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Abstract. The Semantic Web consists of many RDF graphs nameable by URIs.
This paper extends the syntax and semantics of RDF to cover such Named Graphs.
This enables RDF statements that describe graphs, which is beneficial in many
Semantic Web application areas. As a case study, we explore the application area
of Semantic Web publishing: Named Graphs allow publishers to communicate as-
sertional intent, and to sign their graphs; information consumers can evaluate spe-
cific graphs using task-specific trust policies, and act on information from those
named graphs that they accept. Graphs are trusted depending on: their content;
information about the graph; and the task the user is performing. The extension
of RDF to Named Graphs provides a formally defined framework which could be
used as a foundation for the Semantic Web trust layer.

1 Introduction

A simplified view of the Semantic Web is a collection of web retrievable RDF doc-
uments, each containing an RDF graph. The RDF Recommendation [18, 25, 4, 9], ex-
plains the meaning of any one graph, and how to merge a set of graphs into one, but does
not provide suitable mechanisms for talking about graphs or relations between graphs.
The ability to express metainformation about graphs is required in many application
areas where RDF is used for:

Data syndication systems need to keep track of provenance information, and prove-
nance chains.

Restricting information usage Information providers might want to attach informa-
tion about intellectual property rights or their privacy preferences to graphs in order
to restrict the usage of published information [13, 27].

Access control A triple store may wish to allow fine-grain access control, which ap-
pears as metadata concerning the graphs in the store [20].

Signing RDF graphs As discussed in [23], it is necessary to keep a distinct idea of
which graph has been signed, and the signature, and other metadata concerning the
signing, may be kept in a second graph.

Expressing propositional attitudes such as modalities and beliefs [19].
Scoping assertions and logicwhere logical relationships between graphs have to be

captured [24, 6, 29].

RDF reification has well-known problems in addressing these use cases as previ-
ously discussed in [11]. To avoid these problems several authors have proposed the



usage of quads [26, 15, 3, 20]; consisting of an RDF triple and a further URIref or blank
node or ID. The proposals vary widely in the semantic of the forth element, using it to
refer to information sources, to model IDs or statement IDs or more general to ‘con-
texts’.

We propose a general and simple variation on RDF, using sets ofnamedRDF
graphs. A set of named graphs is a collection of RDF graphs, each one of which is
named with a URIref. The name of a graph may occur either in the graph itself, in other
graphs, or not at all. Graphs may share URIrefs but not blank nodes.

Named Graphs can be seen as a reformulation of quads in which the fourth element’s
distinct syntactic and semantic properties are clearly distinguished, and the relationship
to RDF triples, abstract syntax and semantics is clearer.

In the second part of this paper we describe how Named Graphs can be used for
Semantic Web publishing, looking in particular on provenance tracking and how it in-
teracts with the choices consumers of Semantic Web information make about which in-
formation to trust. We provide a formal semantics and address performative acts, such
as asserting RDF.

2 Abstract Syntax and Semantics

RDF syntax is based on a mathematical abstraction: an RDF graph is defined as a set
of triples. These graphs are stored in documents which can be retrieved from URIs on
the Web. Often these URIs are also used as a name for the graph, for example with an
owl:imports . To avoid confusion between these two usages we distinguish between
named graphs and the RDF graph that the named graph encodes or represents. Named
graphs are a set of entities each of which has two functionsnameandrdfgraphdefined
on it which determine respectively its name, which is a URI , and the RDF graph that
it encodes or represents. These functions assign a unique name and RDF graph to each
named graph, but named graphs may have other properties.

In more detail a set of named graphsN is a 5-tuple〈N,V, U, B, L〉 where:U is a
set of URIrefs;L is a set of literals (both plain and typed);B is a set of ‘blank’ nodes;
V = U ∪B ∪L is the set ofnodesof N; N is a partial function fromU to V ×U ×V .
U , B andL are pairwise disjoint.N(n) is hence an RDF graph5 (a set of triples) which
is namedn. WhenN(n) 6= N(n′) then the blank nodes used in triples fromN(n) are
all distinct from those used in triples fromN(n′), i.e. blank nodes cannot be shared
between different6 graphs named inN .

The only semantic constraint that we impose on named graphs as such is that the
name should denote the named graph it names in any satisfying interpretation. Using
the notation and terminology of [18] this can be stated:

For any named graphg, if I satisfiesg thenI(name(g)) = g

Note that the named graph itself, rather than the RDF graph it intuitively “names”, is the
denotation of the name. We consider the RDF graph to be related to the named graph
in a way analogous to that in which a class extension is related to a class in RDFS.

5 We have removed the legacy constraint that a literal cannot be the subject of a triple.
6 Equivalent, but non-identical, graphs are different.



This ‘intensional’ (c.f. [18]) style of modelling allows for distinctions between several
‘copies’ of a single RDF graph and avoids pitfalls arising from accidental identification
of similar named graphs.

Although the name is required to denote the named graph that it names, other
URIrefs may also denote it. Thus for example it is quite consistent to assert

<ex:graphName> owl:sameAs <ex:URIref> .

This definition actually begs a question, which is how exactly to determine identity
between RDF graphs. Although our discussion in this paper does not depend on this
critically, we follow the notion of graph equivalence defined in RDF [25]. We treat two
RDF graphs which differ only in the identity of their blank nodes as being the same
graph. The RDF model theory document [18] does this implicitly, an approach that
we follow. A more explicit approach would take graph equivalence from [25] (i.e. a
1:1 mapping on blank nodes, arenamingfunction), and say that anameblankedRDF
graph is an equivalence class under this equivalence relation of replacing blank nodes
by other blank nodes under some renaming. Then therdfgraphof a named graph is a
nameblankedRDF graph. We will ignore this complication in what follows except to
note where it may be relevant.

The intuitive meaning of a named graph G is the standard RDF meaning [18] of
its associated RDF graphrdfgraph(G), which we will refer to as thegraph extension.
Any assertions in RDF about the graph structure of named graphs are understood to be
referred to these graph extensions, just as the meanings of the RDFS class vocabulary
are referred to relationships between the class extensions. In particular we propose two
useful propertiesrdfg:subGraphOf and rdfg:equivalentGraph , with semantics
defined as follows:

〈f, g〉 in IEXT(I(rdfg:subGraphOf )) iff rdfgraph(f) is a subset ofrdfgraph(g)

where the subset holds betweennameblankedsets of triples, i.e. ignoring blank
node identities, as discussed above. Formally, the condition is that there is a renaming
mappingm on the blank nodes ofrdfgraph(f) such that the RDF graphm(rdfgraph(f))
is a subset ofrdfgraph(g).

〈f, g〉 in IEXT(I(rdfg:equivalentGraph )) iff rdfgraph(f) = rdfgraph(g)

where, again, identity is understood as holding between thenameblankedgraphs:
formally, in strict terms of RDF graphs as sets of triples, if some renaming mappingm
is such thatrdfgraph(f) = m(rdfgraph(g)).

2.1 RDF Reification

A ‘reified statement’ [18] is a single RDF statement described and identified by a
URIreference. Within the framework of this paper, it is natural to think of this as a
named graph containing a single triple, blurring the distinction between a (semantic)
statement and a (syntactic) triple. With this convention, the subject ofrdfg:subGraphOf

can be a reified triple, and the property can be used to assert that a named graph con-
tains a particular triple. This provides a useful connection with the traditional use of
reification and a potential migration path.



2.2 Accepting Graphs

A set of named graphs is not given a single formal meaning. Instead, the formal meaning
depends on an additional setA ⊂ domain(N). A identifies some of the graphs in the set
asaccepted. Thus there are2|domain(N)| different formal meanings associated with a set
of named graphs, depending on the choice ofA. The meaning of a set of accepted named
graphs〈A,N〉 is given by taking the graph merge

⋃
a∈A N(a), and then interpreting

that graph as above.
The choice ofA reflects that the individual graphs in the set may have been provided

by different people, and that the information consumers who use the named graphs
may make different choices as to which graphs to believe. Thus we do not provide
one correct way to determine The ‘correct’ choice ofA, but provide a vocabulary for
the different information providers to express their intensions, and suggest techniques
with which information consumers might come to their own choice of which graphs to
accept.

In section 6 we will extend the semantics to handle some applications of graph
naming.

3 Concrete Syntaxes

A concrete syntax for Named Graphs has to exhibit the name, the graph and the associ-
ation between them. We offer three concrete syntaxes: TriX and RDF/XML both based
on XML; and TriG as a compact plain text format.

The TriX[11] serialization is an XML format which corresponds fairly directly with
the abstract syntax, allowing the effective use of generic XML tools such as XSLT,
XQuery, while providing syntax extensibility using XSLT. TriX is given by the follow-
ing DTD:

<!ELEMENT TriX (graph*)>
<!ATTLIST TriX xmlns CDATA #FIXED

"http://www.w3.org/2004/03/trix/trix-1/">
<!ELEMENT graph (uri, triple*)>
<!ELEMENT triple ((id|uri|plainLiteral|typedLiteral), uri,

(id|uri|plainLiteral|typedLiteral))>
<!ELEMENT id (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT plainLiteral (#PCDATA)>
<!ATTLIST plainLiteral xml:lang CDATA #IMPLIED>
<!ELEMENT typedLiteral (#PCDATA)>
<!ATTLIST typedLiteral datatype CDATA #REQUIRED>

In this paper we use TriG as a compact and readable alternative to TriX. TriG is a
variation of Turtle [5] which extends that notation by using ‘{’ and ‘}’ to group triples
into multiple graphs, and to precede each by the name of that graph. The following TriG
document contains two graphs. The first graph contains information about itself. The
second graph refers to the first one.

@prefix ex: <http://www.example.org/exampleVocabulary/> .
@prefix pr: <http://www.example.org/privacyVocabulary/> .



@prefix : <http://www.example.org/document/> .

:G1 { _:Monica ex:name "Monica Murphy" .
_:Monica ex:email <mailto:monica@murphy.org> .
:G1 pr:disallowedUsage pr:Marketing }

:G2 { :G1 ex:author :Chris .
:G1 ex:date "2003-09-03"ˆˆxsd:date }

Named Graphs are downward compatible with RDF. A collection of RDF/XML[4]
documents on the Web map naturally into the abstract syntax, by using the first xml:base
declaration in the document or the URL from which an RDF/XML file is retrieved as a
name for the graph given by the RDF/XML file. Using RDF/XML has some disadvan-
tages:

– The set of named graphs is in many documents rather than one.
– The known constraints and limitations of RDF/XML apply. For instance, it is not

possible to serialize graphs which have predicates that do not end with a sequence
matching the NCName production from XML Namespaces. Nor is it possible to
use literals as subjects.

– The URI at which an RDF/XML document is published is used for three different
purposes: as a retrieval address, with an operation semantics typically specified by
the URI; as a means of identifying the document; and as a means of identifying the
graph described by the document. There is potential for confusion between these
three uses.

None of these disadvantages is present in TriX and TriG. In balance, the major advan-
tage of using RDF/XML is the deployed base, and current technology.

4 Query Languages

There are currently two query languages for Named Graphs: RDFQ [31] uses an RDF
vocabulary to structure queries. Queries can be constrained to Named Graphs matching
one or more graph templates.

The following RDFQ query (serialized using Turtle [5]) identifies people having
email addresses, selecting and extracting the person identifier and email address value
pairs; furthermore, the query is restricted to statements occurring in graphs asserted by
Chris after January 31, 2003:

@prefix : <http://sw.nokia.com/RDFQ-1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://www.example.org/exampleVocabulary/> .
@prefix doc: <http://www.example.org/document/> .

[:select ("person" "email");
:graph [ex:author doc:Chris; ex:date [:gt "2003-01-31"ˆˆxsd:date]];
:target [:id "person"; ex:email [:id "email"]]].



TriQL [7] is a graph patterns based query language inspired by RDQL [30]. A graph
pattern consists of a set of triple patterns and an optional graph name.

The following TriQL query has similar intent.
SELECT ?person ?email
WHERE ?graph ( ?person ex:email ?email )

( ?graph ex:author doc:Chris .
?graph ex:date ?date )

AND ?date > "2003-01-31"ˆˆxsd:date
USING ex FOR <http://www.example.org/exampleVocabulary/>

doc FOR <http://www.example.org/document/>

The example query uses two graph patterns. The variable?graph is bound to the names
of all graphs that contain information about email addresses. The second pattern re-
stricts?graph to graphs fulfilling both triple patterns.

5 Semantic Web Publishing

One application area for named graphs is publishing information on the Semantic Web.
This scenario implies two basic roles embodied by humans or their agents: Informa-
tion providers and information consumers. Information providers publish information
together with meta-information about its intended assertional status. Additionally, they
might publish background information about themselves, e.g. their role in the applica-
tion area. They may also decide to digitally sign the published information. Informa-
tion providers have different levels of knowledge, and different intentions and different
views of the world. Thus seen from the perspective of an information consumer, pub-
lished graphs are claims by the information providers rather than facts.

Different tasks require different levels of trust. Thus information consumers will
use different trust policies in order to decide which graphs should be accepted and used
within the specific application. These trust policies depend on the application area, the
subjective preferences and past experiences of the information consumer and the trust
relevant information available. A naive information consumer might for example decide
to trust all graphs which have been explicitly asserted. This trust policy will achieve a
high recall rate but is easily undermineable by information providers publishing false
information. A more cautious consumer might require graphs to be signed and the sign-
ers to be known through a Web-of-Trust mechanism. This policy is harder to undermine,
but also likely to exclude relevant information, which has been published by unknown
information providers. In general, trust policies can be based on the following types of
information [8]:
First-hand information published by the actual information provider together with a

graph, e.g. information about the intended assertional status of the graph or about
the role of the information provider in the application domain. Example policies
using the information provider’s role are: “Prefer product descriptions published by
the manufacturer over descriptions published by a vendor” or “Distrust everything
a vendor says about its competitor.”

Information published by third parties about the graph (e.g. further assertions) or
about the information provider (e.g. ratings about his trustworthiness within a spe-
cific application domain). Most trust architectures proposed for the Semantic Web



fall into this category [17, 1, 10]. The general problem with these approaches is
that they assume explicit and domain-specific trust ratings and that providing such
ratings and keeping them up-to-date puts an unrealistically heavy burden on infor-
mation consumers.

The content of a graph together with rules, axioms and related content from graphs
published by other information providers. Example policies following this approach
are “Believe information which has been stated by at least 5 independent sources.”
or “Distrust product prices that are more than 50% below the average price.”

Information created in the information gathering process like the retrieval date and
the retrieval URL of a graph or the information whether a warrant attached to a
graph is verifiable or not.

5.1 Authorities, authorization and warrants

Information providers using RDF do not have any explicit way to express any intention
concerning the truth-value of the information described in a graph; RDF does not pro-
vide for the expression ofpropositional attitudes. Information consumers may require
this, however. Note that this is in addition to trust policies, and may be required in order
to put such policies into operation. For example a simple policy could be: believe any-
thing asserted by a trusted source. In order to apply this, it is necessary to have a clear
record of what isassertedby the source. Not all information provided by a source need
be asserted by that source. We propose here a vocabulary and a set of concepts designed
to enable the uniform expression of such propositional attitudes using named graphs.

We take three basic ideas as primitive: that of anauthority, a relationship ofautho-
rizing, and awarrant. An authority is a ’legal person’; that is, any legal or social entity
which can perform acts, undertake obligations and is subject to laws and social norms
and expectations. Examples include adult humans, corporations and governments. The
’authorizing’ relationship holds between an authority or authorities and a named graph,
and means that the authority in some sense stands behind, or commits itself to, the con-
tent expressed in the graph. Whether or not this relationship in fact holds may depend
on many factors and may be detected in several ways. We suggest however that two
obvious candidates are when a named graph is published on a website owned by an au-
thority, and when a named graph is digitally signed by an authority. Finally, a warrant
is a resource which records a particular propositional stance or intention of an authority
towards a graph. A warrant asserts (or denies or quotes) a named graph and is autho-
rized by an authority. One can think of warrants as a way of reducing the multitude of
possible relationships between authorities and graphs to a single one of authorization,
and also as a way of separating questions of propositional attitude from issues of check-
ing and recording authorizations. The separation of authority from intention also allows
a single warrant to refer to several graphs, and for a warrant to record other properties
such as publication or expiry date.

To describe the two aspects of a warrant we require vocabulary items: a property
swp:authority (whereswp: is a namespace for Semantic Web publishing) relating
warrants to authorities, and another to describe the attitude of the authority to the graph
being represented by the warrant. We will consider two such intentions expressed by



the propertiesswp:assertedBy andswp:quotedBy . These take a named graph as
a subject and answp:Warrant as object;swp:authority takes a warrant as a sub-
ject and answp:Authority as an object. Each warrant must have a unique author-
ity, soswp:authority is an OWL functional property. Intuitively,swp:assertedBy

means that the warrant records an endorsement or assertion that the graph is true, while
swp:quotedBy means that the graph is being presented without any comment being
made on its truth. This latter is particularly useful when republishing graphs as part of
a syndication process, the original publisher may assert a news article, but the syndi-
cator, acting as a common carrier, merely provides the graph as they found it, without
making any commitment as to its truth. Warrants may also be signed, and the property
swp:signatureMethod can be used to identify the signature technique.

Fig. 1.The Semantic Web Publishing Vocabulary

5.2 Warrant Descriptions as Performatives

A warrant, as described above, is a social act. However, it is often useful to embody
social acts with some record, for example a contract (which is a social act) may be
embodied in a document, which is identified with that act, and is often signed. In this
section, we introduce the notion of a warrant graph, which is a named graph describing
a warrant, that is identified with the social act. Thus, this is a resource which is both a
swp:Warrant and ardfg:Graph .

Consider a graph containing a description of a warrant of another named graph,
such as:

{ :G2 swp:assertedBy _:w .
_:w rdf:type swp:Warrant 7 .
_:w swp:authority _:a .

7

The type triples are implicit with domain and range constraints
and can be omitted.



_:a rdf:type swp:Authority .
_:a foaf:mbox <mailto:chris@bizer.de> }

The graph is true when there is a genuine warrant; but so far we have no way to
know whether this is in fact the case. A slight modification identifies the graph with the
warrant itself:

:G1 { :G2 swp:assertedBy :G1 .
:G1 swp:authority _:a .
_:a foaf:mbox <mailto:chris@bizer.de> }

and the graph describes itself as being a warrant. Suppose further that such awarrant
graphis in fact authorized by the authority it describes - in this case, by Christian Bizer,
the owner of the mailbox: this might be established for example by being published on
Christian’s website, or by being digitally signed by him, or in some other way, but all
that we require here is that it is in fact true. Under these circumstances, the warrant
graph has the intuitive force of a first-person statement to the effect ”I assert:G2 ” made
by Christian.

In natural language, the utterance of such a self-describing act is called aperforma-
tive; that is, an act which is performed by saying that one is doing it. Other examples of
performatives include promising, naming and, in some cultures, marrying [2]. The key
point about performatives are that while they are descriptions of themselves, they are
not only descriptions: rather, the act of uttering the performative is understood to be the
act that it describes. Our central proposal for how to express propositional attitudes on
the Web is to treat a warrant graph as a record of a performative act, in just this way8.
With this convention, Christian can actually, in fact, assert the graph:G2 by authorizing
the warrant graph shown above, for by doing so he creates a warrant: the warrant graph
becomes the (self-describing) warrant of the assertion of:G2 by Christian. In order for
others to detect and confirm the truth of this warrant requires some way to check or
confirm the relationship of authorization, of course: but the qualification of the warrant
graph as a warrant depends only on the relationship holding.

A graph describing a warrant is not required to be self-describing in order to be true
(it may be true by virtue of some other warrant) and a warrant graph may not in fact be
a performative warrant (if it is not authorized by the authority it claims). In the latter
case the graph must be false, so self-describing warrant graphs whose authorization
cannot be checked should be treated with caution. The warrant graph may itself be
the graph asserted. Any named graph which has a warrant graph as a subgraph and
is appropriately authorized satisfies the conditions for being a performative warrant of
itself. For example:

:G2 { :Monica ex:name "Monica Murphy" .
:G2 swp:assertedBy :G2 .
:G2 swp:authority _:a .
_:a foaf:mbox mailto:patrick.stickler@nokia.com> .

}

8 The Bank of England uses this technique, by having each twenty pound note bear the text: “I
promise to pay the bearer on demand the sum of twenty pounds.”



when authorized by Patrick Stickler, becomes a performative warrant for its own
assertion, as well as being warranted by the earlier example. As this example indicates,
a named graph may have a number of independent warrants.

These conventions are described more formally in section 6 below.

5.3 Publishing with Signatures

Information providers may decide to digitally sign graphs, when they wish to allow
information consumers to have greater confidence in the information published. For
instance, if Patrick has an X.509 certificate [22] and key pair, he can sign two graphs in
this way:
:G1 { :Monica ex:name "Monica Murphy" .

:G1 swp:assertedBy _:w1 .
_:w1 swp:authority _:a .
_:a foaf:mbox <mailto:chris@bizer.de> }

:G2 { :G1 swp:quotedBy _:w2 .
_:w2 swp:signatureMethod swp:std-method-Aˆˆxsd:anyURI .
_:w2 swp:signature "..."ˆˆxsd:base64Binary .
_:w2 swp:authority _:s .
_:s swp:certificate "..."ˆˆxsd:base64Binary .
_:s foaf:mbox <mailto:patrick.stickler@nokia.com> .
:G2 swp:assertedBy :G2 .
:G2 swp:signatureMethod swp:std-method-Aˆˆxsd:anyURI .
:G2 swp:authority _:s .
:G2 swp:signature "..."ˆˆxsd:base64Binary }

Note that:G2 is a warrant graph. Theswp:signature gives a binary signature of the
graph related to the warrant. Some method of forming the signature has to be agreed.
This is indicated by the value of theswp:signatureMethod property on the warrant.
We require it to be a literal URI, which can be dereferenced on the Web to retrieve
a document. The document describes the method of forming the signature in detail.
Such a method could specify, for example, a variation of the graph canonicalization
algorithms provided in [23]9, and choosing one of the XML canonicalization methods
and one of the signature methods supported by XML Signatures [16]. Rather than make
a set of decisions about these methods, we permit the warrant to indicate the methods
used by including the URL of a document that contains those decisions. The URL used
by the publisher needs to be understood by the information consumer, so only a few
well-known variations should be used. A different method, which does not depend on
either RDF canonicalization or XML signatures, is that used by friend-of-a-friend [14],
in which the original document needs to be available as part of the logical signature, and
signature verification includes parsing the original document and checking that it does
contain the correct graph, as well as verifying the signature of the original document as
a byte sequence.

The publisher may choose to sign graphs to ensure that the maximum number of
Semantic Web agents believe them and act on the publication. Using signatures does

9 It is necessary to exclude the lastswp:signature triple, from the graph before signing it:
this step needs to be included in the method.



not modify the theoretical semantics of assertion, which is boolean; but it will modify
the operational semantics, in that without signatures, any assertions made, will only be
acted on by the more trusting Semantic Web information consumers, who do not need
verifiable information concerning who is making them.

5.4 The Information Consumer

The information consumer needs to decide which graphs to accept. This decision may
depend on information concerning who said what, and whether it is possible to verify
such information. It may also depend on the content of what has been said. We consider
the use case in which an information consumer has read a set of named graphs off
the Web. In terms of the semantics of named graphs, the information consumer needs
to determine the setA. Information about the graphs may be embedded within the
set of named graphs, hence most plausible trust policies require that we are able to
provisionally understand the named graphs in order to determine, from their content,
whether or not we wish to accept them. This is similar to reading a book, and believing
it either because it says things you already believe, or because the author is someone
you believe to be an authority: either of these steps require reading at least some of the
book.

We will sketch an algorithm that allows the agent to implement a trust policy of
trusting any RDF that is explicitly asserted, while maintaining a consistent knowledge
base. This is intended to be illustrative, in the sense that different agents should have
different trust policies, and these will need different algorithms. We will then discuss
variations of this policy, including a more cautious variation which requires digital sig-
natures.

The agent has an RDF knowledge base,K, which may or may not be initially pop-
ulated. The agent is presented with a set of named graphsN, and augments the knowl-
edge base with some of those graphs (determining the setA of accepted graphs).

1. SetA := φ
2. Non-deterministically choosen ∈ domain(N)−A, terminate if no further choices

possible.
3. SetK ′ := K ∪N(n), provisionally assumingN(n).
4. If K ′ is inconsistent then backtrack to 2.
5. If K ′ entails:

n swp:assertedBy _:w .

then setK := K ′ andA := A ∪ {n}, otherwise backtrack to 2.
6. Repeat from 2.

Note that step 4 cannot be executed as shown, and must be lazily evaluated. This is be-
cause we are using OWL Full, which has an undecidable theory. The position of step 4
indicates that when/if inconsistency is detected later, then a suggested truth maintenance
policy is to recover as if this step failed. For a semantics with a complete and terminat-
ing consistency checker [12] (such as for OWL Lite), this step could be executed in a
conventional non-lazy fashion.

If initially K is empty, then the first graph added toK will be one that includes
its own assertion, by an arbitrary warrant and authority. All such graphs will be added



to K, as will any that are asserted as a consequence of the resultingK. The algorithm
is equivalent to one that seeks to accept a graph by finding a statement of its assertion
either within itself, or within some other accepted graph, or the initial knowledge base.

At step 5, a slightly more sophisticated query could implement a policy that, for
example, only trusted a set of named individuals.

Using a Public Key Infrastructure The trust algorithm above would believe fraud-
ulent claims of assertion. That is, any of the named graphs may suggest that anyone
asserted any of the graphs, whether or not that is true, and the above algorithm has no
means of detecting that.

We have earlier described how a publisher can sign their graphs and include such
signatures in the published graphs. We will continue to explore the X.509 certified case;
in general the PGP case is similar, and the approach taken does not assume a particular
PKI.

The earlier example can be checked by modifying the query in step 5 to be:
SELECT ?certificate ?method ?sign
WHERE ( doc:G1 swp:assertedBy ?w1 .

?w1 swp:authority ?s .
?w1 swp:signatureMethod ?method .
?w1 swp:signature ?sign )

( ?s swp:certificate ?certificate )

where this is understood as being over the interpretation of the graph, rather than as
a syntactic query over the graph. The signatures must be verified following the given
method. If this verification fails then the graph is false and is rejected at step 4. If the
verification succeeds then the certification chain should be considered by the infor-
mation consumer. If the agent trusts anyone in the certificate chain10, then the graph
is accepted, otherwise not. More sophisticated algorithms would consider whether the
person asserting the graph, who has now been verified, is in the group of persons which
the information consumer trusts on the topic the graph discusses.

A graph may have more than one warrant. If any warrant contains an incorrect sig-
nature, then the warrant is simply wrong, and indicates data or algorithmic corruption.
A graph containing such a warrant (but not necessarily the named graph misasserted) is
rejected at step 4 in the above algorithm. The choice of which warrant to check is non-
determinismic and hence should consider any valid warrant whose certification chain
is trusted. Where the information forming an invalid warrant is split over more than
one of the graphs in the set of named graphs, the situation is difficult and a naive algo-
rithm may fail to consider all possible cases, and hence reject more of the graphs than
is strictly necessary.

6 Formal Semantics of Publishing and Signing

This section provides an extension of RDF semantics [18] which: allows persons to
be members of the domain of discourse; allows interpretations to be constrained by

10 For PGP, the specific method of determining whether the certificate is trusted is different.



the identifying information in a digital certificate; allows theswp:assertedBy triple
to have aperformativesemantics, in which the act of providing the tripleis the act
of assertion, making the triple true; and makesswp:signature triples true or false
depending on whether the signature is valid or not. Together these extensions underpin
the publishing framework of the previous section.

6.1 Persons in the Domain of Discourse

The two frameworks of digital signatures we have considered both tie a certificate to
a legal person (i.e. a human or a company), or, in the case of PGP, a software agent.
In X.509, a certificate includes a distinguished name [32, 21], which is chosen to ade-
quately identify a legal person, and is verified as accurate by the certification authority.
In PGP, a certificate contains identifying information, but it’s exact form is unspecified,
but it can be information “such as his or her name, user ID, photograph, and so on” [28];
common practice is to use an e-mail address.

Since a warrant describes such legal persons as authorities referred to by the object
nodes of RDF triples, our formal semantics requires the universe of discourse to contain
resources which are actual legal persons or software agents. Such a requirement goes
beyond the usual ‘logical’ bounds of model-theoretic semantics, but these have already
been breached in any case by the RDF semantic requirements for such things as data
types. We expect that Web languages will further extend their semantics into the real
world of agents, acts and things as they become applied in real-world applications.

The class extension ofswp:Authority is constrained to be a setP of legal persons
and software agents acting on behalf of legal persons. This step, in itself, is not very
interesting since we have not constrained which person in the real world corresponds to
which URIrefs or blank nodes in the graph.

The second step, is to constrain the property extension ofswp:certificate to
{(p, c)|p ∈ P, c a finite sequence of binary octets, withc being an X.509 or PGP certificate forp}.
The binary octets can be represented in a graph usingxsd:base64Binary . The inter-
pretation of these sequences as X.509 is specified in [22], which gives a distinguished
name from RFC 1779, which identifies a person. Ifc gives a PGP certificate then given
the potential vagueness of the identifying information we allow all pairs of in which
the person matches the identifying information. For example, if the identifying infor-
mation is only a GIF image, then all people who look like that image are paired with
the certificate.11

This definition doesnot depend on whether the certificate is trusted or not. If the
graph containing theswp:certificate triple is accepted, using mechanisms such as
those discussed in section 5.4, then the triple’s meaning is as above. The certificate
chain in the certificate is only checked as part of the process of deciding which graphs
to accept.

6.2 Performative warrants

A formal model-theoretic semantics specifies truth conditions. To fully capture the
meaning of a performative, however, we need to go beyond truth-conditions, since the
11 This shows why it is unwise to only provide an image in your PGP certificate.



very same form of words may be true whoever uses them, but will only count as a
performative if used by the authority it mentions. For example “Patrick promises...” ut-
tered by Patrick is a promise - a performative act - but uttered by Christian is merely a
description of the act; yet it may well still be true, and for the same reasons. We will
deal with this by considering a warrant graph to be a ‘genuine’ warrant just when it
describes its authority accurately, and to be true in any interpretation under which a
genuine warrant actually exists.

As mentioned in section 5.1 we assume that a relationship of authorizing, and sets
of authorities and warrants, are taken as primitive, and we will identify them respec-
tively with the property extension ofswp:authority and the class extensions of
swp:Authority andswp:Warrant respectively. All the remaining semantic condi-
tions are defined in terms of these, so their correctness in any application depends on
that of the interpretation ofswp:authority together with its range and domain. Thus
a triple
ex:a swp:authority ex:b .

is true inI just whenI(ex:a ) is a warrant which is authorized byI(ex:b ).
The performative role of a properly authorized warrant graph can then be described

by simply declaring that any named graphg containing a triple

$name(g)$ swp:authority $ bbb $ .

is a warrant. Then any interpretationI under which the graph is authorized by
I(bbb) makes this triple true, and hence requires the graphg to be inICEXT(I(swp:Warrant )):
call this anauthorizing interpretationof the graph. Fixing the referent of the object of
such a triple to be an authorizing authority thus means that the graph can be satisfied
only by authorizing interpretations under which the graph is a warrant.

The self-realizing quality of performatives is extended to the triples which express
propositional attitudes by making these trivially self-fulfilling when they occur under
the right conditions, in an authorized warrant graph. For example ifg is a warrant graph
which contains a triple

$aaa$ swp:assertedBy $ bbb $ .

whereI(bbb) = g, then ifI is an authorizing interpretation ofg, thenI must satisfy
that triple; similarly forswp:quotedBy and indeed for any other property expressing
a propositional attitude of an authority towards a graph.

Note that this does not imply that the graph g istrue in an authorizing interpretation
of a warrant which asserts it. The fact of an authority asserting a graph can be true
independently of the actual truth of the graph. However, the attitude expressed can be
utilized by trust policies. For example, it would be appropriate to treat graphs asserted
by trusted authorities as being true, but not to extend this to graphs quoted by trusted
authorities. One could express this trust policy by a semantic rule to the effect that ifI
satisfies

$aaa$ swp:assertedBy $ bbb $ .
$bbb $ swp:authority $ ccc $ .

andI(ccc) is trusted, thenI satisfiesI(aaa).
The algorithm for choosing which graphs to accept, presented in section 5.4, inter-

acts with this performative semantics, by essentially assuming that a graph has been



asserted, and then verifying that in that case the performative is true. However, that
algorithm could be strengthened to verify that graphs that contain their own assertion
are in fact warrant graphs, and to check the plausibility of the authority having actually
authorized the warrant (for example by using a signature or verifying that the origin of
the graph was appropriate).

Usingrdfs:subPropertyOf or owl:equivalentProperty to introduce aliases
of swp:assertedBy may be misleading and should be avoided. Information con-
sumers should be suspicious of any graphs that attempt this, except when they are also
asserted by the persons using the aliases so introduced.

6.3 Signing Graphs

The final specialized vocabulary we consider is that for graph signatures. Strictly speak-
ing this is not necessary for Semantic Web publishing, but just as a signed document
has greater social force than an unsigned one, a signedswp:assertedBy triple is more
credible than an unsigned one. Thus, this section is specifically intended to be used to
sign graphs that are either the subject of, or includeswp:assertedBy triples.

A pair (w, s) is in the property extension ofswp:signature , if and only if,
1. s is a finite sequence of octets.
2. There is a pair(w,m) in the property extension ofswp:signatureMethod , and

m is a URI which can be dereferenced to get a document.
3. There is a pair(w, a) in the property extension ofswp:authority and a pair

(a, c) in the property extension ofswp:certificate , andc is a finite sequence
of octets.

4. There is a pair(g, w) in the property extension ofswp:quotedBy or swp:assertedBy ,
andI(g) is a Named Graph.

5. And using the method described in the document retrieved fromm to calculate a
signature for the graphI(g) using c understood as an X.509 or PGP certificate,
givess.
This definition does not depend upon verifying the certificate chain forc.

7 Conclusions

Having a clearly defined abstract syntax and formal semantics Named Graphs provide
greater precision and potential interoperablity than the variety ofad hocRDF exten-
sions currently used. Combined with specific further vocabulary, this will be beneficial
in a wide range of application areas and will allow the usage of a common software
infrastructure spanning these areas.

The ability of self-reference combined with the Semantic Web Publishing vocabu-
lary addresses the problem of differentiating asserted and non-asserted forms of RDF
and allows information providers to express different degrees of commitment towards
published information.

Linking information to authorities and optionally assuring these links with digital
signatures gives information consumers the basis for using different task-specific trust-
policies. We have shown how operational trust can depend on what is being said, rather
than simply depending on who said it, and the trust-rating of the author.
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