL document
	http://location/sample.wsdl
	<overviewDoc>

<overviewURL>

 http://location/sample.wsdl

</overviewURL>

</overviewDoc>

	Protocol of binding
	SOAP
	<keyedReference

tModelKey="uuid:4dc74177-7806-34d9-aecd-33c57dc3a865"

keyName="SOAP Protocol"

keyValue=" uuid:aa254698-93de-3870-8df3-a5c075d64a0e"/>

	Transport of binding
	HTTP
	<keyedReference

tModelKey="uuid:e5c43936-86e4-37bf-8196-1d04b35c0099"

keyName="HTTP transport"

keyValue="uuid:68DE9E80-AD09-469D-8A37-088422BFBC36"/>

	Interface linked to the binding
	MathFunctions
	<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:toMathFunctions"/>

6.2.6. wsdl:service->uddi:businessService

A wsdl:service MUST be modeled as a uddi:businessService.

Since a service MUST implement an interface in WSDL 2.0, we can guarantee that there is a direct link between a wsdl:service and a given uddi:businessService in the mapping (1:1 relation).

The minimum information that must be captured about a wsdl:service is its entity type, its local name, its namespace, its implemented interface and the list of endpoints that it supports.

1. Capturing the entity type enables users to search for services that are described by a WSDL definition.

2. Capturing the interface inside the businessService enables users to search for the various implementations of a specified interface in a single instruction.

3. The list of ports provide access to the technical information required to consume the service.

The wsdl:service information is captured as follows :

· The uddi:name element of the businessService MUST be the value of the name attribute of the wsdl:service.

· The businessService MUST contain a categoryBag:

· The categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Entity Type category system and a keyValue of “service”.

· The categoryBag MUST contain a keyedReference with a tModelKey of the XML Namespace category system and a keyValue of the target namespace of the wsdl:description element that contains the wsdl:service.

· The categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Interface Reference relationship tModel and a keyValue of the tModelKey of the interface tModel implemented by this wsdl:service.

Each endpoint defined by this service is automatically mapped into a uddi:bindingTemplate inside the corresponding uddi:businessService. [6.2.7 wsdl:endpoint->uddi:bindingTemplate]

	WSDL 2.0
	UDDI

	Service
	BusinessService

	Namespace of service
	KeyedReference(s) in categoryBag

	Local name of service
	BusinessService name

	Interface implemented by this service
	KeyedReference(s) in categoryBag

	Endpoint(s) defined by this service
	bindingTemplate inside the bindingTemplates element of the businessService.

	Example

	
	WSDL 2.0
	BusinessService

	Type
	Service
	<keyedReference tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="service"/>

	Namespace of service
	http://example.org/arithmetics#
	<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/arithmetics#"/>

	Local name of service
	MathService
	<name> MathService </name>

	Interface implemented
	MathFunctions
	<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:toMathFunctions"/>

6.2.7. wsdl:endpoint->uddi:bindingTemplate

A wsdl:endpoint MUST be modeled as a uddi:bindingTemplate inside the uddi:businessService element defining this particular endpoint.

The minimum information that must be captured about an endpoint is its local name, the binding that it implements and the interface that it implements.

By capturing the binding, users can search for services that implement a specific binding. By capturing the interface, users can search for services that implement a particular interface without necessarily knowing the specific binding implemented by the service.

The wsdl:endpoint information is captured as follows :

The bindingTemplate MUST contain a tModelInstanceDetails element:

· This tModelInstanceDetails MUST contain a tModelInstanceInfo with a tModelKey of the tModel that models the wsdl:binding that this endpoint implements. The instanceParms of this tModelInstanceInfo MUST contain the wsdl:endpoint local name.

· This tModelInstanceDetails MUST contain a tModelInstanceInfo with a tModelKey of the tModel that models the wsdl:interface implemented by this endpoint. This interface can be obtained by the mandatory interface attribute of the service element defining this endpoint (if specified, it can also be obtained by the interface attribute of the wsdl:binding associated to this endpoint)

	WSDL 2.0
	UDDI

	Endpoint
	BindingTemplate

	Namespace of endpoint
	Captured in keyedReference of the containing businessService

	Local name of endpoint
	InstanceParms of the tModelInstanceInfo related to the tModel for the binding.

	Binding implemented by endpoint
	tModelInstanceInfo with tModelKey of the

tModel corresponding to the binding.

	Interface implemented by endpoint
	tModelInstanceInfo with tModelKey of the

tModel corresponding to the interface.

	Example

	
	Endpoint
	BindingTemplate

	Namespace of endpoint
	http://example.org/arithmetics#
	<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/arithmetics#"/>

	Local name of endpoint
	MathEndpoint
	<instanceDetails>

<instanceParms>

MathEndpoint

</instanceParms>

</instanceDetails>

	Binding implemented
	MathBinding
	<tModelInstanceInfo

tModelKey="uuid:toMathBinding">

…

	Interface implemented
	MathFunctions
	<tModelInstanceInfo

tModelKey="uuid:toMathFunctions">

…

The uddi:bindingTemplate MUST store address information for the Web service in its accessPoint element. In WSDL 2.0 this information can come from various locations whereas it was only located in the extensibility elements of WSDL 1.1.

· IF the endpoint has an address attribute:

· The value of the accessPoint MUST be the value of this attribute

· The value of the URLType attribute in the accessPoint element MUST correspond to the transport type specified by the binding linked to this endpoint or “other” if no correspondence exists. In the case of the HTTP transport, for example, the URLType attribute MUST be "http".

· If "other" is used then a tModelInstanceInfo element referencing the appropriate vendor-defined transport tModel MUST be added to the bindingTemplate.

· IF the endpoint does not have an address attribute BUT possesses an Endpoint Reference [WSA 1.0 Core]: in this case, we can use the value of the address element of this particular endpoint reference.

· IF the endpoint does not have an address attribute NOR endpoint reference THEN a reference to the full WSDL service declaration will be made from within the uddi:bindingTemplate following the approach described in [Appendix D: External WSDL Implementation Documents]

6.2.8. WSDL 2.0 Components not mapped to UDDI

The following components are optional in a WSDL description and don’t carry any particular semantic annotations. It was decided not to map them to UDDI elements in the current version of this specification. In order to consult them, one must first gain access to the full WSDL 2.0 definition of the service. A direct consequence is that they cannot be used as criterions in a (semantic) UDDI query.

· The “feature” component describes an abstract piece of functionality typically associated with the exchange of messages between communicating parties. The presence of a Feature component in a WSDL 2.0 description indicates that the service supports the feature and may require that a client that interacts with the service use that feature.

· The “property” component in the Features and Properties architecture represents a named runtime value which affects the behavior of some aspect of a Web service interaction, much like an environment variable.

· The optional “documentation” element information item used by WSDL 2.0 as a container for human readable or machine processable documentation. The content of the element information item is arbitrary character information items and element information items and is allowed inside any WSDL 2.0 element information item.

· All the “fault” handling element of WSDL 2.0.

7. SAWSDL

7.1. Goal

The Web Services Description Language (WSDL) specifies a way to describe the abstract functionalities of a service and concretely how and where to invoke it. But the WSDL 1.1/2.0 specification does not include semantics in the description, thus two services can have similar descriptions while totally different meanings.

The objective of the SAWSDL specification is to develop a mechanism to enable annotation of Web services descriptions with semantic concepts extracted from ontologies representing common knowledge in a specific domain. This mechanism takes advantage of the WSDL 2.0 extension mechanisms to build a simple and generic support for semantics in Web services.

Since the current WSDL standard operates at the syntactic level, it lacks the semantic expressivity needed to represent the requirements and capabilities of Web Services. Semantics can improve software reuse and discovery, significantly facilitate composition of Web services and enable integrating legacy applications as part of business process integration.

To solve this issue, SAWSDL offers an evolutionary and compatible upgrade of existing web-services standards by providing support for rich mapping mechanisms between most aspects of an service declaration and ontologies, and also by externalizing the semantic domain models (agnostic to semantic and ontology representation languages).

7.2. Semantic annotations defined by SAWSDL

In SAWSDL a semantic information can be associated to a WSDL element by using an annotation based on the standard service description extension mechanism of WSDL 2.0.

Conceptually, WSDL 2.0 has the following constructs to represent service descriptions: interface, operation, binding, service and endpoint. Of these, the first two, namely interface and operation, deal with the abstract definition of a service while the remaining three given by binding, service and endpoint constructs deal with service implementation. SAWSDL focus on semantically annotating the abstract definition of a service to enable dynamic discovery, composition and invocation of services. It provides URI reference mechanisms via extensibility elements to the WSDL interface and operation constructs to point to the semantic constructs defined in the domain models.

It is possible to semantically annotate the following WSDL 2.0 components:

· XML Schema declarations (complex types, simple types, elements), using modelReference, liftingSchemaMapping and loweringSchemaMapping attributes.

· Operations, using the modelReference attribute. To which we add the precondition and effect elements inherited from WSDL-S.

· Interfaces, using the category element. This one differs from the other elements since it is used to reference taxonomy concepts not ontologies.

7.3. Example

In order to illustrate the concepts of this mapping, we will use the basic annotation of an operation with semantic information. In the following figure we present an arithmetic operation (a division) and a ontology of the mathematical/arithmetic domain. Three parts of the operation are annoted with the help of the schemaMapping attribute and concepts extracted from the ontology:

1. The operation itself.

2. The parameters’ types of the operation.

3. The type used for the return value of the operation.

[image: image5.png]XS0 Tyjpes

WSDL Service declaration > Absiract parl > interface

division (param_1:xsd:Dividend, param_2:xsd:Divisor) :!

xsd:Result

operation

hasFirstOperand
#Operand
hasSecondOperand
#Operand

hasReturnValue : #Retum

XSDType | —— subTypeot —>

—— annotation —>

OWL Class

[adation muttipication |

Dividend Divisor Result L dvision :
ype: Imeger | | type: imeger | | type: Float =N ;
il operand |

Namorical il |

Value P ;

: i > Dividend > Divisor)

nteger Fioat il :
DS Result |

— subClassof —>

In the next section we will see how this operation and its annotations will be integrated in a full SAWSDL declaration and mapped to UDDI.

8. SAWSDL to UDDI Mapping

8.1. Goal

The primary goals of this mapping are the same that the ones that were defined for the WSDL to UDDI mapping, except that semantic and performance concerns were added:

1. To enable the automatic registration of SAWSDL definitions in UDDI including the necessary semantic information.

2. To enable precise and flexible UDDI queries based on specific syntactic and semantic artifacts and metadata.

3. To maintain compatibility with the previous WSDL 2.0 to UDDI mapping.

4. To optimize the UDDI query processing performance by carefully choosing which SAWSDL components will be mapped to UDDI.

5. To support any logical and physical structure of SAWSDL description

8.2. Handled SAWSDL version

Since SAWSDL is in the early stages of the normalization process, we decided to maintain in our binding some elements that were removed from SAWSDL but present in the WSDL-S specification. Like precondition and effect [see 7.2. Semantic annotations defined by SAWSDL].

There is, at the time of the writing of this report, some controversy around precondition and effect since the charter for the SAWSDL working group rules them out of scope, but the concept has already been validated by previous works on the subject and seems to correspond to the need to distinguish between services that change the “world” and those that don't.

In fact, the STRIPS operator (AI planning) defined state as a set of prepositional variables. In this scenario, an action would be eligible to be executed if the current state satisfied the preconditions, and the effect of the operation would create a new state by modifying the values of some propositional variables.

You can refer to all the work done by Kunal Verma at the LSDIS Lab for more information on the subject. Especially in [COMPSWS] where they defined state as a two tuple consisting of an expression of propositional variables and the data available to the service.

8.3. Mapped semantic information

Compared to the mapping described in [ADDSEM], the approach adopted by this specification should allow greater expressibility when composing UDDI request using semantic criterions.

In this early paper by the LSDID Lab, not all the semantic annotations currently available were mapped to UDDI structures. In particular, we add the mapping for the precondition and effect elements as defined by the last WSDL-S proposal to the W3C.

The semantic information attached to an operation input and output will also be mapped into UDDI. This will allow richer queries to be made and should significantly improve the performance when searching for a particular web-service in a UDDI registry (i.e. it will not be necessary to gather the full wsdl description of a service stored in UDDI in order to match and rank it based on the semantic similarity with the query being made).

The following semantic elements will be mapped to UDDI :

· Operation inputs

· Operation outputs

· Operation preconditions

· Operation effects

· Operation functional concept

· Interface categorization information

8.4. WSDL 2.0 to UDDI mapping extensions

Semantic annotations defined by SAWSDL are limited to the “abstract” part of a service declaration. As such, extensions will only be made on the operation and interface mapping specifications. Concerning the service implementation part, we will use the previously defined mapping [WSDL 2.0 to UDDI mapping].

Since SAWSDL stores input/output related semantic information in the XML Schema types declarations we will also need to extract the needed ontological references from this structures in order to map them into UDDI.

	WSDL 2.0 Element
	Extension

	Operation
	Was not mapped in the WSDL 2.0 to UDDI mapping. In SAWSDL they are annoted with semantic elements so we need to map them to UDDI. This mapping will convert them to tModels.

	Interface
	The mapping that was specified in 6.2.4 need to be modified in order to create a link between a given interface and the operations that it defines.

	Type
	The “message” construct was removed from WSDL 2.0. As such, the semantic information that was added to the message elements is now directly appended to the xsd types and elements themselves. We need to build a mapping to store this semantic info inside the operation tModels.

8.5. Mapping

Figure 3 shows a synthetic view of the extensions that were above-mentioned. The following sections will explain in details the implementation of these mappings.

The semantic additions made by SAWSDL to the WSDL 2.0 model and their mapping to UDDI are shown in blue.

The logical links between interfaces and operations, operations and types, are figured in red.

[image: image6.png]SAWSDL / WSDL-S I uDDI

‘Tmodel (operation type)

| ' categoryBag
Types
+ semantc nformatior [+]
Tmodel (interface type)
|
L peraton A categoryBag
’—’ semante nformation’ //'
e |

+ cazgorzation nformaych |

| businessService

bindingTemplate

Figure 3 - WSDL 2.0 to UDDI mapping extensions

8.5.1. New Canonical tModels

This mapping introduces a number of canonical tModels that are used to represent SAWSDL semantic metadata and relationships. These tModels MUST be registered in the UDDI registry to support this mapping. Only the V1/V2 keys are given for these tModels.

We reuse all the canonical tModels that were defined by [6.2.1 New Canonical tModels] to which we add all the following tModels [see Appendix A. for more details]):

· Interface Categorization

· WSDL Operation Reference

· Functional Concept

· Input

· Output

· Precondition

· Effect

8.5.2. SAWSDL Model Reference and URI extrapolation

	Editor note: Check SAWSDL specification for mandatory usage of absolute URIs

The modelReference attribute is used to associate ontology concepts with WSDL elements like wsdl:operation, xs:element, xs:complexType, xs:simpleType and wsdl:interface. The following schema excerpt defines the modelReference attribute:

<xs:simpleType name="listOfAnyURI">

<xs:list itemType="xs:anyURI"/>

</xs:simpleType>

<xs:attribute name="modelReference" type="satypes:listOfAnyURI" />
As defined by [SCHEMATYPES], anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI value can be absolute or relative, and may have an optional fragment identifier (i.e., it may be a URI Reference).

As such, relative URIs (like “POOntology#Receiver”) need to be converted to absolute URIs before being mapping in UDDI. This is because the URI values associated to namespaces like “POOntology” are not stored separately in the UDDI mapping and need to be appended to the relative URIs in order to allow UDDI queries based on these values.

8.5.3. wsdl:interface->uddi:tModel [extension]

	Editor note: This section is subject to changes since the SAWSDL specification does not define, at the time of the writing of this report, a clear and complete mechanism to categorize interfaces.

We base this mapping on the one specified by [6.2.4 wsdl:interface->uddi:tModel] to which we add the categorization information specified by the modelReference attribute and we also add the ability for an interface to be linked to its operations.

The categorisation information is stored inside a specific instance of the “http://www.w3.org/2002/ws/sawsdl/spec/ontology/interface#Category” RDF class (as defined by the latest SAWSDL specification). Users can choose any categorization of their choice such as NAICS, UNSPSC and GICS. This aids in service discovery by narrowing the range of candidate services.

Interface inheritance is not handled.

We add the following elements to the categoryBag of the tModel modeling a given interface:

· The tModel MUST contain a categoryBag:

· For each wsdl:operation defined by this wsdl:interface:

· The categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Operation Reference relationship tModel and a keyValue of the tModelKey of the operation tModel.

· IF the wsdl:interface has a sawsdl:modelReference categorization attribute
THEN the categoryBag MUST contain a keyedReference with a tModelKey of the Interface Categorization category system and the value of the sawsdl:modelReference attribute as a keyValue. IF the value of the sawsdl:modelReference attribute is a list of blank-separated URIs, then the categoryBag MUST contain a distinct keyedReference FOR EACH URI.

	Mapping

	SAWSDL
	UDDI

	Interface
	tModel (categorized as an interface)

	Namespace of interface
	KeyedReference in categoryBag

	Local name of interface
	tModel name

	Location of WSDL document
	OverviewURL

	Parent interface(s)
	KeyedReference(s) in categoryBag

	Interface category(s)
	KeyedReference(s) in categoryBag

	Interface defined operation(s)
	KeyedReference(s) in categoryBag

	Interface category
	KeyedReference in categoryBag

	Example

	
	SAWSDL
	TModel

	Operation defined
	Division
	<keyedReference

tModelKey="uuid:F7893D50-F7C7-11DA-BD50-F1F106FBFEDE"

keyName="operation reference"

keyValue="uuid:toOperation"/>

	Interface category
	urn:myCat
	<keyedReference

tModelKey="uuid:D9721C50-FD31-11DA-9C50-E266015E29B0"

keyName="interface category" keyValue="urn:myCat"/>

8.5.4. wsdl:operation->uddi:tModel

A wsdl:operation MUST be modeled as a uddi:tModel.

The minimum information that must be captured about an operation was its entity type, its local name, its namespace, the location of the WSDL document that defines the interface and the interface that defines this operation. To which we add the following semantic information:

· If specified, the functional concept of the operation(also known as “action”).

· If specified, the top-level ontological concepts (see [SAWSDL] section 2.2.1 for more details) associated with the xsd types of this operation’s inputs.

· If specified, the top-level ontological concepts associated with the xsd types of this operation’s outputs.

· If a precondition is specified for this operation, the ontological concept associated to this precondition.

· If an effect is specified for this operation, the ontological concept associated to this effect.

Capturing the entity type enables users to search for tModels that represents operation artifacts. Capturing the local name, namespace, and WSDL locations enables users to locate the definition of the specified binding artifact. Capturing the semantic information enables users to search for a service based on ontological concepts associated to its operations.

The wsdl:operation information is captured as follows :

· The uddi:name element of the tModel MUST be the value of the name attribute of the wsdl:operation.

· The tModel MUST contain an overviewDoc with an overviewURL containing the location of the WSDL document that describes the wsdl:operation.

· The tModel MUST contain a categoryBag:

· The categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Entity Type category system and a keyValue of “operation”.

· The categoryBag MUST contain a keyedReference with a tModelKey of the XML Namespace category system and a keyValue of the target namespace of the wsdl:description element that contains the wsdl:operation.

· The categoryBag MUST contain a keyedReference with a tModelKey of the WSDL Interface Reference relationship tModel and a keyValue of the tModelKey of the interface tModel implementing this operation.

· IF the wsdl:operation has a sawsdl:modelReference attribute THEN the categoryBag MUST contain a keyedReference with a tModelKey of the Functional Concept category system and the value of the sawsdl:modelReference attribute as a keyValue. IF the value of the sawsdl:modelReference attribute is a list of blank-separated URIs, then the categoryBag MUST contain a distinct keyedReference FOR EACH URI.

· IF the wsdl:operation has a sawsdl:precondition attribute THEN the categoryBag MUST contain a keyedReference with a tModelKey of the Precondition category system and, as keyValue, the value of the sawsdl:precondition attribute (an URI).

· IF the wsdl:operation has a sawsdl:effect attribute THEN, FOR EACH blank separated URI inside the value of the attribute, the categoryBag MUST contain a keyedReference with a tModelKey of the Effect category system and, as keyValue, the specified URI.

· FOR EACH wsdl:input element of the wsdl:operation :

· IF the XML Schema element referenced by the wsdl:input has a sawsdl:modelReference attribute,

· THEN the categoryBag MUST contain a keyedReference with a tModelKey of the Input category system and, as keyValue, the value of the modelReference attribute of the type element. IF the value of the sawsdl:modelReference attribute is a list of blank-separated URIs, then the categoryBag MUST contain a distinct keyedReference FOR EACH URI.

· FOR EACH wsdl:output element of the wsdl:operation :

· IF the XML Schema element referenced by the wsdl:output has a sawsdl:modelReference attribute,

· THEN the categoryBag MUST contain a keyedReference with a tModelKey of the Output category system and, as keyValue, the value of the modelReference attribute of the type element. IF the value of the sawsdl:modelReference attribute is a list of blank-separated URIs, then the categoryBag MUST contain a distinct keyedReference FOR EACH URI.

	Mapping

	SAWSDL
	UDDI

	Operation
	tModel (categorized as an operation)

	Namespace of operation
	KeyedReference in categoryBag

	Local name of operation
	TModel name

	Location of WSDL document
	OverviewURL

	Functional Concept
	KeyedReference in categoryBag

	Input(s)
	KeyedReference(s) in categoryBag

	Output(s)
	KeyedReference(s) in categoryBag

	Precondition
	KeyedReference in categoryBag

	Effect(s)
	KeyedReference(s) in categoryBag

	Example

	
	SAWSDL
	tModel

	Type
	Operation
	<keyedReference tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="operation"/>

	Namespace of operation
	http://example.org/arithmetics#
	<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/arithmetics#"/>

	Local name of operation
	division
	<name>division</name>

	Location of WSDL document
	http://location/sample.wsdl
	<overviewDoc>

<overviewURL>

 http://location/sample.wsdl

</overviewURL>

</overviewDoc>

	Functionnal Concept
	ArithmOnto#division
	<keyedReference

tModelKey="uuid:15D03F20-F7C8-11DA-BF20-C3F48481A023"
keyName="functional concept" keyValue="ArithmOnto#division"/>

	Input
	ArithmOnto#Dividend
	<keyedReference

tModelKey="uuid:349CC4A0-F7C8-11DA-84A0-90AE920025E6"
keyName="functional concept" keyValue="ArithmOnto#Dividend"/>

	Input
	ArithmOnto#Diviser
	<keyedReference

tModelKey="uuid:349CC4A0-F7C8-11DA-84A0-90AE920025E6"
keyName="functional concept" keyValue="ArithmOnto#Diviser"/>

	Output
	ArithmOnto#Result
	<keyedReference

tModelKey="uuid:72CBF520-F7C8-11DA-B520-E08563B732CC"
keyName="functional concept" keyValue="ArithmOnto#Result"/>

9. A complete example

	Editor note: This example use the old interface categorization element. It should be updated to use the modelReference attribute on the interface but we are waiting for a more stable SAWSDL specification

This example shows a SAWSDL file with xsd types, operations, interfaces, preconditions and effects annotations. It will demonstrate how this SAWSDL description with both its syntactic and semantic information is published into a UDDI registry based on the mappings described in [6. WSDL 2.0 to UDDI mapping] and [8. SAWSDL to UDDI Mapping]. It then shows the kind of UDDI API queries that can be used for the purpose of discovery.

This example is based on the current [SAWSDL] C. Appendix “An Example (Non –Normative)”.

9.1. SAWSDL Sample

The two ontologies we use in this example are:

· A purchase order ontology: purchaseorder.owl [Appendix E: Purchase Order Ontology]

· A RosettaNet ontology: rosetta.owl [http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/rosetta.owl]

Example 1-1 : SAWSDL Service Declaration

<wsdl:description xmlns="http://example.org/purchase#"

 targetNamespace="http://example.org/purchase#"

 xmlns:tns="http://example.org/purchase#"

 xmlns:wsdl="http://www.w3.org/2006/01/wsdl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsoap="http://www.w3.org/2006/01/wsdl/soap"

 xmlns:sawsdl="http://www.w3.org/2002/ws/sawsdl/spec/sawsdl#"

 xmlns:wsdl-s="http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/examples/WSSemantics"

 xmlns:Rosetta="http://example.org/examples/ontologies/rosetta.owl"

 xmlns:POOntology="http://example.org/examples/ontologies/purchaseorder">

 <wsdl:types>

 <xs:import namespace="http://example.org/purchase#"

 schemaLocation="purchaseorder.xsd"/>

 </wsdl:types>

 <wsdl:interface name="PurchaseOrder" sawsdl:modelReference="http://example.org/categorization/products/electronics http://example.org/categorization/products/informatics">

 <wsdl:operation name="processPurchaseOrder" pattern="wsdl:in-out"

 sawsdl:modelReference="Rosetta:RequestPurchaseOrder">

 <input messageLabel="processPurchaseOrderRequest"

 element="processPurchaseOrderRequest" />

 <output messageLabel="processPurchaseOrderResponse"

 element="processPurchaseOrderResponse" />

<wsdl-s:precondition name="ExistingAcctPrecond"

sawsdl:modelReference="POOntology#AccountExists"/>

<wsdl-s:effect name="ItemReservedEffect"

sawsdl:modelReference="POOntology#ItemReserved"/>

 </wsdl:operation>

 </wsdl:interface>

 <wsdl:binding name="purchaseOrderSAOPBinding"

interface="tns:PurchaseOrder"

type="http://www.w3.org/2006/01/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP">

<wsdl:operation ref="tns:processPurchaseOrder"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

 </wsdl:binding>

 <wsdl:service name="purchaseOrderService"

interface="tns:PurchaseOrder">

<wsdl:endpoint name="purchaseOrderEndpoint"

binding="tns:purchaseOrderSOAPBinding"

address="http://example.org/examples/purchaseOrder"/>

 </wsdl:service>

</wsdl:description>

The purchase order xml schema defining the input and output messages for the service is given below:

Example 1-2 : SAWSDL Service Type Definition

<xs:schema

 targetNamespace="http://example.org/purchase#"

 xmlns="http://example.org/purchase#"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:sawsdl="http://www.w3.org/2002/ws/sawsdl/spec/sawsdl#"

 elementFormDefault="qualified">

 <xs:element name="processPurchaseOrderRequest">

 <xs:complexType>

 <xs:all>

 <xs:element name="billingInfo" type="POBilling" />

 <xs:element name="orderItem" type="POItem" />

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="processPurchaseOrderResponse"

type="xs:string"

sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#OrderConfirmation" />

 <xs:complexType name="POItem">

 <xs:all>

<xs:element name="dueDate" nillable="true" type="xs:dateTime"

sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#DueDate" />

<xs:element name="qty" type="xs:float"

sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#Quantity" />

<xs:element name="EANCode" nillable="true" type="xs:string"

sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#ItemCode" />

<xs:element name="itemDesc" nillable="true" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#ItemDesc" />

 </xs:all>

 </xs:complexType>

 <xs:complexType name="POBilling">

 <xs:all>

 <xs:element name="shipToAddress" nillable="true" type="POAddress" />

 <xs:element name="billToAddress" nillable="true" type="POAddress" />

 <!-- @todo: does not exist, but was this ment to reference an property? -->

 <xs:element name="accountID" nillable="true" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#AccountID" />

 </xs:all>

 </xs:complexType>

 <xs:complexType name="POAddress">

 <xs:all>

<xs:element name="recipientInstName" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#Receiver" />

<xs:element name="streetAddr1" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#StreetAddress" />

<xs:element name="streetAddr2" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#StreetAddress" />

<xs:element name="city" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#City" />

<xs:element name="zipCode" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#PostalCode" />

<xs:element name="state" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#State" />

<xs:element name="country" type="xs:string"

 sawsdl:modelReference=

"http://example.org/ontologies/purchaseorder#Country" />

 </xs:all>

 </xs:complexType>

</xs:schema>

9.2. UDDI V2 Model

9.2.1. UDDI operation tModel

The WSDL operation entity maps to a tModel. The tModel name is the same as the WSDL operation local name. The tModel contains a categoryBag that specifies the WSDL namespace, indicates that the tModel is of type “operation” and makes reference to the interface defining this operation. The overviewDoc provides a pointer to the WSDL document.

The semantic information that is captured concerns the operation’s functional concept, precondition, effect and output.

Example 1-3 : UDDI operation tModel

<tModel tModelKey="uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79">

<name>processPurchaseOrder</name>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="operation namespace"

keyValue="http://example.org/purchase#"/>
<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6"/>

<keyedReference

tModelKey="uuid:15D03F20-F7C8-11DA-BF20-C3F48481A023"

keyName="functional concept"

keyValue="http://example.org/examples/ontologies/rosetta.owl:RequestPurchaseOrder"/>

<keyedReference

tModelKey="uuid:A05DC270-F7C8-11DA-8270-ABAD25871E16"

keyName="precondition"

keyValue=" http://example.org/examples/ontologies/purchaseorder#AccountExists"/>

<keyedReference

tModelKey="uuid:D87CD330-F7C8-11DA-9330-E5D46D2020A1"

keyName="effect"

keyValue=" http://example.org/examples/ontologies/purchaseorder#ItemReserved"/>

<keyedReference

tModelKey="uuid:72CBF520-F7C8-11DA-B520-E08563B732CC"

keyName="output"

keyValue="http://example.org/ontologies/purchaseorder#OrderConfirmation"/>
</categoryBag>

</tModel>
9.2.2. UDDI interface tModel

The WSDL interface entity maps to a tModel. The tModel name is the same as the WSDL interface local name. The tModel contains a categoryBag that specifies the WSDL namespace, indicates that the tModel is of type “interface” and make references to defined operations. The overviewDoc provides a pointer to the WSDL document.

The semantic information that is captured concerns the interface’s categorization (NAICS taxonomy in this example).

Example 1-4 : UDDI interface tModel

<tModel tModelKey="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6">

<name> PurchaseOrder </name>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="interface"/>

<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/purchase#"/>

<keyedReference

tModelKey="uuid:D9721C50-FD31-11DA-9C50-E266015E29B0"

keyName="Interface Categorization"

keyValue="http://example.org/categorization/products/electronics />

<keyedReference

tModelKey="uuid:D9721C50-FD31-11DA-9C50-E266015E29B0"

keyName="Interface Categorization"

keyValue="http://example.org/categorization/products/informatics />
<keyedReference

tModelKey="uuid:F7893D50-F7C7-11DA-BD50-F1F106FBFEDE"

keyName="operation reference"

keyValue="uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79"/>

</categoryBag>

</tModel>

9.2.3. UDDI binding tModel

The WSDL binding entity maps to a tModel. The tModel name is the same as the WSDL binding local name. The tModel contains a categoryBag that specifies the WSDL namespace, it indicates that the tModel is of type "binding", it supplies a pointer to the interface tModel, and it indicates what protocols and transports are supported by the binding. The overviewDoc provides a pointer to the WSDL document.

Example 1-5 : UDDI binding tModel

<tModel tModelKey="uuid:D3A742F0-FD31-11DA-82F0-9453F06ECD1E">

<name>purchaseOrderSOAPBinding</name>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL Type"

keyValue="binding"/>

<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.org/purchase#"/>

<keyedReference

tModelKey="uuid:4dc74177-7806-34d9-aecd-33c57dc3a865"

keyName="SOAP Protocol"

keyValue=" uuid:aa254698-93de-3870-8df3-a5c075d64a0e"/>

<keyedReference

tModelKey="uuid:e5c43936-86e4-37bf-8196-1d04b35c0099"

keyName="HTTP transport"

keyValue="uuid:68DE9E80-AD09-469D-8A37-088422BFBC36"/>

<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6"/>

</categoryBag>

</tModel>

9.2.4. UDDI BusinessService and bindingTemplate

The WSDL service entity maps to a businessService, and the WSDL endpoint entity maps to a bindingTemplate. The businessService name is the same as the WSDL service local name. The businessService contains a categoryBag that indicates that this service represents a WSDL service, and it specifies the WSDL namespace. The bindingTemplate specifies the endpoint of the service, and it contains a set of tModelInstanceDetails. The first tModelInstanceInfo indicates that the service implements the “purchaseOrderSAOPBinding” binding and provides the WSDL endpoint local name. The second tModelInstanceInfo indicates that the service implements the “PurchaseOrder” interface.

Example 1-6 : UDDI businessService

<businessService

serviceKey="102b114a-52e0-4af4-a292-02700da543d4"

businessKey="1e65ea29-4e0f-4807-8098-d352d7b10368">

<name>purchaseOrderService</name>

<bindingTemplates>

<bindingTemplate

bindingKey="f793c521-0daf-434c-8700-0e32da232e74"

serviceKey="102b114a-52e0-4af4-a292-02700da543d4">

<accessPoint URLType="http">

http://example.org/examples/purchaseOrder
</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo

tModelKey="uuid:D3A742F0-FD31-11DA-82F0-9453F06ECD1E">

<description xml:lang="en">

The wsdl:binding that this wsdl:endpoint implements. The instanceParms specifies the endpoint local name.

</description>

<instanceDetails>

<instanceParms>

purchaseOrderEndpoint
</instanceParms>

</instanceDetails>

</tModelInstanceInfo>

<tModelInstanceInfo

tModelKey="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6">

<description xml:lang="en">

The wsdl:interface that this wsdl:endpoint implements.

</description>

</tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

</bindingTemplates>

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="service" />

<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="service namespace"

keyValue=" http://example.org/purchase#"/>

<keyedReference

tModelKey=" uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6"/>

</categoryBag>

</businessService>

9.3. Sample V2 Queries

This section shows how to perform various UDDI V2 queries based on “standard” or semantic service aspects given the model of the example.

9.3.1. Find tModel for interface name

Find the interface tModel for PurchaseOrder in the namespace http://example.org/purchase#. This should return the tModelKey uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<name>PurchaseOrder</name>

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="interface"/>

<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="interface namespace"

keyValue="http://example.com/purchase#"/>

</categoryBag>

</find_tModel>

9.3.2. Find bindings for interface

Find all bindings for PurchaseOrder. This should return the tModelKey uuid:D3A742F0-FD31-11DA-82F0-9453F06ECD1E.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey=" uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="binding"/>

<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6"/>

</categoryBag>

</find_tModel>

9.3.3. Find Implementations of interface

Find all implementations of PurchaseOrder (endpoints).

Because the serviceKey attribute is required in the find_binding call in the UDDI V2 API, it is not possible to find all implementations of an interface with a single call. A find_service call must be made first to get the keys of all services that contain a bindingTemplate that references the interface, then either the details of each such service must be retrieved with a get_serviceDetail call and the appropriate bindingTemplate looked for among the bindingTemplates of the service, or a find_binding call must be made for each service, with the serviceKey attribute set accordingly. The following example shows the use of a find_binding call.

This first call gets the list of services that have a bindingTemplate that references the interface. This should return the serviceKey 102b114a-52e0-4af4-a292-02700da543d4.

<find_service generic="2.0" xmlns="urn:uddi-org:api_v2">

<tModelBag>

<tModelKey>

uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6

</tModelKey>

</tModelBag>

</find_service>

Now the second call is made to find the appropriate bindings of this particular service. This should return the bindingKey f793c521-0daf-434c-8700-0e32da232e74
<find_binding serviceKey="102b114a-52e0-4af4-a292-02700da543d4"

generic="2.0"

xmlns="urn:uddi-org:api_v2">

<tModelBag>

<tModelKey>

uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6

</tModelKey>

</tModelBag>

</find_binding>

9.3.4. Find implementations of binding

Find all implementations of purchaseOrderSOAPBinding.

This is very similar to the previous example, except that the tModelBag contains the key of the binding tModel rather than the portType tModel.
9.3.5. Find SOAP Implementations of interface

Find all implementations of PurchaseOrder that support SOAP (SOAP endpoints).

At least three queries are needed. The first query returns all the binding tModels that reference the interface tModel and that are categorized with SOAP.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="binding"/>

<keyedReference

tModelKey="uuid:4dc74177-7806-34d9-aecd-33c57dc3a865"

keyName="SOAP protocol"

keyValue= "uuid:aa254698-93de-3870-8df3-a5c075d64a0e" />

<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6"/>

</categoryBag>

</find_tModel>

What happens next depends on whether or not other criteria are also required in the overall query.

If no other criteria is needed, at least two other queries are required, as in the example above of finding implementations of a single binding. The first of these is a find_service call which must include the "orAllKeys" findQualifier
 and a tModelBag must be supplied which contains all the binding tModel keys returned by the first query. This will return the list of services that have a bindingTemplate that references at least one of the binding tModels.

Finally, for each such service, either get_serviceDetail or find_binding must be called.
If other criteria is needed, at least two other queries are required, depending on the number of binding tModels and services found. For each binding tModel a find_service query is required and the default of "andAllKeys" must be used as the other criteria will also be applied to this query. This will return the list of services that have a bindingTemplate that references the particular binding tModel and which also satisfies the other criteria.

Finally, for each such service, either get_serviceDetail or find_binding must be called, and again the other criteria must be applied.
9.3.6. Find SOAP/HTTP Implementations of interface

This is similar to the previous case except that the first query must also include a category for the HTTP transport in addition to the SOAP protocol.

9.3.7. Find the interface of a binding

The interface of a binding is contained in the categoryBag of the binding tModel. No query is required once the tModel of the binding has been obtained. The keyValue of the keyedReference with tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628" contains the interface tModelKey.

9.3.8. Find the businessService for a WSDL service

Find the businessService for purchaseOrderService in the namespace http://example.org/purchase#. This should return the serviceKey 102b114a-52e0-4af4-a292-02700da543d4.
<find_service generic="2.0" xmlns="urn:uddi-org:api_v2">

<name>purchaseOrderService</name>

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="service" />

<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"

keyName="service namespace"

keyValue="http://example.org/purchase#" />

</categoryBag>

</find_service>

9.3.9. Find the operations of an interface

Find the operations tModels for PurchaseOrder in the namespace http://example.org/purchase#. This should return the tModelKey uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79.
<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

keyName="interface reference"

keyValue="uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6"/>

</categoryBag>

</find_tModel>

Or no query is required once if tModel of the interface has already been obtained. The keyValue of the keyedReferences with tModelKey="uuid:F7893D50-F7C7-11DA-BD50-F1F106FBFEDE " contains the operations tModelKeys.

9.3.10. Find the interface of an operation

The interface of an operation is contained in the categoryBag of the operation tModel. No query is required once the tModel of the binding has been operation. The keyValue of the keyedReference with tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628" contains the interface tModelKey.

9.3.11. Find interface using categorization information

Find interfaces categorized as “443112” in the NAICS taxonomy. This should return the tModelKey uuid:CE0BDE00-FD31-11DA-9E00-94E1DCD10DB6.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="interface"/>

<keyedReference

tModelKey="uuid:D9721C50-FD31-11DA-9C50-E266015E29B0"

keyName="Interface Categorization"

keyValue="http://example.org/categorization/products/electronics/>
</categoryBag>

</find_tModel>

9.3.12. Find operation based on its functional concept

Find operations associated to the “RequestPurchaseOrder” functionnal concept in the http://example.org/examples/ontologies/rosetta.owl ontology. This should return the tModelKey uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:15D03F20-F7C8-11DA-BF20-C3F48481A023"

keyValue="http://example.org/examples/ontologies/rosetta.owl:RequestPurchaseOrder"/>

</categoryBag>

</find_tModel>

9.3.13. Find operation based on the semantic concepts of its inputs or outputs

Find operations outputting elements of the “OrderConfirmation” semantic type extracted from the http://example.org/ontologies/purchaseorder ontology. This should return the tModelKey uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:72CBF520-F7C8-11DA-B520-E08563B732CC"

keyValue="http://example.org/ontologies/purchaseorder#OrderConfirmation"/>
</categoryBag>

</find_tModel>

For queries based on inputs elements, this is similar to the previous query, except that the categoryBag contains the key of the input tModel rather than the output tModel.

You can also make queries with multiple input/output keyedReferences.

9.3.14. Find operation based on its precondition and/or effect(s)

Find operations with an “ItemReserved” effect extracted from the http://example.org/ontologies/purchaseorder ontology. This should return the tModelKey uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:D87CD330-F7C8-11DA-9330-E5D46D2020A1"

keyValue="http://example.org/examples/ontologies/purchaseorder#ItemReserved"/>
</categoryBag>

</find_tModel>

Find operations with a “AccountExists” precondition extracted from the http://example.org/ontologies/purchaseorder ontology. This should return the tModelKey uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:A05DC270-F7C8-11DA-8270-ABAD25871E16"

keyValue="http://example.org/examples/ontologies/purchaseorder#AccountExists"/>

</categoryBag>

</find_tModel>

Find operations with both an “AccountExists” precondition and “ItemReserved” effect extracted from the http://example.org/ontologies/purchaseorder ontology. This should return the tModelKey uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79.

<find_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<categoryBag>

<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"

keyName="WSDL type"

keyValue="operation"/>

<keyedReference

tModelKey="uuid:D87CD330-F7C8-11DA-9330-E5D46D2020A1"

keyValue="http://example.org/examples/ontologies/purchaseorder#ItemReserved"/>

<keyedReference

tModelKey="uuid:A05DC270-F7C8-11DA-8270-ABAD25871E16"

keyValue="http://example.org/examples/ontologies/purchaseorder#AccountExists"/>
</categoryBag>

</find_tModel>

9.3.15. Obtain full service declaration after an operation, interface or binding tModelKey has been retrieved

In order to retrieve the full description of a web-service after an operation, interface or binding tModel has been matched, use the get_tModelDetail call with the appropriate tModelKey argument. Each mapped tModel contains an “overviewURL” element which points to the full SAWSDL declaration of the service.

<get_tModelDetail generic="2.0" xmlns="urn:uddi-org:api_v2">

<tModelKey>uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79</tModelKey>

</get_tModelDetail>

Should return the full description of the “processPurchaseOrder” operation tModel. The full declaration can be found at http://location/sample.wsdl :

<tModel tModelKey="uuid:C157EA00-FD31-11DA-AA00-D2DBEEBA6A79">

<name>processPurchaseOrder</name>

<overviewDoc>

<overviewURL>

http://location/sample.wsdl

</overviewURL>

</overviewDoc>

…

</tModel>

References

[UDDIMAP] - OASIS - Using WSDL in a UDDI Registry, Version 2.0.2 - Technical Note - http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

[WSDLADJ] - W3C - Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts - http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327

[WSA 1.0 Core] - W3C - Web Services Addressing 1.0 - Core - http://www.w3.org/TR/2005/CR-ws-addr-core-20050817

[WSDL 2.0 Core Rec] - W3C - Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language - http://www.w3.org/TR/2006/CR-wsdl20-20060327

[SAWSDL] - W3C – Semantic Annotations for WSDL - http://www.w3.org/2002/ws/sawsdl/spec/

[COMPSWS] - LSDID Lab - Zixin Wu, Kunal Verma, John A.Miller and Amit P.Sheth - Composing Semantic Web Services with Interaction Protocol

[WSDL1.1] - W3C - Web Services Description Language (WSDL) 1.1 - http://www.w3.org/TR/wsdl

[ADDSEM] – LSDIS Lab - Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, John Miller - Adding Semantics to Web Services Standards

[SCHEMATYPES] - W3C - XML Schema Part 2: Datatypes Second Edition - http://www.w3.org/TR/xmlschema-2/
10. Appendix A: Canonical tModels

10.1. Interface Category

10.1.1. Design Goals

This tModel is used to express a relation between an interface and a categorization information. It is to be used with interface tModels.

10.1.2. Definition

Name:

thalesgroup-com:sc2:wsdl:interfaceCategory

Description:
A category system used to associate a concept from a specific semantic domain to an interface tModel.

V1,V2 format key:
uuid:D9721C50-FD31-11DA-9C50-E266015E29B0

Categorization:
categorization

Checked:

no

10.1.3. V2 tModel Structure

[image: image10.emf]
10.1.4. Valid Values

Valid values for this category system are URIs. The content of the keyValue attribute in a keyedReference that refers to this tModel is the value of the modelReference attribute of the sawsdl:modelReference element of this specific interface.

10.1.5. Example of Use

10.2. WSDL Interface Reference

10.2.1. Design Goals

WSDL Entities exhibit many relationships. Specifically, a wsdl:port describes an implementation of a wsdl:binding, and a wsdl:binding describes a binding of a particular wsdl:insterface. These same relationships must be expressed in the UDDI mapping. UDDI provides a built-in mechanism, via the tModelInstanceInfo structure, to associate a bindingTemplate with a tModel. But UDDI does not provide a built-in mechanism to describe a relationship between two tModels. The WSDL Interface Reference relationship tModel provides a mechanism to indicate that a UDDI entity has a relationship with a certain wsdl:interface tModel. This can be applied, for example, to indicate that a wsdl:binding tModel is a binding of a specific wsdl:interface tModel.

10.2.2. Definition

Name:

thalesgroup-com:sc2:wsdl:interfaceReference

Description:

A relationship tModel used to reference a wsdl:interface tModel

V1,V2 format key:
uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628

Categorization:
relationship

Checked:

no

10.2.3. V2 tModel Structure

10.2.4. Valid values

Valid values for this relationship tModel are tModelKeys. The content of the keyValue attribute in a keyedReference that refers to this tModel is the tModelKey of the wsdl:interface tModel being referenced.

10.2.5. Example of Use

One would add the following keyedReference to signify that a wsdl:binding implements a specific interface:

Note that the keyValue is a tModelKey, which, if queried for using get_tModelDetail, would return the tModel that represents the portType.

10.3. WSDL Operation Reference

10.3.1. Design Goals

WSDL Entities exhibit many relationships. Specifically, a wsdl:interface describes multiple wsdl:operation. This same relationship must be expressed in the UDDI mapping. UDDI provides a built-in mechanism, via the tModelInstanceInfo structure, to associate a bindingTemplate with a tModel. But UDDI does not provide a built-in mechanism to describe a relationship between two tModels. The WSDL Operation Reference relationship tModel provides a mechanism to indicate that a UDDI entity has a relationship with a certain wsdl:operation tModel.

10.3.2. Definition

Name:

thalesgroup-com:sc2:wsdl:operationReference

Description:

A relationship tModel used to reference a wsdl:operation tModel

V1,V2 format key:
uuid:F7893D50-F7C7-11DA-BD50-F1F106FBFEDE

Categorization:
relationship

Checked:

no

10.3.3. V2 tModel Structure

10.3.4. Valid values

Valid values for this relationship tModel are tModelKeys. The content of the keyValue attribute in a keyedReference that refers to this tModel is the tModelKey of the wsdl:operation tModel being referenced.

10.3.5. Example of Use

10.4. Functionnal Concept

10.4.1. Design Goals

As needed by 8.5.4, this tModel is used to express a relation between an operation and a functional concept from a specific ontology. It is to be used with operation tModels.

10.4.2. Definition

Name:

thalesgroup-com:sc2:wsdl:functionnalConcept

Description:
A category system used to associate a concept from a specific semantic domain to an operation tModel.

V1,V2 format key:
uuid:15D03F20-F7C8-11DA-BF20-C3F48481A023

Categorization:
categorization

Checked:

no

10.4.3. V2 tModel Structure

10.4.4. Valid values

Valid values for this category system are URIs. The content of the keyValue attribute in a keyedReference that refers to this tModel is the value of the modelReference attribute of the sawsdl:modelReference element of this specific operation.

10.4.5. Example of Use

10.5. Input

10.5.1. Design Goals

As needed by 8.5.4, this tModel is used to express a relation between an operation’s input element and a concept from a specific ontology. It is to be used with operation tModels.

10.5.2. Definition

Name:

thalesgroup-com:sc2:wsdl:input

Description:
A category system used to associate an input related concept from a specific semantic domain to an operation tModel.

V1,V2 format key:
uuid:349CC4A0-F7C8-11DA-84A0-90AE920025E6

Categorization:
categorization

Checked:

no

10.5.3. V2 tModel Structure

10.5.4. Valid values

Valid values for this category system are URIs. The content of the keyValue attribute in a keyedReference that refers to this tModel is the value of the modelReference attribute of the type system element associated to this specific input.

10.5.5. Example of Use

10.6. Output

10.6.1. Design Goals

As needed by 8.5.4, this tModel is used to express a relation between an operation’s output element and a concept from a specific ontology. It is to be used with operation tModels.

10.6.2. Definition

Name:

thalesgroup-com:sc2:wsdl:output

Description:
A category system used to associate an output related concept from a specific semantic domain to an operation tModel.

V1,V2 format key:
uuid:72CBF520-F7C8-11DA-B520-E08563B732CC

Categorization:
categorization

Checked:

no

10.6.3. V2 tModel Structure

10.6.4. Valid values

Valid values for this category system are URIs. The content of the keyValue attribute in a keyedReference that refers to this tModel is the value of the modelReference attribute of the type system element associated to this specific output.

10.6.5. Example of Use

10.7. Precondition

10.7.1. Design Goals

As needed by 8.5.4, this tModel is used to express a relation between an operation’s precondition element and a concept from a specific ontology. It is to be used with operation tModels.

10.7.2. Definition

Name:

thalesgroup-com:sc2:wsdl:precondition

Description:
A category system used to associate a precondition related concept from a specific semantic domain to an operation tModel.

V1,V2 format key:
uuid:A05DC270-F7C8-11DA-8270-ABAD25871E16

Categorization:
categorization

Checked:

no

10.7.3. V2 tModel Structure

10.7.4. Valid values

Valid values for this category system are URIs. The content of the keyValue attribute in a keyedReference that refers to this tModel is the value of the modelReference attribute of the precondition element defined by a specific operation.

10.7.5. Example of Use

10.8. Effect

10.8.1. Design Goals

As needed by 8.5.4, this tModel is used to express a relation between an operation’s effect element and a concept from a specific ontology. It is to be used with operation tModels.

10.8.2. Definition

Name:

thalesgroup-com:sc2:wsdl:effect

Description:
A category system used to associate an effect related concept from a specific semantic domain to an operation tModel.

V1,V2 format key:
uuid:D87CD330-F7C8-11DA-9330-E5D46D2020A1

Categorization:
categorization

Checked:

no

10.8.3. V2 tModel Structure

10.8.4. Valid values

Valid values for this category system are URIs. The content of the keyValue attribute in a keyedReference that refers to this tModel is the value of the modelReference attribute of the effect element defined by a specific operation.

10.8.5. Example of Use

11. Appendix B: Comparison between WSDL 1.1 and WSDL 2.0 component models

[image: image7.png]WSDL document

Types (type information for the document, e.g., XML Schema)

I

s
2
Message 1 || Message 2 || Message 3 || Message 4 || Message 5 || Message 6 | | G
M
§
3
Operation 1 ‘Operation 2 lOperation 3| 3
<
z
Port Type (abstract service) <
L =
binding 1 binding2 | | binding3 | | binding 4. §
g2
port1 port2 port3 port4 kY §
Service (the interface in all g%
its available implementations) K]

Figure 4 - WSDL 1.1

[image: image8.png]WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 || Message 2

Message 3

Message 4

Message 5 || Message 6

Operation

‘Opelation 2

lOperation 3

Interface (abstract service)

binding1

binding 2

binding 3

binding 4

T

endpoint 1

1

endpoint 2

endpoint 3

!

endpoint 4

Service (the interface in all
s available implementations)

Abstract description of the service

ion

25
5%
2
5
S

Figure 5 - WSDL 2.0

Errata: this diagram comes from an old WSDL 2.0 specification. The message component was removed from the last specification.

12. Appendix C: WSDL 2.0 Components hierarchical view

Appendix D: External WSDL Implementation Documents

This information is based on the [UDDIMAP] OASIS technical note and is Copyright © OASIS Open 2002-2004.

In the context of this Technical Note, a WSDL Implementation Document is a WSDL document that contains at least one wsdl:service element and its associated wsdl:port elements. There are two options for how this implementation information is described in UDDI:

1. The information in the UDDI model is the authoritative information and there is no reference to a WSDL Implementation Document.

2. A reference to an external WSDL Implementation Document can be stored in UDDI and the remaining information in UDDI is used to describe the appropriate element in the external WSDL resource.

The mapping described in the body of this document corresponds to the first option above, and that is assumed to be the default mapping. The second option is described in this appendix.

There are multiple reasons why it may be desirable to support an external WSDL Implementation Document, among which are the following:

1. There are extensibility elements defined for the wsdl:service.

2. There is a wsdl:documentation element for a wsdl:endpoint.

3. The address of an endpoint may not be representable as a uddi:accessPoint value.

4. The authoritative source of the address is desired to be the WSDL document rather than UDDI.

The approach described here assumes that if any one of these reasons leads to the use of an external WSDL Deployment Document then the entire mapping described in this section is used.

There are two additional necessary pieces of information that must be captured to use external WSDL Implementation Documents:

1. The URL of the WSDL Implementation Document.

2. An indication that the endpoint address must be obtained from the WSDL Implementation Document.

12.1. Capturing the URL

If an external WSDL Implementation Document is being used then the URL of this document must be used as the accessPoint value of each and every endpoint of each and every service.

12.2. Obtaining the Port Address from WSDL

If a WSDL Implementation Document is being used then the bindingTemplate MUST contain sufficient information to identify the endpoint address in the WSDL Implementation Document. The mapping described here MUST be used instead of the mapping defined in [6.2.7. wsdl:endpoint->uddi:bindingTemplate].

In all cases where a WSDL Implementation Document is used, the URLType attribute of the accessPoint corresponding to each endpoint MUST be "other", and the value of the accessPoint MUST be the URL of the WSDL Implementation Document.

The bindingTemplate MUST contain a tModelInstanceInfo element with a tModelKey of the WSDL Address tModel. This tModelInstanceInfo element, in combination with the protocol and transport information from the binding tModel, provides the necessary information to locate and interpret the endpoint address.

12.3. Querying Services that use a WSDL Implementation Document

It is possible to query the services that have a WSDL Implementation Document by querying the tModelKey of the WSDL Address tModel.

Appendix E: Purchase Order Ontology

PurchaseOrder.owl

<!DOCTYPE rdf:RDF[

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

]>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="http://example.org/ontologies/purchaseorder#">

 <owl:Ontology/>

 <owl:Class rdf:ID="ItemDesc"/>

 <owl:Class rdf:ID="Item"/>

 <owl:Class rdf:ID="DueDate"/>

 <owl:Class rdf:ID="PostalCode"/>

<owl:Class rdf:ID="City"/>

 <owl:Class rdf:ID="Billing"/>

 <owl:Class rdf:ID="Country"/>

 <owl:Class rdf:ID="Account"/>

 <owl:Class rdf:ID="Quantity"/>

 <owl:Class rdf:ID="Address"/>

 <owl:Class rdf:ID="OrderConfirmation"/>

 <owl:Class rdf:ID="StreetAddress"/>

 <owl:Class rdf:ID="State"/>

 <owl:Class rdf:ID="Receiver"/>

 <owl:Class rdf:ID="ItemCode"/>

 <owl:Class rdf:ID="Effect"/>

 <owl:Class rdf:ID="PreCondition"/>

 <owl:Class rdf:ID="ItemReserved">

 <rdfs:subClassOf rdf:resource="Effect"/>

 </owl:Class>

 <owl:Class rdf:ID="AccountExists">

 <rdfs:subClassOf rdf:resource="PreCondition"/>

 </owl:Class>

 <owl:Class rdf:ID="ZipCode">

 <rdfs:subClassOf rdf:resource="PostalCode"/>

 </owl:Class>

 <owl:Class rdf:ID="EanCode">

 <rdfs:subClassOf rdf:resource="ItemCode"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="has_billingAddress">

 <rdfs:domain rdf:resource="Billing"/>

<rdfs:range rdf:resource="Address"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_account">

 <rdfs:domain rdf:resource="Billing"/>

 <rdfs:range rdf:resource="Account"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_shippingAddress">

<rdfs:domain rdf:resource="Billing"/>

 <rdfs:range rdf:resource="Address"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="has_StreetAddress">

 <rdfs:domain rdf:resource="Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_City">

 <rdfs:domain rdf:resource="Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_AccountID">

<rdfs:domain rdf:resource="Account"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_State">

<rdfs:domain rdf:resource="Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_itemDesc">

<rdfs:domain rdf:resource="Item"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_Quantity">

<rdfs:domain rdf:resource="Item"/>

 <rdfs:range rdf:resource="&xsd;float"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_POBox">

<rdfs:domain rdf:resource="Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:FunctionalProperty rdf:ID="has_ZipCode">

 <rdfs:domain rdf:resource="Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_Country">

 <rdfs:domain rdf:resource="Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_Receiver">

<rdfs:domain rdf:resource="Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_DueDate">

 <rdfs:domain rdf:resource="Item"/>

<rdfs:range rdf:resource="&xsd;dateTime"/>

 <rdf:type rdf:resource="&owl;DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_EANCode">

 <rdfs:domain rdf:resource="Item"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 <rdf:type rdf:resource="&owl;DatatypeProperty"/>

 </owl:FunctionalProperty>

</rdf:RDF>

Figure � SEQ Figure * ARABIC �1� - Recapitulatory of the WSDL 1.1 to UDDI mapping

<tModel tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628">

<name> thalesgroup-com:sc2:wsdl:interfaceReference </name>

<description xml:lang="en">A relationship tModel used to reference a wsdl:interface tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#interfaceReference

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="relationship"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

 <keyedReference

 tModelKey="uuid:9FC8E760-F7C6-11DA-A760-E48CBDDD8628"

 keyName="wsdl:interface Reference"

 keyValue="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3"/>

…

</categoryBag>

<tModel tModelKey="uuid:F7893D50-F7C7-11DA-BD50-F1F106FBFEDE">

<name> thalesgroup-com:sc2:wsdl:operationReference </name>

<description xml:lang="en">A relationship tModel used to reference a wsdl:operation tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#operationReference

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="relationship"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

<keyedReference

tModelKey="uuid:F7893D50-F7C7-11DA-BD50-F1F106FBFEDE"

keyName="wsdl:operation Reference"

keyValue="uuid:e8cf1163-8234-4b35-865f-94a7322e40d4"/>

…

</categoryBag>

<tModel tModelKey="uuid:15D03F20-F7C8-11DA-BF20-C3F48481A023">

<name> thalesgroup-com:sc2:wsdl:functionnalConcept </name>

<description xml:lang="en"> A category system used to associate a concept from a specific semantic domain to an operation tModel </description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#functionnalConcept

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="categorization"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

	keyedReference

tModelKey="uuid:15D03F20-F7C8-11DA-BF20-C3F48481A023"

keyName="Functional Concept"

keyValue="http://example.org/rosetta#RequestPurchaseOrder”

…

</categoryBag>

<tModel tModelKey="uuid:349CC4A0-F7C8-11DA-84A0-90AE920025E6">

<name> thalesgroup-com:sc2:wsdl:input </name>

<description xml:lang="en">A category system used to associate an input related concept from a specific semantic domain to an operation tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#input

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="categorization"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

	keyedReference

tModelKey="uuid:349CC4A0-F7C8-11DA-84A0-90AE920025E6"

keyName="Input"

keyValue="http://example.org/rosetta#PurchaseOrderRequest”

…

</categoryBag>

<categoryBag>

	keyedReference

tModelKey="uuid:72CBF520-F7C8-11DA-B520-E08563B732CC"

keyName="Output"

keyValue="http://example.org/rosetta#PurchaseConfirmation”

…

</categoryBag>

<tModel tModelKey="uuid:72CBF520-F7C8-11DA-B520-E08563B732CC">

<name> thalesgroup-com:sc2:wsdl:output </name>

<description xml:lang="en">A category system used to associate an output related concept from a specific semantic domain to an operation tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#output

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="categorization"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<tModel tModelKey="uuid:A05DC270-F7C8-11DA-8270-ABAD25871E16">

<name> thalesgroup-com:sc2:wsdl:precondition </name>

<description xml:lang="en">A category system used to associate a precondition related concept from a specific semantic domain to an operation tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#precondition

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="categorization"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

	keyedReference

tModelKey="uuid:A05DC270-F7C8-11DA-8270-ABAD25871E16"

keyName="Precondition"

keyValue="http://example.org/rosetta#ValidCreditCard”

…

</categoryBag>

<tModel tModelKey="uuid:D87CD330-F7C8-11DA-9330-E5D46D2020A1">

<name> thalesgroup-com:sc2:wsdl:effect </name>

<description xml:lang="en">A category system used to associate an effect related concept from a specific semantic domain to an operation tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#effect

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="categorization"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

	keyedReference

tModelKey="uuid:D87CD330-F7C8-11DA-9330-E5D46D2020A1"

keyName="Effect"

keyValue="http://example.org/rosetta#AccountDebited”

…

</categoryBag>

� EMBED Word.Picture.8 ���

<tModel tModelKey="uuid:D9721C50-FD31-11DA-9C50-E266015E29B0">

<name> thalesgroup-com:sc2:wsdl:interfaceCategory </name>

<description xml:lang="en"> A category system used to associate a concept from a specific semantic domain to an interface tModel</description>

<overviewDoc>

<overviewURL>

http://www.thalesgroup.com/sc2/wsdl-s_mapping.htm#interfaceCategory

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="categorization"/>

<keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"

keyName="uddi-org:types" keyValue="unchecked"/>

</categoryBag>

</tModel>

<categoryBag>

	keyedReference

tModelKey=" uuid:D9721C50-FD31-11DA-9C50-E266015E29B0"

keyName="Interface Category"

keyValue="urn:MyCat"

…

</categoryBag>

� http://www.w3.org/2002/ws/sawsdl/

� The V2 Specification is ambiguous as to whether orAllKeys applies in this case.

WSDL-S to UDDI mapping

Copyright © Thales Group 2006. All Rights Reserved

_1212242733

_1212320081

_1211702633.doc
[image: image1.png]InterfaceOperation

Interface.

2 InterfaceMessageReference.

|_o-| InterfaceFaultReference

Description
= .. Binding

InterfaceFault

BindingMessageReference

BindingOperation

BindingFaultRoforence

+-| Endpoint

Note:
- Al coponents sxcapt Descripicn may contain a
Fealure conponen! andor Properly component

