
 1

Web Services Choreography Description
Language, Version 1.0

Editor's Draft, 24 July 2004
This version:

TBD
Latest version:

TBD
Previous Version:

Not Applicable
Editors (alphabetically):

Nickolaos Kavantzas, Oracle, <nickolas.kavantzas@oracle.com>
David Burdett, Commerce One <david.burdett@commerceone.com>
Gregory Ritzinger, Novell <gritzinger@novell.com>

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract

The Web Services Choreography Description Language (WS-CDL) is an XML-
based language that describes peer-to-peer collaborations of Web Services
participantsparties by defining, from a global viewpoint, their common and
complementary observable behavior; where ordered message exchanges result
in accomplishing a common business goal.
The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host
applications. The future of E-Business applications requires the ability to perform
long-lived, peer-to-peer collaborations between the participating services, within
or across the trusted domains of an organization.
The Web Services Choreography specification is targeted for composing
interoperable, peer-to-peer collaborations between any type of Web Service
participantparty regardless of the supporting platform or programming model
used by the implementation of the hosting environment.

 2

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.
This is the First Public Working Draft of the Web Services Choreography
Description Language document.
It has been produced by the Web Services Choreography Working Group, which
is part of the Web Services Activity. Although the Working Group agreed to
request publication of this document, this document does not represent
consensus within the Working Group about Web Services Choreography
description language.
This document is a chartered deliverable of the Web Services Choreography
Working Group. It is an early stage document and major changes are expected in
the near future.
Comments on this document should be sent to public-ws-chor-
comments@w3.org (public archive). It is inappropriate to send discussion emails
to this address.
Discussion of this document takes place on the public public-ws-chor@w3.org
mailing list (public archive) per the email communication rules in the Web
Services Choreography Working Group charter.
This document has been produced under the 24 January 2002 CPP as amended
by the W3C Patent Policy Transition Procedure. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s)
with respect to this specification should disclose the information in accordance
with section 6 of the W3C Patent Policy. Patent disclosures relevant to this
specification may be found on the Working Group's patent disclosure page.
Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

Revision Description

This is the second editor's draft of the document.

 3

Table of Contents
Status of this Document..2
Revision Description ...2
1 Introduction ..4

1.1 Notational Conventions...5
1.2 Purpose of the Choreography Language..7
1.3 Goals ..8
1.4 Relationship with XML and WSDL..9
1.5 Relationship with Business Process Languages10

2 Choreography Model ...10
2.1 Model Overview..10
2.2 Choreography Document Structure ..11

2.2.1 Package ..12
2.2.2 Choreography document Naming and Linking13
2.2.3 Language Extensibility and Binding...13
2.2.4 Semantics..14

2.3 Collaborating Parties ..14
2.3.1 Roles ...15
2.3.2 Participants..15
2.3.3 Relationships...15
2.3.4 Channels ...16

2.4 Information Driven Collaborations ..18
2.4.1 Information Types..18
2.4.2 Variables ...19

2.4.2.1 Expressions ..21
2.4.3 Tokens...21
2.4.4 Choreographies...22
2.4.5 WorkUnits..24

2.4.5.1 Reacting..25
2.4.6 Reusing existing Choreographies..26

2.4.6.1 Composing Choreographies ...27
2.4.6.2 Importing Choreographies ..28

2.4.7 Choreography Life-line ..28
2.4.8 Choreography Recovery..29

2.4.8.1 Exception Block ..29
2.4.8.2 Finalizer Block ..30

2.5 Activities ...31
2.5.1 Ordering Structures ...31

2.5.1.1 Sequence..31
2.5.1.2 Parallel..32
2.5.1.3 Choice ..32

2.5.2 Interaction..32
2.5.2.1 Interaction State Changes ..33
2.5.2.2 Interaction Based Information Alignment33
2.5.2.3 Protocol Based Information Exchanges......................................34

 4

2.5.2.4 Interaction Life-line ...35
2.5.3 Performed Choreography ..40
2.5.4 Assigning Variables...41
2.5.5 Actions with non-observable effects ..42

3 Example...42
4 Relationship with the Security framework ..42
5 Relationship with the Reliable Messaging framework42
6 Relationship with the Transaction/Coordination framework43
7 Acknowledgments..43
8 References ..43
9 WS-CDL XSD Schemas ..44
10 WS-CDL Supplied Functions ...53

1 Introduction

For many years, organizations have being developing solutions for automating
peer-to-peer collaborations, within or across their trusted domain, in an effort to
improve productivity and reduce operating costs.
The past few years have seen the Extensible Markup Language (XML) and the
Web Services framework developing as the de-facto choices for describing
interoperable data and platform neutral business interfaces, enabling more open
business transactions to be developed.
Web Services are a key component of the emerging, loosely coupled, Web-
based computing architecture. A Web Service is an autonomous, standards-
based component whose public interfaces are defined and described using XML.
Other systems may interaction with the Web Service in a manner prescribed by
its definition, using XML based messages conveyed by Internet protocols.
The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host
applications. The future of E-Business applications requires the ability to perform
long-lived, peer-to-peer collaborations between the participating services, within
or across the trusted domains of an organization.
The Web Service architecture stack targeted for integrating interacting
applications consists of the following components:
• SOAP: defines the basic formatting of a message and the basic delivery

options independent of programming language, operating system, or platform.
A SOAP compliant Web Service knows how to send and receive SOAP-
based messages

• WSDL: describes the static interface of a Web Service. It defines the protocol
and the message characteristics of end points. Data types are defined by
XML Schema specification, which supports rich type definitions and allows
expressing any kind of XML type requirement for the application data

 5

• UDDI: allows publishing the availability of a Web Service and its discovery
from service requesters using sophisticated searching mechanims

• Security layer: ensures that exchanged information are not modified or forged

• Reliable Messaging layer: provides exactly-once and guaranteed delivery of
information exchanged between participantsparties

• Context, Coordination and Transaction layer: defines interoperable
mechanisms for propagating context of long-lived business transactions and
enables participantsparties to meet correctness requirements by following a
global agreement protocol

• Business Process Languages layer: describes the execution logic of Web
Services based applications by defining their control flows (such as
conditional, sequential, parallel and exceptional execution) and prescribing
the rules for consistently managing their non-observable data

• Choreography layer: describes peer-to-peer collaborations of Web Services
participantsparties by defining from a global viewpoint their common and
complementary observable behavior, where information exchanges occur,
when the jointly agreed ordering rules are satisfied

The Web Services Choreography specification is targeted for composing
interoperable, peer-to-peer collaborations between any type of Web Service
participantparty regardless of the supporting platform or programming model
used by the implementation of the hosting environment.

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC-2119 [2].
The following namespace prefixes are used throughout this document:

Prefix Namespace URI Definition

wsdl http://schemas.xmlsoap.org/wsdl/
WSDL namespace
for WSDL
framework.

cdl http://www.w3.org/ws/choreography/2004/02/WSCDL
WSCDL
namespace for
Choreography
language.

 6

xsi http://www.w3.org/2000/10/XMLSchema-instance
Instance
namespace as
defined by XSD
[10].

xsd http://www.w3.org/2000/10/XMLSchema
Schema
namespace as
defined by XSD
[10].

tns (various)

The "this
namespace" (tns)
prefix is used as a
convention to refer
to the current
document.

(other) (various)

All other
namespace prefixes
are samples only. In
particular, URIs
starting with
"http://sample.com"
represent some
application-
dependent or
context-dependent
URI [4].

This specification uses an informal syntax to describe the XML grammar of a
WS-CDL document:

• The syntax appears as an XML instance, but the values indicate the data
types instead of values.

• Characters are appended to elements and attributes as follows: "?" (0 or 1),
"*" (0 or more), "+" (1 or more).

• Elements names ending in "…" (such as <element…/> or <element…>)
indicate that elements/attributes irrelevant to the context are being omitted.

• Grammar in bold has not been introduced earlier in the document, or is of
particular interest in an example.

• <-- extensibility element --> is a placeholder for elements from some "other"
namespace (like ##other in XSD).

• The XML namespace prefixes (defined above) are used to indicate the
namespace of the element being defined.

 7

• Examples starting with <?xml contain enough information to conform to this
specification; others examples are fragments and require additional
information to be specified in order to conform.

XSD schemas are provided as a formal definition of WS-CDL grammar (see
Section 9).

1.2 Purpose of the Choreography Language
Business or other activities that involve multiple different organizations or
independent processes that collaborate using the Web Services technology can
be successful only if they are properly integrated.
To solve this problem, a "global" definition of the common ordering conditions
and constraints under which messages are exchanged is produced that
describes from a global viewpoint the common and complementary observable
behavior of all the partiesWeb Services participants involved. Each
participantparty can then use the global definition to build and test solutions that
conform to it.
The main advantage of a global definition approach is that it separates the
process being followed by an individual business or system within a "domain of
control" from the definition of the sequence in which each business or system
exchanges information with others. This means that, as long as the "observable"
sequence does not change, the rules and logic followed within the domain of
control can change at will.
In real-world scenarios, corporate entities are often unwilling to delegate control
of their business processes to their integration partners. Choreography offers a
means by which the rules of participation within a collaboration can be clearly
defined and agreed to, jointly. Each entity may then implement its portion of the
Choreography as determined by the common view.
The figure below demonstrates a possible usage of the Choreography Language.

 8

Figure 1: Integrating Web Services based applications using WS-CDL
In Figure 1, Company A and Company B wish to integrate their Web Services
based applications. The respective business analysts at both companies agree
upon the services involved in the collaboration, their interactions and their
common ordering and constraint rules under which the interactions occur and
then generate a Choreography Language based representation.
In the case of Company A, relies on a BPEL4WS [18] solution. Company B,
having greater legacy driven integration needs, relies on a J2EE [25] solution
incorporating Java and Enterprise Java Bean Components or a .NET [26]
solution incorporating C#.
In this example, a Choreography specifies the interoperability and interactions
between services across business entities, while leaving actual implementation
decisions in the hands of each individual company. Similarly, a Choreography
can specify the interoperability and interactions between services within one
business entity.interoperability and interactions required to ensure conformance
compatability between services within one business entity.

1.3 Goals
The primary goal of a Choreography Language is to specify a declarative, XML
based language that defines from a global viewpoint the common and
complementary observable behavior, where message exchanges occur, and
when the jointly agreed ordering rules are satisfied.
Some additional goals of this definition language are to permit:

 9

• Reusability. The same choreography definition is usable by different
participantsparties operating in different contexts (industry, locale, etc.) with
different software (e.g. application software)

• Cooperation. Choreographies define the sequence of exchanging messages
between two (or more) independent participantsparties or processes by
describing how they should cooperate

• Multi-Party Collaboration. Choreographies can be defined involving any
number of participantsparties or processes

• Semantics. Choreographies can include human-readable documentation and
semantics for all the components in the choreography

• Composability. Existing Choreographies can be combined to form new
Choreographies that may be reused in different contexts

• Modularity. Choreographies can be defined using an "import" facility that
allows a choreography to be created from components parts contained in
several different Choreographies

• Information Driven Collaboration. Choreographies describe how
participantsparties that take part in Choreographies maintain where they are
in the choreography, by recording their exchanged information and the
observable state changes caused by these exchanges of information, and
also their reactions to them

• Information Alignment. Choreographies allow the participantsparties that take
part in Choreographies to communicate and synchronize their observable
state changes and the actual values of the exchanged information as well

• Exception Handling. Choreographies can define how exceptional or unusual
conditions that occur while the choreography is performed are handled

• Transactionality. The processes or participantsparties that take part in a
choreography can work in a "transactional" way with the ability to coordinate
the outcome of the long-lived collaborations, which include multiple, often
recursive collaboration units, each with its own business rules and goals

• Compatibility with other Specifications. This specification will work alongside
and complement other specifications such as the WS-Reliability [22], WS-
Composite Application Framework (WS-CAF) [21], WS-Security [24],
Business Process Execution Language for WS (BPEL4WS) [18], etc.

1.4 Relationship with XML and WSDL
This specification depends on the following specifications: XML 1.0 [9], XML-
Namespaces [10], XML-Schema 1.0 [11, 12] and XPath 1.0 [13]. In addition,
support for importing and referencing service definitions given in WSDL 2.0 [7] is
a normative part of this specification.

 10

1.5 Relationship with Business Process Languages
A Choreography Language is not an "executable business process description
language" [16, 17, 18, 19, 20] or an implementation language [23]. The role of
specifying the execution logic of an application will be covered by these
specifications; by enabling the definition of the control flows (such as conditional,
sequential, parallel and exceptional execution) and the rules for consistently
managing their non-observable business data.
A Choreography Language does not depend on a specific business process
implementation language. Thus, it can be used to specify truly interoperable,
peer-to-peer collaborations between any type of Web Service participantparty
regardless of the supporting platform or programming model used by the
implementation of the hosting environment. Each participantparty could be
implemented by completely different languages such as:

• Applications, whose implementation is based on executable business process
languages [16, 17, 18, 19, 20]

• Applications, whose implementation is based on general purpose
programming languages [23, 26]

• Or human controlled software agents

2 Choreography Model

This section introduces the Web Services Choreography Description Language
(WS-CDL) model.

2.1 Model Overview
WS-CDL describes interoperable, peer-to-peer collaborations between Web
Service participantsparties. In order to facilitate these collaborations, services
commit on mutual responsibilities by establishing Relationships. Their
collaboration takes place in a jointly agreed set of ordering and constraint rules,
whereby messages are exchanged between the participantsparties.
The Choreography model consists of the following notations:

• Participants, Roles and Relationships - In a Choreography, information is
always exchanged between Participants within the same or across trust
boundaries

• Types, Variables and Tokens - Variables contain information about commonly
observable objects in a collaboration, such as the messages exchanged or
the state of the Roles involved. Tokens are aliases that can be used to
reference parts of a Variable. Both Variables and Tokens have Types that
define the structure of what the Variable or Token contains

 11

• Choreographies - A Choreography allows defining collaborations between
interacting peer-to-peer interacting business processprocesses:
o Choreography Composition allows the creation of new Choreographies by

reusing existing Choreography definitions
o Choreography Life-line expresses the progression of a collaboration.

Initially, the collaboration is started at a specific business process, then
work is performed within it by following the choreography and finally it the
choreography completes, either normally or abnormally

o Choreography Recovery consists of:
 Choreography Exception Block - describes how to specify what

additional interactions should occur when a Choreography behaves in
an abnormal way

 Choreography Finalizer Block - describes how to specify what
additional interactions should occur to reverse the effect of an earlier
successfully completed choreography

• Channels - A Channel realizes a point of collaboration between
participantsparties by specifying where and how to exchange
informationwhere and how information is exchanged

• WorkUnits - A WorkUnit prescribes constraints that must be fulfilled for
making progress within a Choreography

• Interactions - An Interaction is the basic building block of a Choreography,
which results in exchange of messagesresults in an exchange of messages
between participantsparties and possible synchronization of their states and
the actual values of the exchanged information

• Activities and Ordering Structures - Activities are the lowest level components
of the Choreography that perform the actual work. Ordering Structures
combine activities with other Ordering Structures in a nested structure to
express the ordering conditions in which the messages in the choreography
are exchanged

• Semantics - Semantics allow the creation of descriptions that can record the
semantic definitions of almost every single component in the model

2.2 Choreography Document Structure
A WS-CDL document is simply a set of definitions. The WS-CDLEach definitions
is a are named constructs that can be referenced. There is a package element at
the root, and the individual Choreography definitions inside.

 12

2.2.1 Package

The WS-CDL Package aggregates a set of Choreography definitions, provides a
namespace for the definitions and through import statements, includes parts of
choreography definitions defined in other Packages. A WS-CDL package
contains a set of one or more Choreographies and a set of one or more
collaboration type definitions, allowing the various types whose use may be wider
than a single Choreography to be defined once.
The Choreography package contains:

·Zero or more Import definitions
·Zero or more Information Types
·Zero or more Token types and Token Locators
·Zero or more Role types
·Zero or more Relationship types
·Zero or more Participants
·Zero or more Channel types

·Zero or more, package-level Choreographies
The syntax of the package construct is:

<package
 name="ncname"
 author="xsd:string"?
 version="xsd:string"
 targetNamespace="uri"
 xmlns="http://www.w3.org/ws/choreography/2004/02/WSCDL/"
 importDefinitions*
 informationType*
 token*
 tokenLocator*
 role*
 relationship*
 participant*
 channelType*
 Choreography-Notation*
</package>

The package element contains:

• Zero or more Import definitions

• Zero or more Information Types

• Zero or more Token types and Token Locators

• Zero or more Role types

• Zero or more Relationship types
• Zero or more Participants

 13

• Zero or more Channel types

• Zero or more, package-level Choreographies
The top-level attributes author, and version, define authoring properties of the
Choreography document.
The targetNamespace attribute provides the namespace associated with all
definitions contained in this package. Choreography definitions imported to this
package may be associated with other namespaces.
The package construct allows aggregating a set of Choreography definitions,
where tThe elements informationType, token, tokenLocator, role, relationship,
participant and channelType are shared by all the Choreographies defined within
this package.
The importDefinitions construct allows reusing Choreography types defined in
another Choreography package such as Token types, Token Locator types,
Information Types, Role types, Relationship types, Channel types and
Choreographies.
The targetNamespace attribute provides the namespace associated with all
definitions contained in this package. Choreography definitions imported to this
package may be associated with other namespaces.
The top-level attributes author, and version, define authoring properties of the
Choreography document.

2.2.2 Choreography document Naming and Linking

WS-CDL documents MUST be assigned a name attribute of type NCNAME that
serves as a lightweight form of documentation.
The targetNamespace attribute of type URI MUST be specified.
The URI MUST NOT be a relative URI.
A reference to a definition is made using a QName.
Each definition type has its own name scope.
Names within a name scope MUST be unique within a WS-CDL document.
The resolution of QNames in WS-CDL is similar to the resolution of QNames
described by the XML Schemas specification [11].

2.2.3 Language Extensibility and Binding

ToIf desired to support extending the WS-CDL language, this specification allows
inside a WS-CDL document the use of extensibility elements and/or attributes
defined in other XML namespaces. Extensibility elements and/or attributes MUST
use an XML namespace different from that of WS-CDL. All extension
namespaces used in a WS-CDL document MUST be declared.

 14

Extensions MUST NOT change the semantics of any element or attribute from
the WS-CDL namespace.
Within a WS-CDL document, the optional attribute id provides a distinct name
that can be used to uniquely reference a language construct. This attribute MAY
be defined inside any WS-CDL language element.

2.2.4 Semantics

Within a WS-CDL document, descriptions will be required to allow the recording
of semantics definitions. The optional description sub-element is used as a
textual description for documentation purposes. This element is allowed inside
any WS-CDL language element.
The information provided by the description element will allow for the recording of
semantics in any or all of the following ways:

• Text. This will be in plain text or possibly HTML and should be brief

• Document Reference. This will contain a URL to a document that more fully
describes the component. For example on the top level Choreography
Definition that might reference a complete paper

• Structured Attributes. This will contain machine processable definitions in
languages such as RDF or OWL

Descriptions that are Text or Document References can be defined in multiple
different human readable languages.

2.3 Collaborating Parties
The WSDL specification describes the functionality of a service provided by a
participantparty based on a stateless, connected, client-server model. The
emerging Web Based applications require the ability to exchange messages in a
peer-to-peer environment. In these type of environmentthese types of
environments a participantparty represents a requester of services provided by
another participantparty and is at the same time a provider of services requested
from other participantsparties, thus creating mutual multi-participantparty service
dependencies.
A WS-CDL document describes how a Web Service participantparty is capable
of engaging in peer-to-peer collaborations with the same participantparty or with
different participantsparties.
Within a Choreography, information is always exchanged between Participants.
The Roles, Relationship and Channels define the coupling of the collaborating
Web Services participantsparties.

 15

2.3.1 Roles

A Role enumerates the observable behavior a participantparty exhibits in order to
collaborate with other participantsparties. For example the Buyer Role is
associated with purchasing of goods or services and the Supplier Role is
associated with providing those goods or services for a fee.
The syntax of the role construct is:

<role name="ncname" >
 <behavior name="ncname"
 interface="qname"? />+
</role>

Within the role element, the behavior element specifies a subset of the observable
behavior a participantparty exhibits. A Role MUST contain one or more behavior
elements.
The behavior element defines an optional interface attribute, which identifies a
WSDL interface type. A behavior without an interface describes a Role that is not
required to support a specific Web Service interface.

2.3.2 Participants

A Participant identifies a set of Roles that MUST be implemented by the same
entity or organization. Its purpose is to group together the parts of the observable
behavior that MUST be implemented by the same process. For example the
Seller Role in a Buyer-Seller Relationship MUST be implemented by the same
Participant that is the Seller in a Seller-Shipper Relationship.
A Participant identifies a set of related Roles. For example a Commercial
Organization could take both a Buyer Role when purchasing goods and a Seller
Role when selling them.
The syntax of the participant construct is:

<participant name="ncname">
 <role type="qname" />+
</participant>

2.3.3 Relationships

A Relationship identifies the Role/Behavior Types where mutual commitments
between two parties MUST be made for them to collaborate successfully. A
Relationship is the association of two Roles for a purpose. A Relationship
represents the possible ways in which two Roles can interact. For example the
Relationships between a Buyer and a Seller could include:

 16

• A "Purchasing" Relationship, for the initial procurement of goods or services,
and

• A "Customer Management" Relationship to allow the Supplier to provide
service and support after the goods have been purchased or the service
provided

Although Relationships are always between two Roles, Choreographies involving
more than two Roles are possible. For example if the purchase of goods involved
a third-party Shipper contracted by the Supplier to deliver the Supplier’s goods,
then, in addition to the Purchasing and Customer Management Relationships
described above, the following Relationships might exist:

• A "Logistics Provider" Relationship between the Supplier and the Shipper,
and

• A "Goods Delivery" Relationship between the Buyer and the Shipper
The syntax of the relationship construct is:

<relationship name="ncname">
 <role type="qname" behavior="ncname" />
 <role type="qname" behavior="ncname" />
</relationship>

A relationship MUST have exactly two role types defined.
Within the role element, the behavior attribute points to a behavior type within the
role type specified by the type attribute of the role element.

2.3.4 Channels

A Channel realizes a point of collaboration between participantsparties by
specifying where and how to exchange informationwhere and how information is
exchanged. Additionally, Channel information can be passed among
participantsparties. This allows modeling how the destination of messages is
determined, statically and dynamically,This allows the modeling of both static and
dynamic message destinations when collaborating within a Choreography. For
example, a Buyer could specify Channel information to be used for sending
delivery information. The Buyer could then send the Channel information to the
Seller who then forwards it to the Shipper. The Shipper could then send delivery
information directly to the Buyer using the Channel information originally supplied
by the Buyer.
A Channel MUST describe the Role and the reference type of a participantparty,
being the target of an Interaction, which is then used for determining where and
how to send/receive information to/into the participantparty.
A Channel MAY specify the instance identity of a business processprocess
implementing the behavior of a participantparty, being the target of an
Interaction.

 17

A Channel MAY describe one or more logical conversations between
participantsparties, where each conversation groups a set of related message
exchanges.
One or more Channel(s) MAY be passed around from one Role to another. A
Channel MAY restrict the types of Channel(s) allowed to be exchanged between
the participantsparties, through this Channel. Additionally, a Channel MAY
restrict its usage by specifying the number of times a Channel can be used.
The syntax of the channelType construct is:

<channelType name="ncname"
 usage="once"|"unlimited"?
 action="request-respond"|"request"|"respond"? >

 <passing channel="qname"
 action="request-respond"|"request"|"respond"?
 new="true”|”falsexsd:boolean"? />*

 <role type="qname" behavior="ncname"? />

 <reference>
 <token type="qname"/>+
 </reference>
 <identity>
 <token type="qname"/>+
 </identity>*
</channelType>

The optional attribute usage is used to restrict the number of times a Channel can
be used.
The optional element passing describes the Channel(s) that are exchanged from
one Role to another Role, when using this Channel in an Interaction. In the case
where the operation used to exchange the Channel is of request-response type,
then the attribute action within the passing element defines if the Channel will be
exchanged during the request or during the response. The Channels exchanged
can be used in subsequent Interaction activities. If the element passing is missing
then this Channel can be used for exchanging business documents and all types
of Channels without any restrictions.
The element role is used to identify the Role of a participantparty, being the target
of an Interaction, which is then used for statically determining where and how to
send/receive information to/into the participantparty.
The element reference is used for describing the WSDL reference type of a
participantparty, being the target of an Interaction, which is then used for
dynamically determining where and how to send/receive information to/into the
participantparty. The service reference of a participantparty is distinguished by a
set of Token types as specified by the token element within the reference element.
The optional element identity MAY be used for identifying an instance of a
business processprocess implementing the behavior of a participantparty and for
identifying a logical conversation between participantsparties. The business

 18

processprocess identity and the different conversations are distinguished by a
set of Token types as specified by the token element within the identity element.
The example below shows the declaration definition of the Channel type
RetailerChannel. The Channel identifies the Role type the tns:Retailer. The
address of the Channel is specified in the reference element, whereas the
business processprocess instance can be identified using the identity element for
correlation purposes. The passing element allows ConsumerChannel to be
sentThe passing element allows an instance of a ConsumerChannel to be sent
over the RetailerChannel.

<channelType name="RetailerChannel">
 <passing channel="ConsumerChannel" action="request" />
 <role type="tns:Retailer" behavior="retailerForConsumer"/>
 <reference>
 <token type="tns:retailerRef"/>
 </reference>
 <identity>
 <token type="tns:purchaseOrderID"/>
 </identity>
</channelType>

2.4 Information Driven Collaborations
A WS-CDL document allows defining information within a Choreography that can
influence the observable behavior of the collaborating participantsparties.
Variables contain information about objects in the Choreography such as the
messages exchanged or the state of the Roles involved. Tokens are aliases that
can be used to reference parts of a Variable. Both Variables and Tokens have
Information Types that define the data structure of what the Variable or Token
contains.

2.4.1 Information Types

Information types describe the type of information used within a Choreography.
By introducing this abstraction, a Choreography definition avoids referencing
directly the data types, as defined within a WSDL document or an XML Schema
document.
The syntax of the informationType construct is:

<informationType name="ncname"
 type="qname"? | element="qname"? />

The attributes type, and element describe the document to be an XML Schema
type, or an XML Schema element respectively. The document is of one of these
types exclusively.

 19

2.4.2 Variables

Variables capture information about objects in a Choreography as defined by the
Variable variable Usageusage:

• Information Exchange Variables that contain information such as an Order
that is used to:
o Populate the content of a message to be sent, or
o Populated as a result of a message received

• State Variables that contain observable information about the State of a Role
as a result of information exchanged. For example:
o When a Buyer sends an order to a Seller, the Buyer could have a State

Variable called "OrderState" set to a value of "OrderSent" and once the
message was received by the Seller, the Seller could have an State
Variable called "OrderState" set to a value of "OrderReceived". Note that
the variable "OrderState" at the Buyer is a different variable to the
"OrderState" at the Seller

o Once an order is received, then it might be validated and checked for
acceptability in other ways that affect how the Choreography is performed.
This could require additional states to be defined for "Order State", such
as: "OrderError", which means an error was detected that stops
processing of the message, "OrderAccepted", which means that there
were no problems with the Order and it can be processed, and
"OrderRejected", which means, although there were no errors, it cannot
be processed, e.g. because a credit check failed

• Channel Variables. For example, a Channel Variable could contain
information such as the URL to which the message could be sent, the policies
that are to be applied, such as security, whether or not reliable messaging is
to be used, etc.

The value of Variables:
• Is available to all the Roles by initializing them prior to the start of a

Choreography

• Common Variables that contain information that is common knowledge to two
or more Roles, e.g. "OrderResponseTime" which is the time in hours in which
a response to an Order must be sent

• Can be made available at a Role by populating them as a result of an
Interaction

• Can be made available at a Role by assigning data from other information
o Locally Defined Variables that contain information created and changed

locally by a Role. They can be Information Exchange, State or Channel
Variables as well as variables of other types. For example "Maximum
Order Amount" could be data created by a seller that is used together with

 20

an actual order amount from an Order received to control the ordering of
the Choreography. In this case how Maximum Order Amount is calculated
and its value would not be known by the other Roles

• Can be used to determine the decisions and actions to be taken within a
Choreography

The variableDefinitions construct is used for declaring defining one or more
variables within a Choreography block.
The syntax of the variableDefinitions construct is:

<variableDefinitions>
 <variable name="ncname"
 informationType="qname"|channelType="qname"
 mutable="true|false"?
 free="true|false"?
 silent-action="true|false"?
 role="qname"? />+
</variableDefinitions>

The declared defined variables can be of the following types:

• Information Exchange Variables, State Variables. The attribute
informationType describes the type of the variable

• Channel Variables. The attribute channelType describes the type of the
Channel

The optional attribute mutable, when set to "false" describes that the variable
information when initialized, cannot change anymore.
The optional attribute free, when set to "true" describes that a variable declared
defined in an enclosing Choreography is also used in this Choreography, thus
sharing the variable information. When the attribute free is set to "true", the
variable type MUST match the type of the variable declared defined in the
enclosing Choreography.
The optional attribute free, when set to "false" describes that a variable is
declared defined in this Choreography. When the attribute free is set to "false",
the variable resolves to the closest enclosing Choreography, regardless of the
type of the variable.
The optional attribute silent-action, when set to "true" describes that activities used
for making this variable available MUST NOT be present in the Choreography.
The optional attribute role is used to specify the location at which the variable
information will reside.
The following rules apply to Variable DeclarationsDefinitions:
• If a variable is declared defined without a Role, it is implied that it is declared

defined at all the Roles that are part of the Relationships of the
Choreography. For example if Choreography C1 has Relationship R that has
a tuple (Role1, Role2), then a variable x defined in Chreography C1 without a
Role attribute means it is declared defined at Role1 and Role2

 21

• The variable with channelType MUST be declared defined without a role
attribute

2.4.2.1 Expressions

Expressions are used in an assign activity to create new variable information by
generating it from a constant value.
Predicate expressions are used in a Work Unit to specify its Guard condition.
The language used in WS-CDL for specifying expressions and query or
conditional predicates is XPath 1.0. Additionally, WS-CDL defines XPath function
extensions as described in Section 10.

2.4.3 Tokens

A Token is an alias for a piece of data in a variable or message that needs to be
used by a Choreography. Tokens differ from Variables in that Variables contain
values whereas Tokens contain information that defines the piece of the data that
is relevant. For example a Token for "Order Amount" within an Order business
could be an alias for an expression that pointed to the Order Amount element
within an XML document. This could then be used as part of a condition that
controls the ordering of a Choreography, for example "Order Amount > $1000".
All Tokens MUST have a type, for example, an Order Amount would be of type amount,
Order Id could be alphanumeric and counter an integer.
Tokens types reference a document fragment within a Choreography definition and
Token Locators provide a query mechanism to select them. By introducing these
abstractions, a Choreography definition avoids depending on specific message types, as
described by WSDL, or a specific query string, as specified by XPATH, but instead the
the query string can change without affecting the Choreography definition.
The syntax of the token construct is:

<token name="ncname" informationType="qname" />

The attribute informationType identifies the type of the document fragment.
The syntax of the tokenLocator construct is:

<tokenLocator tokenName="qname"
 informationType="qname"
 query="XPath-expression"? />

The attribute tokenName identifies the name of the token type that the document
fragment locator is associated with.
The attribute informationType identifies the type on which the query is performed
to locate the token.
The attribute query defines the query string that is used to select a document
fragment within a document.

 22

The example below shows that the token purchaseOrderID is of type xsd:int. The
two tokenLocators show how to access this token in "purchaseOrder" and
"purchaseOrderAck" messages.

<token name="purchaseOrderID" informationType="xsd:int"/>
<tokenLocator tokenName="tns:purchaseOrderID" informationType="purchaseOrder"
query="/PO/OrderId"/>
<tokenLocator tokenName="tns:purchaseOrderID" informationType="purchaseOrderAck"
query="/POAck/OrderId"/>

2.4.4 Choreographies

A WS-CDL document defines agreed between participantsparties, of alternative
patterns of behaviorA Choreography allows constructing global compositions of
Web Service participantsparties by explicitly asserting their common and
complementary observable behaviors.

A Choreography declared defined at the package level is called a top-level
Choreography, and does not share its context with other top-level
Choreographies. A Choreography performed within another Choreography is
called an enclosed Choreography. A Package MAY contain exactly one top-level
Choreography, that is explicitly marked as the root Choreography. The root
Choreography is the only top-level Choreography that MAY be initiated. The root
Choreography is enabled when it is initiated. All non-root, top-level
Choreographies MAY be enabled when performed.
A Choreography facilitates recursive composition, where combining two or more
Choreographies can form a new enclosing Choreography that may be re-used in
different contexts.
A Choreography MUST contain at least one Relationship type, enumerating the
observable behavior this Choreography requires its participantsparties to exhibit.
One or more Relationships MAY be defined within a Choreography, modeling
multi-participantparty collaborations.
A Choreography acts as a name scoping context as it restricts the visibility of
variable information. A variable defined in a Choreography is visible in this
Choreography and all its enclosed Choreographies, forming a Choreography
Visibility Horizon.
A Choreography MUST contains one Activity-Notation. The Activity-Notation
specifies the enclosed actions of the Choreography that perform the actual work.
A Choreography can recover from exceptional conditions and provide finalization
actions by defining:

• One Exception block, which MAY be defined as part of the Choreography to
recover from exceptional conditions that can occur in that enclosing
Choreography

 23

• One Finalizer block, which MAY be defined as part of the Choreography to
provide the finalization actions for that enclosing Choreography

The Choreography-Notation is used to define a root or a top-level Choreography.
The syntax is:

<choreography name="ncname"
 complete="xsd:boolean XPath-expression"?
 isolation="dirty-write"|
 "dirty-read"|"serializable"?
 root="true"|"false"? >

 <relationship type="qname" />+

 variableDefinitions?

 Choreography-Notation*

 Activity-Notation

 <exception name="ncname">
 WorkUnit-Notation+
 </exception>?
 <finalizer name="ncname">
 WorkUnit-Notation
 </finalizer>?
</choreography>

The optional complete attribute allows to explicitly complete a Choreography as
described below in the Choreography Life-line section.
The optional isolation attribute specifies when a variable information that is
declared defined in an enclosing and changed within an enclosed Choreography
is visible to its enclosing and sibling Choreographies:

• When isolation is set to "dirty-write", the variable information can be
immediately overwritten by actions in other Choreographies

• When isolation is set to "dirty-read", the variable information is
immediately visible to other Choreographies

• When isolation is set to "serializable", the variable information is visible to
other Choreographies only after this Choreography has ended
successfully

The relationship element within the choreography element enumerates the
Relationships this Choreography MAY participate in.
The optional variableDefinitions element declares defines the variables that are
visible in this Choreography and all its enclosed Choreographies and activities.
The optional root element marks a top-level Choreography as the root
Choreography of a package.
The optional Choreography-Notation within the choreography element declares
defines the Choreographies that MAY be performed only within this
Choreography.

 24

The optional exception element defines the Exception block of a Choreography
by specifying one or more Exception Work Unit(s).
The optional finalizer element defines the Finalizer block of a Choreography by
specifying one Finalizer Work Unit.

2.4.5 WorkUnits

A Work Unit prescribes the constraints that must be fulfilled for making progress
within a Choreography. Examples of a Work Unit include:

• A Send PO Work Unit that includes Interactions for the Buyer to send an
Order, the Supplier to acknowledge the order, and then later accept (or
reject) the order. This work unit would probably not have a Guard

• An Order Delivery Error Work Unit that is performed whenever the Place
Order Work Unit did not reach a "normal" conclusion. This would have a
Guard condition that identifies the error – see also Choreography
Exceptions and Transactions

• A Change Order Work Unit that can be performed whenever an order
acknowledgement message has been received and an order rejection has
not been received

A Work Unit can prescribe explicit enforcing the constraints that preserve the
consistency of the collaborations commonly performed between the Web Service
participantsparties. Using a Work Unit an application can recover from faults that
are the result from abnormal actions and also finalize completed actions that
need to be logically rolled back.
A Work Unit specifies the data dependencies that must be satisfied before
enabling one or more enclosed actions. These dependencies express interest(s)
on the availability of variable information that already exists or will be created in
the future.
Work Units interest(s) are matched when the required, one or more variable
information become available. Availability of some variable information does not
mean that a Work Unit matches immediately. Only when all variable information
required by a Work Unit become available, in the appropriate Visibility Horizon,
does matching succeed. Variable information available within a Choreography
MAY be matched with a Work Unit that will be enabled in the future. When the
matching succeeds the Work Unit is enabled.
A Work Unit MUST contain an Activity-Notation, which is enabled when its
enclosing Work Unit is enabled.
A Work Unit completes successfully when all its enclosed actions complete
successfully.
A Work Unit that completes successfully MUST be considered again for matching
(based on its Guard condition), if its repetition condition evaluates to "true".

 25

The WorkUnit-Notation is defined as follows:

<workunit name="ncname"
 guard="xsd:boolean XPath-expression"?
 repeat="xsd:boolean XPath-expression"?
 block="true|false" >

 Activity-Notation
</workunit>

The Activity-Notation specifies the enclosed actions of a Work Unit.
The optional guard attribute describes the reactive interest on the availability of
one or more, existing or future variable information and its usage is explained in
section 2.4.5.1.
The optional repeat attribute allows, when the condition it specifies evaluates to
"true", to make the current Work Unit considered again for matching (based on
the guard condition attribute).
The block attribute specifies whether the matching condition relies on the variable
that is currently available, or whether the Work Unit has to block for the variable
to be available and its usage is explained in section 2.4.5.1.
The WS-CDL functions, as described in Section 10, MAY be used within a guard,
and a repeat condition.

2.4.5.1 Reacting

A Reaction Guard describes the a Work Unit’s interest for reacting on the
availability of variable information and when on a constraint condition, which
including based on these variable information, is being satisfied.
The following rules apply when a Work Unit uses a Guard for reacting:

• When a Guard is not specified then the Work Unit always matches
• When a Guard is specified then:

o One or more variables can be specified in a Guard, using the WS-CDL
functions, as described in Section 10. Variables defined at different Roles
can be combined together in a Guard using only an “and” logical operator.

o When the block attribute is set to "false", then the Guard condition
assumes that the variable information is currently available. If either the
variable information is not available or the Guard condition evaluates to
"false", then the Work Unit matching fails and the Activity-Notation
enclosed within the Work Unit is skipped.

o When the block attribute is set to "true" and one or more variable(s) are not
available, then the Work Unit MUST block waiting for the variable
information to become available. When the variable information specified
by the Guard condition become available then the Guard condition is
evaluated. If the Guard condition evaluates to "true", then the Work Unit is
matched. If the Guard condition evaluates to "false", then the Work Unit

 26

matching fails and the Activity-Notation enclosed within the Work Unit is
skipped.

• When the WS-CDL function isAligned() is used in the Guard, it means that the
Work Unit that specifies the Guard is waiting for an appropriate alignment
Interaction to happen between the two Roles. When the isAligned() WS-CDL
function is used in a Guard, then the Relationship within the isAligned() MUST
be the subset of the Relationship that the immediate enclosing Choreography
defines In the below example,defined in the example below, the Guard
specifies that the enclosed Work Unit is waiting for an alignment Interaction to
happen between the customer Role and the retailer Role:

guard("cdl:isAligned("PurchaseOrder", "PurchaseOrder",
 "customer-retailer-relationship")")

The examples below demonstrate the possible use of a Work Unit:
a. Example of a Work Unit with block equals to "true":
In the following Work Unit, the Guard waits on the availability of
POAcknowledgement at customer Role and if it is already available, the activity
happens, otherwise, the activity waits until the variable POAcknowledgement is
initialized at the customer Role.

<workunit name="POProcess"
 guard="cdl:getVariable("POAcknowledgement",
 "tns:customer")"
 block="true"
... <!--some activity -->
</workunit>

b. Example of a Work Unit with block equals to "false":
In the following Work Unit, the Guard checks if StockQuantity at retailer Role is
available and is greater than 10 and if so, the activity happens. If either the
Variable is not available or the value is less than 10, the matching condition is
"false" and the activity is skipped.

<workunit name="Stockcheck"
 guard="cdl:getVariable("StockQuantity", "/Product/Qty",
 "retailer") > 10)"
 block="false" >
... <!--some activity -->
</workunit>

2.4.6 Reusing existing Choreographies

Choreographies can be combined and built from other Choreographies.

 27

2.4.6.1 Composing Choreographies

Choreography Composition is the creation of new Choreographies by reusing
existing Choreography definitions. For example if two separate Choreographies
were defined as follows:

• A Request for Quote (RFQ) Choreography that involves a Buyer Role
sending a request for a quotation for goods and services to a Supplier to
which the Supplier responds with either a "Quotation" or a "Decline to
Quote" message, and

• An Order Placement Choreography where the Buyer places and order for
goods or services and the Supplier either accepts the order or rejects it

You could then create a new "Quote and Order" Choreography by reusing the
two where the RFQ Choreography was executed first, and then, depending on
the outcome of the RFQ Choreography, the order was placed using the Order
Placement Choreography.
In this case the new Choreography is "composed" out of the two previously
defined Choreographies. These Choreographies may be specified either:

• Locally, i.e. they are included, in the same Choreography definition as the
Choreography that performed them, or

• Globally, i.e. they are specified in a separate Choreography definition that
is defined elsewhere and performed in the root Choreography using
perform construct

Using this approach, Choreographies can be recursively combined to support
Choreographies of any required complexity allowing more flexibility as
Choreographies defined elsewhere can be reused.
The example below shows a Choreography composition using an enclosed
Choreography:
The root Choreography "PurchaseChoreo" has an enclosed Choreography
"CustomerNotifyChoreo". The variable RetailerNotifyCustomer is visible to the
enclosed Choreography.

<choreography name="PurchaseChoreo" root="true">
...
 <variable name="purchaseOrderAtRetailer" informationType="purchaseOrder"
role="Retailer"/>
...
 <choreography name="CustomerNotifyChoreo">
...
 </choreography>
 <workunit name="RetailerNotifyCustomer"
guard="cdl:getVariable(PoAckFromWareHouse, tns:WareHouse)">
 perform choreographyName="CustomerNotifyChoreo"
</workunit>
...
</choreography> <!--end of root choreography -->

 28

2.4.6.2 Importing Choreographies

An Importing statement can contain references to a complete Choreography.
Importing statements must be interpreted in the sequence they occur.
When the Import statement contains references to variables or other data that
have the same identity, then the content of the later Import statement replaces
the same content referenced by the earlier Import statement. It also enables one
Choreography definition to effectively be "cloned" by replacing the definitions for
some or all of its variables.
The importDefinitions construct allows reusing Choreography types defined in
another Choreography document package such as Token types, Token Locator
types, Information Types, Role types, Relationship types, Channel types and
Choreographies.
In addition, WSDL documents can be imported and their definitions reused.
The syntax of the importDefinitions construct is:

<importDefinitions>
 <import namespace="uri" location="uri" />+
</importDefinitions>

The namespace and location attributes provide the namespace names and
document location that contain additional Choreography and WSDL definitions
that MUST be imported into this package.

2.4.7 Choreography Life-line

A Choreography life-line expresses the progression of a collaboration. Initially,
the collaboration MUST be started, then work MAY be performed within it and
finally it MAY complete. These different phases are designated by explicitly
marked actions within the Choreography.
A root Choreography is initiated when the first Interaction, marked as the
Choreography initiator, is performed. Two or more interactions MAY be marked
as initiators, indicating alternative initiation actions. In this case, the first action
will initiate the Choreography and the other actions will enlist with the already
initiated Choreography. An Interaction designated as a Choreography initiator
MUST be the first action performed in a Choreography. If a Choreography has
two or more Work Units with interactions marked as initiators, then these are
mutually exclusive and the Choreography will be initiated when the first
Interaction occurs and the remaining Work Units will be disabled. All the
interactions not marked as initiators indicate that they will enlist with an already
initiated Choreography.
A Choreography completes successfully when there are no more enabled Work
Unit(s) within it. Alternatively, a Choreography completes successfully if its
complete condition, defined by the optional complete attribute within the

 29

choreography element, evaluates to "true" and there MUST NOT be any enabled
Work Unit(s) within it but there MAY be one or more Work Units still unmatched.

2.4.8 Choreography Recovery

One or more Exception WorkUnit(s) MAY be defined as part of an enclosing
Choreography to recover from exceptional conditions that may occur in that
Choreography.
A Finalizer WorkUnit MAY be defined as part of an enclosing Choreography to
provide the finalization actions that semantically rollback the completed enclosing
Choreography.

2.4.8.1 Exception Block

A Choreography can sometimes fail as a result of an exceptional circumstance or
error. Different types of exceptions are possible including this non-exhaustive list:

• Interaction Failures, for example the sending of a message did not succeed

• Protocol Based Exchange failures, for example no acknowledgement was
received as part of a reliable messaging protocol [22]

• Security failures, for example a Message was rejected by a recipient because
the digital signature was not valid

• Timeout errors, for example an Interaction did not complete within the
required time

• Validation Errors, for example an XML order document was not well formed or
did not conform to its schema definition

• Application "failures", for example the goods ordered were out of stock
To handle these and other "errors" separate Work Units are defined in the
Exception Block of a Choreography for each "exception" condition (as identified
by its Guards) that needs to be handled. Only one Work Unit per exception
SHOULD be performed.
When a Choreography encounters an exceptional condition it MAY need to act
on it.
One or more Exception WorkUnit(s) MAY be defined as part of the Exception
block of an enclosing Choreography for the purpose of handling the exceptional
conditions occurring on that Choreography. To handle these an Exception Work
Unit expresses interest on fault variable information that MAY become available.
A fault variable information is a result of:

• A fault occurring while performing an Interaction between participantsparties

• A timeout occuring while an Interaction between participantsparties was not
completed within a specified time period

 30

Exception Work Units are enabled when the enclosing Choregraphy is enabled.
An Exception Work Unit MAY be enabled only once for an enclosing
Choreography. Exception Work Units enabled in an enclosing Choreography
MAY behave as the default mechanism to recover from faults for all its enclosed
Choreographies. Exception Work Units enabled in an enclosed Choreography
MAY behave as a mechanism to recover from faults for any of its enclosing
Choreographies.
If a fault occurs within the top-level Choreography, then the faulted
Choreography completes unsuccessfully and its Finalizer WorkUnit is not
enabled. The actions, including enclosed Choreographies, enabled within the
faulted Choreography are completed abnormally before an Exception Work Unit
can be matched.
Within a Choreography only one Exception Work Unit MAY be matched. When
an Exception Work Unit matches, it enables its appropriate activities for
recovering from the fault.
Matching a fault with an Exception Work Unit is done as follows:

• If a fault is matched by an Exception Work Unit then the actions of the
matched Work Unit are enabled

• If a fault is not matched by an Exception Work Unit defined within the
Choreography in which the fault occurs, then the fault will be recursively
propagated to the enclosing Exception Work Unit until a match is successful

The actions within the Exception Work Unit MAY use variable information visible
in the Visibility Horizon of its enclosing Choreography as they stand at the current
time.
The actions of an Exception Work Unit MAY also fault. The semantics for
matching the fault and acting on it are the same as described in this section.

2.4.8.2 Finalizer Block

When a Choreography encounters an exceptional condition it MAY need to revert
the actions it had already completed, by providing finalization actions that
semantically rollback the effects of the completed actions. To handle these a
separate Finalizer Work Unit is defined in the Finalizer Block of a Choreography.
A Choreography MAY define one Finalizer Work Unit.
A Finalizer WorkUnit is enabled only after its enclosing Choreography completes
successfully. The Finalizer Work Unit may be enabled only once for an enclosing
Choreography.
The actions within the Finalizer Work Unit MAY use variable information visible in
the Visibility Horizon of its enclosing Choreography as they were at the time the
enclosing Choreography completed or as they stand at the current time.
The actions of the Finalizer Work Unit MAY fault. The semantics for matching the
fault and acting on it are the same as described in the previous section.

 31

2.5 Activities
Activities are the lowest level components of the Choreography, used to perform
the actual workused to describe the actual work.
An Activity-Notation is then either:

• A Ordering Structure – which combines Activities with other Ordering
Structures in a nested way to specify the ordering rules of activities within the
Choreography

• A WorkUnit-Notation

• A Basic Activity that performs the actual work. These are:
o Interaction, which results in exchange of messagesresults in an exchange

of messages between participantsparties and possible synchronization of
their states and the actual values of the exchanged information

o A Perform, which means that a complete, separately defined
Choreography is performed

o An Assign, which assigns, within one Role, the value of one Variable to
the value of a Variable

o No Action, which means that the Choreography should take no particular
action at that point

2.5.1 Ordering Structures

An Ordering Structure is one of the following:

• Sequence
• Parallel

• Choice

2.5.1.1 Sequence

The sequence ordering structure contains one or more Activity-Notations. When
the sequence activity is enabled, the sequence element restricts the series of
enclosed Activity-Notations to be enabled sequentially, in the same order that
they are defined.
The syntax of this construct is:

<sequence>
 Activity-Notation+
</sequence>

 32

2.5.1.2 Parallel

The parallel ordering structure contains one or more Activity-Notations that are
enabled concurrently when the parallel activity is enabled.
The syntax of this construct is:

<parallel>
 Activity-Notation+
</parallel>

2.5.1.3 Choice

The choice ordering structure enables a Work Unit to define that only one of two
or more Activity-Notations should be performed.
When two or more activities are specified in a choice element, only one activity is
selected and the other activities are disabled. If the choice has Work Units with
Guards, the first Work Unit that matches the Guard condition is selected and the
other Work Units are disabled. If the choice has other activities, it is assumed
that the selection criteria for the activities are non-observable.
The syntax of this construct is:

<choice>
 Activity-Notation+
</choice>

In the example below, choice element has two Interactions, processGoodCredit
and processBadCredit. The Interactions have the same directionality, participate
within the same Relationship and have the same fromRoles and toRoles names.
If one Interaction happens, then the other one is disabled.

<choice>
 <interaction channelVariable="doGoodCredit-channel" operation="doCredit">
...
 </interaction>
 <interaction channelVariable="badCredit-channel" operation="doBadCredit">
 ...
 </interaction>
<choice>

2.5.2 Interaction

An Interaction is the basic building block of a Choreography, which results in the
exchange of messages information between participantsparties and possibly the
synchronization of their states and the values of the exchanged information.
An Interaction forms the base atom of the recursive Choreography composition,
where multiple Interactions are combined to form a Choreography, which can
then be used in different business contexts.

 33

An Interaction is initiated when a participantparty playing the requesting Role
sends a service request message, through a common Channel, to a
participantparty playing the accepting Role. The Interaction is continued when
the accepting participantparty, sends zero or one response message back to the
requesting participantparty. This means an Interaction can be one of two types:

• A One-Way Interaction that involves the sending of a single message

• A Request-Response Interaction when two messages are exchanged
An Interaction also contains "references" to:

• The From Role and To Role that are involved

• The Message Content Type that is being exchanged

• The Information Exchange Variables at the From Role and To Role that are
the source and destination for the Message Content

• The Channel Variable that specifies the interface and other data that describe
where and how the message is to be sent

• The Operation that specifies what the recipient of the message should do with
the message when it is received

• A list of potential State Changes that can occur and may be aligned at the
From Role and the To Role as a result of carrying out the Interaction

2.5.2.1 Interaction State Changes

State variables contain information about the state of a Role as a result of
information exchanged in the form of an Interaction. For example after an
Interaction where an order is sent by a Buyer to a Seller, the Buyer could create
the state variable "Order State" and assign the value "Sent" when the message
was sent, and when the Seller received the order, the Seller could also create its
own version of the "Order State" state variable and assign it the value
"Received".
As a result of a state change, several different state outcomes are possible,
which can only be determined at run time. The Interaction MAY result in each of
these allowed state changes, for example when an order is sent from a Buyer to
a Seller the outcomes could be one of the following state changes:
1) Buyer.OrderState = Sent, Seller.OrderState = Received
2) Buyer.OrderState = SendFailure, Seller.OrderState not set
3) Buyer.OrderState = AckReceived, Seller.OrderState = OrderAckSent

2.5.2.2 Interaction Based Information Alignment

In some Choreographies there may be a requirement that, at the endwhen of
anthe Interaction is performed, the Roles in the Choreography have agreement
on the outcome.

 34

• More specifically within an Interaction, a Role may need to have a common
understanding of the state creations/changes of one or more state variables
that are complementary to one or more state variables of its partner Role

• Additionally within an Interaction, a Role may need to have a common
understanding of the values of the information exchange variables at the
partner Role

With Interaction Alignment both the Buyer and the Seller have a common
understanding that:

• State variables such as "Order State" variables at the Buyer and Seller, that
have values that are complementary to each other, e.g. Sent at the Buyer and
Received at the Seller, and

• Information exchange variables that have the same types with the same
content, e.g. The Order variables at the Buyer and Seller have the same
Information Types and hold the same order information

In WS-CDL an alignment Interaction MUST be explicitly used, in the cases where
two interacting participantsparties require the alignment of their states or their
exchanged information between them. After the alignment Interaction completes,
both participantsparties progress at the same time, in a lock-step fashion and the
variable information in both participantsparties is aligned. Their variable
alignment comes from the fact that the requesting participantparty has to know
that the accepting participantparty has received the message and the other way
around, the accepting participantparty has to know that the requesting
participantparty has sent the message before both of them progress. There is no
intermediate variable, where one participantparty sends a message and then it
proceeds independently or the other participantparty receives a message and
then it proceeds independently.

2.5.2.3 Protocol Based Information Exchanges

The one-way, request or response messages in an Interaction may also be
implemented using a Protocol Based Exchange where a series of messages are
exchanged according to some well-known protocol, such as the reliable
messaging protocols defined in specifications such as WS-Reliability [22].
In both cases, the same or similar message content may be exchanged as in a
simple Interaction, for example the sending of an Order between a Buyer and a
Seller. Therefore some of the same state changes may result.
However when protocols such as the reliable messaging protocols are used,
additional state changes will occur. For example, if a Reliable Messaging
protocol were being used then the Buyer, once confirmation of delivery of the
message was received, would also know that the Seller's "Order State" variable
was in the state "Received" even though there was no separate Interaction that
described this.

 35

2.5.2.4 Interaction Life-line

The Channel through which an Interaction occurs is used to determine whether
to enlist the Interaction with an already initiated Choreography or to initiate a new
Choreography.
Within a Choreography, two or more related Interactions MAY be grouped to
form a logical conversation. The Channel through which an Interaction occurs is
used to determine whether to enlist the Interaction with an already initiated
conversation or to initiate a new conversation.
An Interaction completes normally when the request and the response (if there is
one) complete successfully. In this case the business documents and Channels
exchanged during the request and the response (if there is one) result in the
exchanged variable information being aligned between the two
participantsparties.
An Interaction completes abnormally if the following faults occur:

• The time-to-complete timeout identifies the timeframe within which an
Interaction MUST complete. If this timeout occurs, after the Interaction was
initiated but before it completed, then a fault is generated

• A fault signals an exception condition during the management of a request or
within a participantparty when accepting the request

In these cases the variable information remain the same at the both Roles as if
this Interaction had never occurred.
The syntax of the interaction construct is:

<interaction name="ncname"
 channelVariable="qname"
 operation="ncname"
 time-to-complete="xsd:duration"?
 align="true"|"false"?
 initiateChoreography="true"|"false"? >

 <participate relationship="qname"
 fromRole="qname" toRole="qname" />

 <exchange messageContentType="qname"
 action="request"|"respond" >
 <senduse variable="XPath-expression"? />

 <receivepopulate variable="XPath-expression"? />
 </exchange>*

 <record name="ncname"
 role="qname" action="request"|"respond" >
 <source variable="XPath-expression" />
 <target variable="XPath-expression" />
 </record>*
</interaction>

The channel attribute specifies the Channel variable containing information of a
participantparty, being the target of an Interaction, which is used for determining

 36

where and how to send/receive information to/into the participantparty. The
Channel variable used in an Interaction MUST be available at the two Roles
before the Interaction occurs.
At runtime, information about a Channel variable is expanded further. This
requires that the messages in the Choreography also contain correlation
information, for example by including:

• A SOAP header that specifies the correlation data to be used with the
Channel, or

• Using the actual value of data within a message, for example the Order
Number of the Order that is common to all the messages sent over the
Channel

In practice, when a Choreography is performed, several different ways of doing
correlation may be employed which vary depending on the Channel Type.
The attribute operation specifies a one-way or a request-response WSDL 2.0
operation that is the target for the service request/acceptance. The specified
operation belongs to the WSDL interface, as identified by the role and behavior
elements of the Channel used in the interaction activity.
The optional time-to-complete attribute identifies the timeframe within which an
Interaction MUST complete.
The optional align attribute when set to "true" means that the Interaction results
in the common understanding of both the messages information exchanged and
the resulting complementary state creations or changes/state creation at both
endpointsthe ends of the Interaction as specified in the fromRole and the toRole.
The default for this attribute is "false".
An Interaction activity can be marked as a Choreography initiator when the
optional initiateChoreography attribute is set to "true". The default for this attribute is
"false".
Within the participate element, the relationship attribute specifies the Relationship
this Choreography participates in and the fromRole and toRole attributes specify the
requesting and the accepting Roles respectively.
The optional exchange element allows informationone or two messages to be
exchanged during a one-way request or a request/response Interaction. When
the exchange is missing, it means that there was no message exchange that
populated new variable information at a Role.
The messageContentType attribute, of within the exchange element, identifies the
informationType or the channelType of the information that is exchanged
between the two Roles in an Interaction and the Information Exchange Variables
used as follows.
�One Way From Message is the variable that is the source for a One-Way
Message at the From Role
�One Way To Message is the variable that is the destination for a One-Way

Message at the To Role

 37

�Request From Message is the variable that is the source for Request Message
at the From Role

�Request To Message is the variable that is the destination for Request
Message at the To Role

�Response To Message is the variable that is the source for Response Message
at the To Role

�Response From Message is the variable that is the destination for Response
Message at the From Role

The attribute action , within the exchange element, specifies the direction of the
informationMessage Exchange exchanged that is performed in the Interaction:.

• When the action attribute is set to “request”, then the message exchange
happens fromRole to toRole

• and When the action attribute is set toa ”rrespondd”, then the message
exchange happens from toRole to fromRole.

Within the exchange element, Tthe attributes use send element and populate
describeshows thate message information is sent at the from a Role source and
the receive element shows that information is received at thea destinationRole
respectively in the Interaction::
• Both The optional variables specified within the send and use and populatereceive

elements MUST be of type as described in the messageContentType element

• When the action element is set to "request", then The attribute use the variable
specified within the send element using the variable attribute MUST be defined
a variable at the fromRole and the variable specified within attribute the
populatereceive element using the variable attribute MUST be a variabledefined
at the toRole, when the action element is set to ”"request”"

• When the action element is set to "respond", then the variable specified within
the send element using the variable attribute MUST be defined at the The
attribute use MUST be a variable at the toRole and the variable specified within
the receive element using the variable attribute MUST be defined at the attribute
populate MUST be a variable at the fromRole, when the action element is set to
“"respond”"

The optional element record is used to create or /change one or more states
variables at both the Roles at the ends of the Interaction, either at one or at both
Roles. For example, the PurchaseOrder message contains the Channel of the
Role "Customer" when sent to the Role "Retailer". This can be copied into the
appropriate state variable of the "Retailer" within the record element. When the
align attribute is set to "true" for the Interaction, it also means that the Customer
knows that the Retailer now has the address contact information of the
Customer. In aAnother usecaseexample, of the record element is that it can be
used to record the states at each Role. Tthe Customer sets the its state
"OrderSent" to "true" and the Retailer sets the its state "OrderReceived" to "true"

 38

at the end of the request part of the Interaction. Similarly the Customer sets
"OrderAcknowledged" "true" at the end of the Interaction.
The source and the target elements within the record element represent the variable
names at the Role that is specified in the role attribute of within the record element.
The following rules apply for record:

• One or more records MAY be defined at only one or both the Roles in an
Interaction

• A record MAY be defined before or after a request exchange or a response
exchange. In addition a record MAY be defined even in the absence of an
exchange

The example below shows a complete Choreography that involves one
interactionInteraction. The interaction Interaction happens from Role “Consumer”
to Role “Retailer” on the Channel "retailer-channel" as a request/response
message exchange.

• The message purchaseOrder is sent from Consumer to Retailer as a request
message

• The message purchaseOrderAck is sent from Retailer to Consumer as a
response message

• The variable consumer-channel is populated at Retailer at the end of the
request using the record element

• The Interaction happens on the retailer-channel which has a token
purchaseOrderID used as an identity of the channel. This identity element is
used to identify the business process of the retailer

• The request message purchaseOrder contains the identity of the retailer
business process as specified in the tokenLocator for purchaseOrder
message

• The response message purchaseOrderAck contains the identity of the
consumer business process as specified in the tokenLocator for
purchaseOrderAck message

• The consumer-channel is sent as a part of purchaseOrder message from
consumer to retailer on retailer-channel during the request. The record
element populates the consumer-channel at the retailer role

<package name="ConsumerRetailerChoreo" version="1.0"
 <informationType name="purchaseOrderType" type="pons:PurchaseOrderMsg"/>
 <informationType name="purchaseOrderAckType" type="pons:PurchaseOrderAckMsg"/>
 <token name="purchaseOrderID" informationType="tns:intType"/>
 <token name="retailerRef" informationType="tns:uriType"/>
 <tokenLocator tokenName="tns:purchaseOrderID"
 informationType="tns:purchaseOrderType" query="/PO/orderId"/>
 <tokenLocator tokenName="tns:purchaseOrderID"
 informationType="tns:purchaseOrderAckType" query="/PO/orderId"/>
 <role name="Consumer">
 <behavior name="consumerForRetailer" interface="cns:ConsumerRetailerPT"/>

 39

 <behavior name="consumerForWarehouse" interface="cns:ConsumerWarehousePT"/>
 </role>
 <role name="Retailer">
 <behavior name="retailerForConsumer" interface="rns:RetailerConsumerPT"/>
 </role>
 <relationship name="ConsumerRetailerRelationship">
 <role type="tns:Consumer" behavior="consumerForRetailer"/>
 <role type="tns:Retailer" behavior="retailerForConsumer"/>
 </relationship>
 <channelType name="ConsumerChannel">
 <role type="tns:Consumer"/>
 <reference>
 <token type="tns:consumerRef"/>
 </reference>
 <identity>
 <token type="tns:purchaseOrderID"/>
 </identity>
 </channelType>
 <channelType name="RetailerChannel">
 <passing channel="ConsumerChannel" action="request" />
 <role type="tns:Retailer" behavior="retailerForConsumer"/>
 <reference>
 <token type="tns:retailerRef"/>
 </reference>
 <identity>
 <token type="tns:purchaseOrderID"/>
 </identity>
 </channelType>
 <choreography name="ConsumerRetailerChoreo" root="true">
 <relationship type="tns:ConsumerRetailerRelationship"/>
 <variableDefinitions>
 <variable name="purchaseOrder" informationType="tns:purchaseOrderType"
 silent-action="true" />
 <variable name="purchaseOrderAck" informationType="tns:purchaseOrderAckType" />
 <variable name="retailer-channel" channelType="tns:RetailerChannel"/>
 <variable name="consumer-channel" channelType="tns:ConsumerChannel"/>
 <interaction channelVariable="tns:retailer-channel "
 operation="handlePurchaseOrder" align="true"
 initiateChoreography="true">
 <participate relationship="tns:ConsumerRetailerRelationship"
 fromRole="tns:Consumer" toRole="tns:Retailer"/>
 <exchange messageContentType="tns:purchaseOrderType" action="request">
 <usesend variable="cdl:getVariable(tns:purchaseOrder, tns:Consumer)"/>
 <populatereceive variable="cdl:getVariable(tns:purchaseOrder,
tns:Retailer)"/>
 </exchange>
 <exchange messageContentType="purchaseOrderAckType" action="respond">
 <usesend variable="cdl:getVariable(tns:purchaseOrderAck, tns:Retailer)"/>
 <populatereceive variable="cdl:getVariable(tns:purchaseOrderAck,
tns:Consumer)"/>
 </exchange>
 <record role="tns:Retailer" action="request">
 <source variable="cdl:getVariable(tns:purchaseOrder, PO/CustomerRef,
tns:Retailer)"/>
 <target variable="cdl:getVariable(tns:consumer-channel, tns:Retailer)"/>
 </record>
 </interaction>
 </choreography>
</package>

 40

2.5.3 Performed Choreography

The Performed Choreography perform activity enables a Choreography to define
specify that a separately defined another Choreography is to be performed at this
point in its definition, as an enclosed Choreography. The Choreography that is
performed can be defined either within the same Choreography Definition or
separately.
The syntax of the perform construct is:

<perform choreographyName="qname">
 <alias name="ncname">
 <this variable="XPath-expression" role="qname"/>
 <free variable="XPath-expression" role="qname"/>
 </alias>*
</perform>

Within the perform element the choreographyName attribute references a non-root
Choreography defined in the same or in a different Choreography package that is
to be performed. The performed Choreography can be defined locally within the
same Choreography or globally, in the same or different Choreography package.
The performed Choreography defined in a different package is conceptually
treated as an enclosed Choreography.
The optional alias element within the perform element helps in aliasing the
variables from enables information in the performing Choreography to be shared
with the performed Choreography and vice versa. The role attribute aliases the
Roles from the performing Choreography to the performed Choreography.
The variable within the this element variable identifies a variable in the performing
choreography that replaces the variable identified by the free element in the
performed choreography.
The following rules apply on the performed when a Choreography is performed:

• The Choreography to be performed MUST NOT be a root Choreography

• The Choreography to be performed MUST be declared defined either using a
Choreography-Notation in the same Choreography or it MUST be a top-level
Choreography with root attribute set to "false" in the same or different
Choreography package

• The roles within a single alias element must be carried out by the same
participant

• If the performed Choreography is defined within the performing
Choreography, the variables that are in the visibility horizon are visible to the
performed Choreography also

• Performed Choreography, if not defined within the enclosing Choreography,
can be used by other Choreographies and hence the contract is reusable

 41

• There should not be a cyclic dependency on the Choreographies performed.
For example Choreography C1 is performing Choreography C2 which is
performing Choreography C1 again

The example below shows a Choreography performing another Choreography:
The root Choreography "PurchaseChoreo" performs the Choreography
"RetailerWarehouseChoreo" and aliases the variable "purchaseOrderAtRetailer"
defined in the enclosing Choreography to "purchaseOrder" defined at the
performed enclosed Choreography "RetailerWarehouseChoreo". Once aliased,
the visibility horizon of the variable purchaseOrderAtRetailer is the same as it
would be for the enclosed Choreography.

<choreography name="PurchaseChoreo" root="true">
...
 <variable name="purchaseOrderAtRetailer"
 informationType="purchaseOrder" role="Retailer"/>
...
 <perform choreographyName="RetailerWarehouseChoreo">
 <alias name="aliasRetailer">
 <this variable="cdl:getVariable(tns:purchaseOrder, tns:Retailer)"
 role="tns:Retailer"/>
 <free variable="cdl:getVariable(tns:purchaseOrder, rwns:Retailer)"
 role="rwns:Retailer"/>
 </alias>
 ...
</choreography>

2.5.4 Assigning Variables

Assign is used to create or changemakes available and, then make available
within one Role, the value of one Variable using the value of another Variable or
Token.
The assignments may include:

• Assigning one Information Exchange Vvariable to another or a part of the
Information Exchange Vvariable to another variable so that a message
received can be used to trigger/constrain, using a Work Unit Guard, or other
Interactions

• Assigning a lLocally Ddefined Vvariable to part of the data contained in an
Iinformation Eexchange vVariable

The syntax of the assign construct is:

<assign role="qname">
 <copy name="ncname">
 <source variable="XPath-expression" />
 <target variable="XPath-expression" />
 </copy>+
</assign>

 42

The assign construct makes available at a Role the variable defined by the target
element using the variable defined by the source element at the same Role.
The following rules apply to assignment:

• The source and the target variable MUST be of same type

• The source and the target variable MUST be defined at the same Role
The following example assigns the customer address part from
PurchaseOrderMsg to CustomerAddress variable.

<assign role="tns:retailer">
 <copy name="copyChannel">
 <source variable="cdl:getVariable("PurchaseOrderMsg", "/PO/CustomerAddress",
 tns:retailer)" />
 <target variable="cdl:getVariable("CustomerAddress", tns:retailer)" />
 </copy>
</assign>

2.5.5 Actions with non-observable effects

The Noaction activity models the performance of a silent action that has non-
observable effects on any of the collaborating participantsparties.
The syntax of the noaction construct is:

<noaction/>

3 Example

To be completed

4 Relationship with the Security framework

Because messages can have consequences in the real world, the collaboration
participantsparties will impose security requirements on the message exchanges.
Many of these requirements can be satisfied by the use of WS-Security [24].

5 Relationship with the Reliable Messaging
framework

The WS-Reliability specification [22] provides a reliable mechanism to exchange
business documents among collaborating participantsparties. The WS-Reliability
specification prescribes the formats for all messages exchanged without placing

 43

any restrictions on the content of the encapsulated business documents. The
WS-Reliability specification supports one-way and request/response message
exchange patterns, over various transport protocols (examples are HTTP/S, FTP,
SMTP, etc.). The WS-Reliability specification supports sequencing of messages
and guaranteed, exactly once delivery.
A violation of any of these consistency guarantees results in an error condition,
reflected in the Choreography as an Interaction fault.

6 Relationship with the Transaction/Coordination
framework

In WS-CDL, two Web Service participantsparties make progress by interacting.
In the cases where two interacting participantsparties require the alignment of
their States or their exchanged information between them, an alignment
Interaction is modeled in a Choreography. After the alignment Interaction
completes, both participantsparties progress at the same time, in a lock-step
fashion. The variable information alignment comes from the fact that the
requesting participantparty has to know that the accepting participantparty has
received the message and the other way around, the accepting participantparty
has to know that the requesting participantparty has sent the message before
both of them progress. There is no intermediate variable, where one
participantparty sends a message and then it proceeds independently or the
other participantparty receives a message and then it proceeds independently.
Implementing this type of handshaking in a distributed system requires support
from a Transaction/Coordination protocol, where agreement of the outcome
among participantsparties can be reached even in the case of failures and loss of
messages.

7 Acknowledgments

To be completed

8 References

[1] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, Harvard
University, March 1997

[2] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax",
RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[3] http://www.w3.org/TR/html401/interaction/forms.html#submit-format

[4] http://www.w3.org/TR/html401/appendix/notes.html#ampersands-in-uris
[5] http://www.w3.org/TR/html401/interaction/forms.html#h-17.13.4

 44

[6] Simple Object Access Protocol (SOAP) 1.1 "http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/"
[7] Web Services Definition Language (WSDL) 2.0

[8] Industry Initiative "Universal Description, Discovery and Integration"
[9] W3C Recommendation "The XML Specification"

[10] XML-Namespaces " Namespaces in XML, Tim Bray et al., eds., W3C, January 1999"
http://www.w3.org/TR/REC-xml-names

[11] W3C Working Draft "XML Schema Part 1: Structures". This is work in progress.
[12] W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress.

[13] W3C Recommendation "XML Path Language (XPath) Version 1.0"
[14] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R.
Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[15] WSCI: Web Services Choreography Interface 1.0, A.Arkin et.al
[16] XLANG: Web Services for Business Process Design

[17] WSFL: Web Service Flow Language 1.0
[18] BPEL: Business Process Execution Language 1.1

[19] BPML: Business Process Modeling Language 1.0
[20] XPDL: XML Processing Description Language 1.0

[21] WS-CAF: Web Services Context, Coordination and Transaction Framework 1.0
[22] Web Services Reliability 1.0

[23] The Java Language Specification

[24] Web Services Security
[25] J2EE: Java 2 Platform, Enterprise Edition, Sun Microsystems

[26] ECMA. 2001. Standard ECMA-334: C# Language Specification

9 WS-CDL XSD Schemas
<?xml version="1.0" encoding="UTF-8"?>
<schema
 targetNamespace=http://www.w3.org/ws/choreography/2004/02/WSCDL/
 xmlns=http://www.w3.org/2001/XMLSchema
 xmlns:cdl=http://www.w3.org/ws/choreography/2004/02/WSCDL/
 elementFormDefault="qualified">

 <complexType name="tExtensibleElements">
 <annotation>
 <documentation>
 This type is extended by other CDL component types to allow
 elements and attributes from other namespaces to be added.
 This type also contains the optional description element that
 is applied to all CDL constructs.
 </documentation>
 </annotation>
 <sequence>
 <element name="description" minOccurs="0">

 45

 <complexType mixed="true">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <any processContents="lax"/>
 </sequence>
 </complexType>
 </element>
 <any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>
 <element name="package" type="cdl:tPackage"/>
 <complexType name="tPackage">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="importDefinitions"
 type="cdl:tImportDefinitions" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="informationType" type="cdl:tInformationType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="token" type="cdl:tToken" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="tokenLocator" type="cdl:tTokenLocator"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="role" type="cdl:tRole" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="relationship" type="cdl:tRelationship"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="participant" type="cdl:tParticipant"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="channelType" type="cdl:tChannelType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="choreography" type="cdl:tChoreography"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="author" type="string" use="optional"/>
 <attribute name="version" type="string" use="required"/>
 <attribute name="targetNamespace" type="anyURI"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tImportDefinitions">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="import" type="cdl:tImport"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tImport">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="namespace" type="anyURI" use="required"/>
 <attribute name="location" type="anyURI" use="required"/>
 </extension>

 46

 </complexContent>
 </complexType>

 <complexType name="tInformationType">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="type" type="QName" use="optional"/>
 <attribute name="element" type="QName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tToken">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="informationType" type="QName"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tTokenLocator">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="tokenName" type="QName" use="required"/>
 <attribute name="informationType" type="QName"
 use="required"/>
 <attribute name="query" type="cdl:tXPath-expr"
 use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tRole">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="behavior" type="cdl:tBehavior"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tBehavior">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="interface" type="QName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tRelationship">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="role" type="cdl:tRoleRef" minOccurs="2"
 maxOccurs="2"/>
 </sequence>

 47

 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tRoleRef">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="type" type="QName" use="required"/>
 <attribute name="behavior" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tParticipant">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="role" type="cdl:tRoleRef2"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tRoleRef2">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="type" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tChannelType">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="passing" type="cdl:tPassing" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="role" type="cdl:tRoleRef3"/>
 <element name="reference" type="cdl:tReference"/>
 <element name="identity" type="cdl:tIdentity" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="usage" type="cdl:tUsage" use="optional"
 default="unlimited"/>
 <attribute name="action" type="cdl:tAction" use="optional"
 default="request-respond"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tRoleRef3">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="type" type="QName" use="required"/>
 <attribute name="behavior" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 48

 <complexType name="tPassing">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="channel" type="QName" use="required"/>
 <attribute name="action" type="cdl:tAction" use="optional"
 default="request-respond"/>
 <attribute name="new" type="boolean" use="optional"
 default="true"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tReference">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="token" type="cdl:tTokenReference"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tTokenReference">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="name" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tIdentity">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="token" type="cdl:tTokenReference"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tChoreography">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="relationship" type="cdl:tRelationshipRef"
 maxOccurs="unbounded"/>
 <element name="variableDefinitions"
 type="cdl:tVariableDefinitions" minOccurs="0"/>
 <element name="choreography" type="cdl:tChoreography"
 minOccurs="0" maxOccurs="unbounded"/>
 <group ref="cdl:activity"/>
 <element name="exception" type="cdl:tException"
 minOccurs="0"/>
 <element name="finalizer" type="cdl:tFinalizer"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="complete" type="cdl:tBoolean-expr"
 use="optional"/>
 <attribute name="isolation" type="cdl:tIsolation"
 use="optional" default="dirty-write"/>

 49

 <attribute name="root" type="boolean" use="optional"
 default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tRelationshipRef">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="type" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tVariableDefinitions">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="variable" type="cdl:tVariable"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tVariable">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="informationType" type="QName"
 use="optional"/>
 <attribute name="channelType" type="QName" use="optional"/>
 <attribute name="mutable" type="boolean" use="optional"
 default="true"/>
 <attribute name="free" type="boolean" use="optional"
 default="false"/>
 <attribute name="silent-action" type="boolean" use="optional"
 default="false"/>
 <attribute name="role" type="QName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <group name="activity">
 <choice>
 <element name="sequence" type="cdl:tSequence"/>
 <element name="parallel" type="cdl:tParallel"/>
 <element name="choice" type="cdl:tChoice"/>
 <element name="workunit" type="cdl:tWorkunit"/>
 <element name="interaction" type="cdl:tInteraction"/>
 <element name="perform" type="cdl:tPerform"/>
 <element name="assign" type="cdl:tAssign"/>
 <element name="noaction" type="cdl:tNoaction"/>
 </choice>
 </group>

 <complexType name="tSequence">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <group ref="cdl:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>

 50

 </complexContent>
 </complexType>

 <complexType name="tParallel">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <group ref="cdl:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tChoice">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <group ref="cdl:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tWorkunit">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <group ref="cdl:activity"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="guard" type="cdl:tBoolean-expr"
 use="optional"/>
 <attribute name="repeat" type="cdl:tBoolean-expr"
 use="optional"/>
 <attribute name="block" type="boolean" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPerform">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="alias" type="cdl:tAlias"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="choreographyName" type="QName"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tAlias">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="this" type="cdl:tAliasVariable"/>
 <element name="free" type="cdl:tAliasVariable"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tAliasVariable">

 51

 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="variable" type="cdl:tXPath-expr"
 use="required"/>
 <attribute name="role" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tInteraction">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="participate" type="cdl:tParticipate"/>
 <element name="exchange" type="cdl:tExchange" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="record" type="cdl:tRecord" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="channelVariable" type="QName"
 use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="time-to-complete" type="duration"
 use="optional"/>
 <attribute name="align" type="boolean" use="optional"
 default="false"/>
 <attribute name="initiateChoreography" type="boolean"
 use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tParticipate">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="relationship" type="QName" use="required"/>
 <attribute name="fromRole" type="QName" use="required"/>
 <attribute name="toRole" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tExchange">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="usesend" type="cdl:tVariableRef"/>
 <element name="populatereceive" type="cdl:tVariableRef"/>
 </sequence>
 <attribute name="messageContentType" type="QName"
 use="required"/>
 <attribute name="action" type="cdl:tAction2" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tVariableRef">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <attribute name="variable" type="cdl:tXPath-expr"
 use="required"/>
 </extension>

 52

 </complexContent>
 </complexType>

 <complexType name="tRecord">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="source" type="cdl:tVariableRef"/>
 <element name="target" type="cdl:tVariableRef"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 <attribute name="role" type="QName" use="required"/>
 <attribute name="action" type="cdl:tAction2" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tAssign">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="copy" type="cdl:tCopy"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="role" type="QName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCopy">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="source" type="cdl:tVariableRef"/>
 <element name="target" type="cdl:tVariableRef"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tNoaction">
 <complexContent>
 <extension base="cdl:tExtensibleElements"/>
 </complexContent>
 </complexType>

 <complexType name="tException">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>
 <element name="workunit" type="cdl:tWorkunit"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tFinalizer">
 <complexContent>
 <extension base="cdl:tExtensibleElements">
 <sequence>

 53

 <element name="workunit" type="cdl:tWorkunit"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="tAction">
 <restriction base="string">
 <enumeration value="request-respond"/>
 <enumeration value="request"/>
 <enumeration value="respond"/>
 </restriction>
 </simpleType>

 <simpleType name="tAction2">
 <restriction base="string">
 <enumeration value="request"/>
 <enumeration value="respond"/>
 </restriction>
 </simpleType>

 <simpleType name="tUsage">
 <restriction base="string">
 <enumeration value="once"/>
 <enumeration value="unlimited"/>
 </restriction>
 </simpleType>

 <simpleType name="tBoolean-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tXPath-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tIsolation">
 <restriction base="string">
 <enumeration value="dirty-write"/>
 <enumeration value="dirty-read"/>
 <enumeration value="serializable"/>
 </restriction>
 </simpleType>
</schema>

10 WS-CDL Supplied Functions

There are several functions that the WS-CDL specification supplies as XPATH
extension functions. These functions can be used in any XPath expression as
long as the types are compatible.
xsd:dateTime getCurrentTime()
xsd:dateTime getCurrentDate()
xsd:dateTime getCurrentDateTime()
Returns the current date/time.

 54

xsd:string createNewID()
Returns a new globally unique string value for use as an identifier.

xsd:any* getVariable(xsd:string varName, xsd:string documentPath?, xsd:string
roleName)
Returns the information of the variable with name varName at a Role as a node
set containing a single node. The second parameter is optional. When the
second parameter is not used, this function retrieves from the variable
information the entire document. When the second parameter is used, this
function retrieves from the variable information, the fragment of the document at
the provide absolute location path.

xsd:boolean isAligned(xsd:string varName, xsd:string withVarName, xsd:string
relationshipName)
Returns "true" if the variable with name varName has aligned its information
(states or values) with the variable named withVarName, within a Relationship as
specified by the relationshipName.

