
Carol McDonald

Technology Evangelist

Sun Microsystems

Orchestration, Choreography, and
Collaboration

Agenda
● Orchestration & Choreography

– What is Orchestration/Choregraphy
– Why
– How Examples

● Collaboration
– What is collaboration
– Why
– How Examples

Note
● even though Carol Mcdonald is a full

time employee of Sun the contents
here are created as her own personal
endeavor and do not reflect any
official stance by Sun Microsystems

What is Orchestration /
Choreography?

What is Orchestration, choreography?

● Both related to composing web services for
building dynamic, flexible business processes.

● Orchestration defines the interactions and process
flow among Web services in a business process

● Choreography defines the flow of information
exchanges among a set of participants to
implement a business Process composing
multiple web services

● Choreography is generally more public view but
distinction is blurred, and the two viewpoints are
converging

What is Orchestration?

Components

WSDL Interfaces

SOAP messaging

Orchestration

What is Choreography?

Internal External Internal

Why Orchestration /
Choreography?

Why?
● A "stack" of layers has been specified for the

interoperability of Web Services.
● Additional layers are needed in order to enable

Web Service composition.

Soap

WSDL

Choreography

SOAP defines Platform independent
XML message format and exchange

WSDL describes the static interface of a Web Service.
 It defines the protocol and the messaging of end points

automated business process require a defined
choreography of messages to compose web services

Why ?
● Business Processes need to integrate

and interact with WebServices
● Strong business process automation

initiatives

Why?
● There is a need for describing complex

interactions between web services:
– Can messages be sent and/or received in any

order?
– What rules govern sequencing of messages?
– Is there any relation among any incoming

and/or outgoing messages?
– Is there a "start" and an "end" of a given

sequence? Can a given sequence be partially
"undone"?

– Can a global view of the overall exchange of
messages be drawn?

How Orchestration /
Choreography?

General Characteristics of
Orchestration/Choreography

Join

Condition

action/state

Sequence

Concurrency

Receive

Invoke

● Support for specifying states/
actions, events, control flow

● Action often mapped to wsdl
port

● Flow: sequential, conditional,
concurrent

● Based on mathematical pi-
calculus

● Call or Receive from other Web
Services

● Partners, roles
● Exceptions, transaction

compensation
● Xml messaging, correlation

Meta-Model

Activity

process

Composed of

Web
service

May have

Participant/
role

Input/output

Performed by

Msg/
data

Conditional
transition

May call

Orchestration/Choreography
Product Characteristics

Applications
Order Entry Verify Shipping Credit Bureau Finance

Orchestration
 Process Engine

Enter/
Verify

Ship
Order

Credit
Check InvoiceXML messaging

JMSHTTP SOAP

Orchestration
flow
xml

Design
tools

Orchestration /Choreography
Examples

BPML (from bpmi.org)

● XML syntax and abstract model for
specifying executable business processes

● Process in BPML
– Based on message exchange
– Composed of activities

● control flow (sequence, switch, for each, join...)

● Participants
– Participate in a process by consuming and

producing messages
– Can be web services or other nested processes

ref: http://www.bpmi.org

BPML
● Business Process Modeling Language

– developed by Intalio, Sterling, Sun, CSC
– meta-language for describing business

processes language executed by a BPMS
system

● Key features
– basic activities for sending, receiving, and

invoking services
– handles conditional, sequential, and parallel

activities
– persistence, correlation, and composition

support, transactions, exception handling
Ref http://www.bpm

BPML example

Operation

ProduceActivity A

Consume

Activity Activity

Request

Response

Notification

<process name="processName">
 <sequence>
 <operation name=”operation”>
 <participant name=”partB”>
 <output message = “request”/>
 <input message = “response”/>
 </operation>
 <choice>
 <event...>
 <action>
 <action ...>
 </choice>
 <all>
 <activity ...>
 <activity ...>
 </all>
 </sequence>
</process>

Signal

BPML for Participant AParticipant B

Re: http://www.bpmi.org

BPMN for Participant A

Choice

All

Activity

Sequence

WSCI (from BEA, Intallio, Sun)

● describes how Web Service operations can
be choreographed in the context of a
message exchange in which the Web
Service participates

● dynamic interface of a service in the
context of a particular process
– WSCI interface describes the order in which

messages can be sent or received in a given
message exchange,

– the rules which govern such ordering,
– The boundaries of a message exchange

WSCI
● WSCI supports:

– Message choreography
– Transaction boundaries and compensation
– Exception handling
– Thread management
– Properties and Selectors on messages that

influence the observable behavior of the service
– Connectors to link web service operation

interactions (eg producer to consumer)
– Dynamic participation
– Operational context

WSCI example

Traveller
Travel Agent

Service

OrderTrip

BookTickets

Send Statement

Receive Trip Order

Receive Confirmation

Send Statement

Airline

BookSeats

Travel Agent

Order
Trip

Book
Tickets

Book
Seats

Send
Statement

Sequence

Ref http:// http://www.w3.org/TR/wsci/

WSCI example
<interface name="TravelAgent">
 <process name="PlanAndBookTrip" instantiation="message">
 <sequence>
 <action name="ReceiveTripOrder"
 role="tns:TravelAgent" operation="tns:TAtoTraveler/OrderTrip">
 </action>
 <action name="ReceiveConfirmation"
 role="tns:TravelAgent" operation="tns:TAtoTraveler/bookTickets">
 <correlate correlation="tns:itineraryCorrelation"/>
 <call process="tns:BookSeats" />
 </action>
 <action name="SendStatement"
 role="tns:TravelAgent" operation="tns:TAtoTraveler/SendStatement"/>
 </action>
 </sequence>
 </process>
 <process name="BookSeats" instantiation="other">
 <action name="bookSeats"
 role="tns:TravelAgent" operation="tns:TAtoAirline/bookSeats">
 </action>
 </process>
</interface>

Process models the observable behavior

interface contains processes that describe the dynamic behavior

Instantiation triggers process

Actions executed
sequentially Travel Agent executes the OrderTrip operation

associates action with WSDL operation

correlate Confirmation with Order itinerary

BookSeats process is called
as part of this action

Ref http://www.w3.org/TR/wsci/

XLANG (from Microsoft)

● Xml notation for the specification of message
exchange behavior among participating web
services in a business process.

● extends WSDL by describing the behavior of
a web service.

● Basis of automated BPM:
– for tracking the state of processes
– Control of the Actions in the business process to

be executed in sequence
– enforcing correct message flows

● Based on pi-calculus mathematical model

Begin

Action

Action

End

Sequence

Ref http://www.gotdotnet.com/team/xml_wsspecs/xlang-c

XLANG example
<service name="StockQuoteProviderService">
 <port name="pGetRequest" binding="tns:RequestReceivePortBinding">
 <soap:address location="mailto:quote@example1.com"/>
 </port>
 <port name="pSendResponse" binding="tns:ResponseSendPortBinding">
 <soap:address location="mailto:response@example2.com"/>
 </port>
 <xlang:behavior>
 <xlang:body>
 <xlang:sequence>
 <xlang:action operation="AskLastTradePrice"

port="pGetRequest" activation="true"/>
 <xlang:action operation="SendLastTradePrice"

port="pSendResponse"/>
 </xlang:sequence>
 </xlang:body>
 </xlang:behavior>
</service>
 ref: http://www.gotdotnet.com/team/xml_wsspecs/xlang-c

begin

GetRequest

SendResponse

End

BPEL4WS (from MS, IBM, BEA)

● Combines
– WSFL (support for graph oriented processes)
– XLANG (structural constructs for processes)

● allows specifying business processes:
– execution order of operations of Web services

from a collection of Web services
– the data shared between these Web services
– which partners are involved and how they are

involved
– joint exception handling

BPELS4WS example

Customer
Loan Approval

Service

Loan Request

Answer

Receive

Invoke

Reply

Financial
Instituion
(Approver)

Invoke
Approver

Loan Approval
Service

Loan Request

Invoke
Approver

Answer

Sequence

Ref http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol2/

BPEL4WS example
<process name="loanApprovalProcess" xmlns="...>
 <partners>
 <partner name="customer" serviceLinkType="lns:loanApproveLinkType" myRole="approver"/>
 <partner name="approver" serviceLinkType="lns:loanApprovalLinkType" partnerRole="approver"/>
 </partners>
 <containers>
 <container name="request" messageType="loandef:CreditInformationMessage"/>
 <container name="approvalInfo" messageType="apns:approvalMessage"/>
 </containers>
 <sequence>
 <receive name="receive1" partner="customer" portType="apns:loanApprovalPT"
 operation="approve" container="request" createInstance="yes">
 </receive>
 <invoke name="invokeapprover" partner="approver" portType="apns:loanApprovalPT"
 operation="approve" inputContainer="request" outputContainer="approvalInfo">
 </invoke>
 <reply name="reply" partner="customer" portType="apns:loanApprovalPT"
 operation="approve" container="approvalInfo">

 </reply>
 </sequence>
</process>

process include namespaces to refer to required WSDL

Declares the parties involved

how the partner and the process will interact given the serviceLinkType

 Roles refer to portTypes of services Linked

Data is
written to
and from
containers

 Activities
executed

sequentially

receive message from partner at portType

invoke partner Web service operation at portType

Reply with container data from portType operation to partner

What is B2B Collaboration?

What is Collaboration?
● The agreement among a set of

participants (eg Web services) to
achieve a common goal or specified
outcome in a shared process

What is Collaboration?

The sequence in which
Messages are exchanged
between roles to support
a business process:

Choreography

Collaboration

Business
Transaction

Document
Flow

Partner

Partner

Role

Role

Business Process collaboration:

What is BPSS?

EbXML: Business Process
Specification Schema

● BPSS defines the collaborative
process :
– Defined in terms of:

● Sequence of Business Transactions (Message exchanges)
● Message types
● Message contents

Order Reservation
Response

Respond
Available

Part

Business Transaction Definition

[Business Error]
[Technical Error]

ReceiptAck

Technical Error

Business Transactions define reliable
messaging exchange between the

two trading partners using
acknowledgments, error handling,

logging and roles

comprised of a message request and one or
more responses

Business Error

Request
Available

Part

ReceiptAck

AcceptanceAck

Order Reservation
Request

Collaboration Example

Car Parts
Buyer

Public
Collaboration

Order Reservation Response

Order Reservation Request

Order Request

Order Confirmation

The B2B Collaboration
may be composed of

several business
transactions

The resulting sequence
is captured in a BPSS

Car Parts
Supplier

Business Process Specification

...
Business
Process

Transaction

Collaboration Forecast Component
Requirements

Send Planning Document

Place Order

Ship Material

Arrange Payment

 Buyer Supplier

Business
Process

Transaction

Collaboration

Create Long Term Contract

How BPSS? Example

Business Process Specification
Example XML (Partial)

<BusinessTransaction name="Create Order">
 <RequestingBusinessActivity name=""
 isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt=”P2D"
 timeToAcknowledgeAcceptance=”P3D">
 <DocumentEnvelope BusinessDocument="Purchase Order"/>
 </RequestingBusinessActivity>
 <RespondingBusinessActivity name=""

isNonRepudiationRequired="true"
 timeToAcknowledgeReceipt=”P5D">
 <DocumentEnvelope isPositiveResponse="true"
 BusinessDocument="PO Acknowledgement"/>
 </DocumentEnvelope>
 </RespondingBusinessActivity>
</BusinessTransaction>

Bulk Buying

Trading Partner Agreement

Business Process
Specifications

(BPSS)

Trading Partner
Agreement

(CPA)
References Buying

Business Process

Check Part Availability
Submit PO

Schema

Contains

Contains

Business
Transactions

XML Messages

Car Parts Supplier

<<BinaryCollaboration>>

Car Parts Buyer

Mapping of Collaboration Messages
to Internal Business Processes

Purchase Order

Receipt

A B

Collaboration, Choreography,
and Orchestration

BPSS defines semantics and interoperability for business processes and collaborations
in a top-down approach. Orchestration/Choreography is more of a bottom up approach
or one business' view of a process. It is anticipated that these two views will meet in the
middle. WSCI provides the first step to linking the two.

Conclusion

● Orchestration, choreography and
collaboration are different views and methods
for the composition of web services into
business processes

● Orchestration is ~ internal view of executable
business process

● Choreography is ~ one partner's view of
external composition of business process

● BPSS is for B2B, with legal agreements
– Two way view of a business collaboration

Carol McDonald

This box provides
space for call to
action text, URLs,
or any relevant info

