/A ‘/:h

WonderWeb : Parsing OWL Page 1 of 18

Parsing OWL 29¢| xnil

An OWL-RDF parser takes an RDF-XML file and attempts to construct an OWL
ontology that corresponds to the triples represented in the RDF. This page
describes a basic strategy that could be used in such a parser. Note that this is not
intended as a complete specification, but hopefully provides enough information to
point the way towards how one would build a parser that will deal with a majority of
(valid) OWL ontologies.
—_—— S ccepe = Wi 7
For exa/r)nple, we do not discuss the implementation or handling of owl: imports
here, nor do we address in depth issues concerned with spotting some of the more
obscure violations of the DL/Lite rules.

OWL in RDF

The OWL Semantics and Abstract Syntax (S&AS) document provides a
characterisation of OWL ontologies in terms of an abstract syntax. This is a high
level description of the way in which we can define the characteristics of classes
and properties.

Lol £ Z/zv L—(

In addition, @'gives a mapping to RDF triples. This tells us how such an
abstract descripfion of an OWL ontology can be transformed to a collection of RDF
triples (which can then be represented in a concrete fashion using, for example
RD?XMU.

In order to parse an OWL-RDF file into some structure closer to the abstract
syntax we need to reverse this mapping, i.e. determine what the class and
property definitions were that lead to those particular triples. Note that this reverse
mapping is not necessarily unique. For example, the following two ontology

fragments:
" Class(a)
Class(b)

SubClassOf(b a)

and

Class(a)
Class{ b partial a)

both give rise to the same collection of triples under the mapping:

a rdf}type owl:Class
b rdf:type owl:Class
b rdfs:subClassOf a

For many purposes, e.g. species validation, this is not necessarily a problem. For
other situations, e.g. where an editing tool is being used, we would at least expect
a parser to be consistent in the strategy it employed to produce abstract syntax
descriptions.

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 2 of 18

An arbitrary RDF graph may not necessarily correspond to an OWL Lite or DL
ontology. In other words, there may not be an OWL Lite or DL ontology which
when transformed using the mapping produces the given graph. This is what a
species validator attempts to determine: if such an ontology exists. A parser (as
described here) will go one step further and actually attempt to construct such an
ontology.

Errors

There are, in general, two ways in which an RDF graph may fail to correspond to
an OWL [Lite|DL] ontology.

1. There does not exist an OWL ontology in abstract syntax form that maps to
the given triples.

. There is an ontology in abstract syntax form that maps to the triples, but the
ontology violates some of the restrictions for membership of the OWL

[Lite| OWL] subspecies.

We might (loosely) describe the first as external errors, and the second as internal
errors. Examples of external errors include:

o Using a URI reference in an owl:class context (e.g. as the object of an
owl:someValuesFrom property whose subject is an owl:Restriction which
has an owl :onProperty property with an owl:objectproperty as its object)
without explicitly including a statement that the URI reference is an owl:class
or owl:Restriction. The AS&S requires that all such usages are given an
explicit typing.

. Using a malformed owl :Restriction, e.g. missing an owl :onProperty
property.

« Using the wrong vocabulary, e.g. rdf: property instead of the more specific
owl:0bjectProperty and owl :DatatypeProperty.

« Violation of rules concerning structure sharing (see below).

Once we have an ontology in abstract form, we can then check for internal errors.
For example, there are restrictions on the expressiveness that can be used in OWL
Lite (no unions or enumerations and limited cardinality restrictions). The Lite and
DL subspecies also have a constraint that effectively says that the collections of
URI references of classes, individuals and properties must be disjoint. Thus in
OWL Lite and DL we can not use metamodelling devices such as classes as
instances.

The procedure described below is targeted primarily at parsmg OWL DL
ﬂc o [,C ontologies. For example, vgv_herrever rdfs:subPropertyof is used, OWL DL requires
- that the subject and abjett of the triple have corresponding types (e.g. both are
@ either owl: :0bj ectProperty or owl: DatatypeProperty) If this is not the case, the
parser WI|| /a—rsfe an error. An OWL Full parser should allow this (but it is not
necessgrly clear what the corresponding abstract syntax for such a construct

would'be).

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 3 of 18

The following discussion assumes that we have some implementation of a data
structure representing the ontology which is close to the abstract syntax description
(something along the lines of our proposed OWL API). We do not discuss the
details of such an implementation here — hopefully the meaning of actions such as
add a class x or set the functional flag on a property will be clear.

Streaming vs. non-streaming

Many XML parsers operate in a streaming fashion — elements are reported to the
parser as they are encountered during the parse, and the file is processed
incrementally. It is difficult to do this when parsing RDF models (or at least when
performing a task such as producing an abstract syntax representation of an OWL
ontology from a given RDF-XML file). The problem is that we have no guarantee of
the order in which the triples in the graph are processed (and thus reported by the
streaming parser). A particular syntactic construct may actually be split across
several locations in the RDF file. In order to parse in a streaming fashion, we may
have to make note of triples encountered earlier on and then come back to process
them later. As a concrete example of this, consider a situation where an
owl:AnnotationPRoperty iS used to make an annotation about a particular
individual:

AnnotationProperty (hasName)
Individual (fred hasName "Frederick")

This results in the triples:

(1] hasName rdf:type owl:AnnotationProperty
[2] fred hasName "Frederick”

If we encounter {11 before [2] during the parse, we know that the property is an
annotation property, and can thus process [2] as an annotation. If, however, we
encounter [2] first, we do not know whether to process [2]1 as an annotation or a
value on the individual. As there is no way of knowing whether or not [11 will occur

until we have seen all the triples, we must wait until we have seen all triples before
processing [2].

Because of this, our strategy is that the parser does not attempt to process
anything until all triples are available. Although it may be possible to process some
information in a streaming manner, it reduces the conceptual complexity of the
parser if we first collect the triples then process them. Note that this has
ramifications on the resources that will be required when parsing — when parsing
large RDF graphs, large amounts of memory may be needed.

‘| If we are interested in detecting OWL DL -entologies, there are some things that
can be done during the collection of triples — for example any node with rdf:type

owl:Restriction must be'a bnode. Thus if we encounter a triple:

X rdf:typg/6Q1:Restriction

ey

where ch(is not a bnode, the triples cannot be the result of a transformation of an
OWL Lite or DL ontology.

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 4 of 18

We assume that while parsing we have access to the objects in the ontology
already created, e.qg.. if an ObjectProperty p has been introduced we can get
access to it. When we refer to, for example, the ObjectProperty p, we mean the
ObjectProperty that has been defined with name p.

In addition, we assume that we can query the RDF graph to determine the
presence or absence of particular arcs (e.g. precisely the kind of functionality
provided by an RDF API such as Jena).

Using Triples

While processing the graph, we keep a record of any triples that have been used in
the translation. For example, if there is a triple:

x rdf:type owl:Class

which results in the introduction of a class x.

Class(c)

then we consider that triple to have been used.

Named Objects
We first identify the name classes and properties that make up the ontology.
Classes

For any non-bnode x in the graph s.t. there is a triple:

x rdf:type owl:Class

introduce a new class x.

Class{(c)

We will refer to any such classes that have been introduced in this manner as
named classes.

Properties
Properties should all be introduced with an explicit type.
ObjectProperty

For any node p in the graph where there is one of the following triples:

rdf : type owl :ObjectProperty

rdf:type owl:TransitiveProperty
rdf:type owl:InverseFunctionalProperty
rdf :type owl:SymmetricProperty

T o oo

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 5 of 18

introduce a new ObjectProperty p.

ObjectProperty(p)

In addition, if any of the latter three triples are present, the appropriate flag should
be set on the property, e.g.:

ObjectProperty(p Transitive)

If there is also a triple of the form:

p rdf:type FunctionalProperty

then the property should be set as functional.

For any object property p dealt with as above, there may also be an (optional)
triple:

p rdf:type rdf:Property

DatatypeProperty

For any node p in the graph where there is a triple:

q rdf:type owl:Dat@Property
N

introduce a new DatatypeProperty q:

DatatypeProperty(q)

If there is also a triple of the form:

q rdf:type FunctionalProperty

then the property should be set as functional.

For any data property p dealt with as above, there may also be an (optional) triple:

p rdf:type rdf:Property

AnnotationProperty

For any node a in the graph where there is a triple:

a rdf:type bwl:AnnotationProperty

introduce a new AnnotationProperty a.

AnnotationProperty(a)

For any annotation property p dealt with as above, there may also be an (optional)
triple:

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 6 of 18

p rdf:type rdf:Property

Datatypes

For any node d in the graph where there is a triple:

d rdf:type rdfs:Datatype

introduce a new Datatype d.

Datatype(d)

There may also be an (optional) triple:

d rdf:type rdfs:Class

\
@~

OL%LK % ,
" Axioms
\ At
N\ e
N /| Now that the named classes and properties have been identified, we can

determine the axioms that have been asserted.
Property Axioms

Property axioms assert characteristics of properties.
Domain

For any triples of the form:

p rdfs:domain d

translate d to a class description, and add the resulting class description to the
domains of the property p. If p is not a property, raise an error.

Range

For any triples of the form:

p rdfs:range r

if p is an ObjectProperty, then translate r to a class description, and add the
resulting class description to the ranges of the property p. If p is a data property,
convert r to a data range and add the result to the ranges of the property.

subProperty & equivalentProperty

For any triples of the form:

p rdfs:subPropertyOf g

or

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 7 of 18

p owl:equivalentProperty q

first check that either:
1. p and q are ObjectProperties;
or
2. p and g are DatatypeProperties.

if so, add an axiom asserting that g is a superproperty or equivalent property of p
as appropriate. If neither of the above are true, raise an error.

inverseOf

For any triples of the form:

p owl:inverseOf g

Check that p and g are ObjectProperties. If not, raise an error. If so, add q to the
collection of inverses of p.

4
v ZI‘: Class Definitions
: é We have to deal with any class definitions that occur in the ontology. For exampile,
C the following RDF fragment:
e .
/Tv‘"ﬁ) Aﬂ’ <class rdf:about="#a">
‘vx%vw <intersectionOf rdf:parseType="Collection"s
L)& <class rdf:about="#b"/>

<class rdf:about="#c"/>
</intersectionOf>
</class>

arises when a class a has been given a complete definition involving an
intersection.

For any named class x, do the following.

o For all triples:

x owl:oneOf 1

1 should be a node representing a list of individuals. Add the axiom:

Class(x complete oneOf (i i))
TLJ JFLYD /“ LC. iy 1 rc /‘S.
where i, i, ... i, are the individuals in the list’1. If 1 is not a list (of

individuals), raise an error.

1 1g--

o For all triples:

X owl:intersectionOf 1

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 8 of 18

1 should be a node representing a list of class descriptions. Add the axiom:

Class(x complete 1t1'1t2...1tn)

where 1t, 1t, ... 1t_ are the translated descriptions in the list 1. If 1 is not a
list (of class descriptions), raise an error.

e Forall triples:

x owl:unionOf 1

1 should be a node representing a list of class descriptions. Add the axiom:

Class(x complete unionOf(ltl 1t,...1t))

where 1t, 1t, ... 1t are the translated descriptions in the list 1. If 1 is not a
list (of class descriptions), raise an error.

o For all triples:

x owl:complementOf n

n should be a node representing a class description. Add the axiom:

Class(x complete complementOf(nt))

where nt is the translation of n. If nt is not a class description, raise an error.

Class Axioms

Class axioms can provide relationships and characteristics of arbitrary class
descriptions.

SubClass

For all triples of the form:

¢ rdfs:subClassOf 4

add a new axiom:

SubClassOf (ct dt)

where ct is the translation of c to a class description, and dt the translation of 4. If
c is a named class, then due to the ambiguity of the reverse mapping, an
alternative here is to include the assertion as part of the definition of the class and
add the axiom:

Class(¢ partial dt)

to the ontology. Note that in this case, if the class already has a partial description

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 9 of 18

in the ontology, e.g. there is an axiom:

Class(¢ partial e, e,...e)

then we can simply add dt to this axiom to get:

Class(c partial e, e,...e dt)

rather than introducing a new axiom.
EquivalentClass

See below.

DisjointClass

See below.

individual Axioms

Individual axioms assert relationships about the equality and inequality of
individuals.

Same

For all triples of the form:

X owl:sameAs y

where x and y are individuallDs, add individuals x and y (if necessary) and an
axiom:

SameIndividual(x y)

Different

For all triples of the form:

x owl:differentFrom y

where x and y are individuallDs, add individuals x and y (if necessary) and an
axiom:

DifferentIndividuals(x y)

AliDifferent

For all triples of the form:

x rdf:type owl:AllDifferent

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 10 of 18

(e (A

@)

i

N

—
simply return the empty set.

where x is a bnode, there should also be a triple:

x owl:distinctMembers 1

where 1 is a list. Add an axiom:

DifferentIndividuals (i, iz.{.in)

where i, i, ... i, are the individuals in the list 1. If 1 is not a list (of individuals), x
is not a bnode or the owl :distinctMembers triple is missing, raise an error.

Translating Lists

Lists are used in a number of places in OWL ontologies: for example to represent
iij;ments of boolean expressions or the individuals listed in an enumeration
one-of)s For the purposes of producing a OWL ontology, order is not particularly

ant — the order of the operands in an intersection or union does not alter
their semantics, so for simplicitly, we consider converting a node representing a list
to a set of nodes. Lists are thus handled using the following simple recursive
procedure.

To convert a node Let. there is a tripte \ Wre - 3 A F o /

Vs ooy
1/ig£)t§pe rdf[:Ni (//f\o{&f N { ¢ f‘l’

For a node 1 s.t. there is a triple:

-1 rdf:type rdf:List

find the node r s.t. there is a triple:

1 rdf:rest r

If such a node does not exist, or there are are multiple nodes which are the objects
of such triples, raise an error. The node r should be a list node itself. Convert this
node to a set of nodes rs. Now find the node s.t. there is a triple:

1 rdf:first £

Again, there should be a single such node — if not, raise an error. Return the result
of adding this node to the set rs.

For cases where we expect a list of class descriptions, we do the obvious thing,
e.g. convert to a collection of nodes, then translate each node using the procedure
described below.

For any node 1 which is used as a list (e.g. as the subject of a rdf: first or
rdf :rest, the object of a rdaf : rest, orin a place where a list is expected, there may
be an (optional) triple:

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 11 of 18

1 rdf:type rdf:List

g' f-P n [:Sl' /s C “"c'm//o/‘ . 7 AV 4 a o~ £ rIT
Translating Class Decriptions ‘

If a node is used in particular contexts (e.g. as the subject or object of an
owl:subClassof triple) then we know that the node is intended to represent a class
expression. In order to handle this, we define a procedure which takes a node in
the RDF graph and yields a class expression.

If n is a named class, then return n.
If this is not the case, n must be the subject of the subject of an rdf : type triple with
object owl :Restriction or be the subject of exactly one triple involving owl : oneof,

owl:intersectionOf, owl:unionOf, owl :complementOf, If not, raise an error.

The node may also be the subject of triple:

n rdf:type owl:Class -

or

n rdf:type rdfs:Class

Translation then proceeds on a case-analysis of the particular triple found.

e If there is a triple:

n rdf:type owl:Restriction

then n needs to be translated as a restriction. There should be now be
exactly one triple:

n owl:onProperty p

where p is an ObjectProperty or DatatypeProperty. If not, raise an error. In
addition, n should be the subject of exactly one triple involving
owl:minCardinality, owl:maxCardinality OF owl:cardinality,
owl:someValuesFrom, owl:allvaluesFrom Of owl:hasvalue. |f not, raise an
error. Translation then again proceeds on a case-analysis of the type of the
property and the triple it is involved in.

0 n owl:cardinality k

Return a cardinality restriction whose numerical value is the non
negative integer which should be the object of the cardinality triple, e.g.:

restriction(p cardinality(k))

0 n owl:minCardinality k

Return a cardinality restriction whose numerical value is the non

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 12 of 18

negative integer which should be the object of the cardinality triple, e.g.:

restriction(p minCardinality(k))

0 . n owl:maxCardinality k

Return a cardinality restriction whose numerical value is the non
negative integer which should be the object of the cardinality triple, e.g.:

restriction(p maxCardinality(k })

0 n owl:someValuesFrom v

If p is an ObjectProperty, return:

restriction(p somevValuesFrom (vt })

where vt is the translation of v to a class description. If p is a
DatatypeProperty, then return:

restriction(p someValuesFrom (vdt))

where vdt is the translation of v to a data range.

0 n owl:allvValuesFrom v

If p is an ObjectProperty, return:

restriction(p allvaluesFrom (vt))

where vt is the translation of v to a class description. If p is a
DatatypeProperty, then return:

restriction(p allvaluesFrom (vdt))

where vdt is the translation of v to a data range.

0 n owl:hasValue v

If p is an ObjectProperty, return:

restriction(p value (v))

where v is translation of v as an individual. If p is a DatatypeProperty,
then return:

restriction(p value {(vdt))

where vdt is the translation of v as a data value.

o Ifthere is a triple:

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL

Page 13 of 18

n owl:oneOf 1

ST
then 1 should be a list of individuals. Return:

oneof (i, i,...i,)

error.

¢ Ifthere is a triple:

f[c pvavg/ (i’f L7 "/Sx
where i, i, ... i, are the individuals in the list 1. If 1 is not a list, raise an

n owl:intersectionOf 1

return:

intersectionOf (it, 1t,...1t)

list, raise an error.

o If there is a triple:

\,
where 1t, 1t, ... 1t are the translated descriptions in the list 1. rf\llS not a

A

n owl:unionOf 1

return;

unionOf (1lt, 1t,...1t,)

list, raise an error.

o If there is a triple:

where 1t, 1t, ... 1t are the translated descriptions in the list 1. If 1 is not a

n owl:complementOf m

return:

complementOf (mt)

where ut is the translation of m as a class description.

Translating Data Ranges

If n is an XML schema data type, then return that type.

Vr/(/gé 4Z/ch/r//’

i’\ NN k)l va\h
If there is a triple:

Ifnis a datatyp intréduced as above, then return that datatype.

n owl:one0Of 1

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml

17/12/2003

WonderWeb : Parsing OWL Page 14 of 18

then 1 should be a list of data values. Return:

- one0f (d, d d.)

P RIRIER SN

where d, 4, ... d, are the data values in the list 1. If 1 is not a list, raise an error.

Structure Sharing

S&AS includes the following comment relating to translation from abstract syntax
to RDF graphs:

For many directives these transformation rules call for the
transformation of components of the directive using other
transformation rules. When the transformation of a component is used
as the subject, predicate, or object of a triple, even an optional triple,
the transformation of the component is part of the production (but only
once per production) and the main node of that transformation should
be used in the triple.

In practice, this means that blank nodes (i.e. those with no name) which are
produced during the transformation and represent arbitrary expressions in the
abstract syntax form should not be "re-used".

Consider the following example:

Class (A partial intersectionOf (C D))

In this case, translation to an RDF graph would result in a blank node representing
the intersection of C and D. This would then be used as the object of a
rdfs:subClassOf triple with A as subject.

Now consider if the ontology also included a second axiom as below.

Class (A partial intersectionOf (C D))
Class (B partial intersectionOf (C D))

In this case, we are not allowed to "re-use" the blank node, but must instead
produce a new node to represent the interseo@’ﬁf;being used in the definition of B,
even though the expressions are identical.

There are, however, two cases where a blank node corresponding to an
expression can be used in more than one place — when the translation results
from an EquivalentClasses Or DisjointClasses axiom. These are discussed in
more detail below.

In order to check whether an RDF graph corresponds to an OWL [Lite|DL]
ontology, we must check that the rules for structure sharing have not been violated.
We describe strategies for doing this.

Marking Used Blank Nodes

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 15 of 18

We keep track of all the blank nodes that have been used during the parsing
process. Effectively, this means that whenever we see a blank node that occurs as
the object of a triple invoIving owl:complementOf, rdf:type, owl:someValuesFrom,
owl:allvaluesFrom OF Occuring as a value in a list which is the object of an
owl:intersectionOf OF owl:unionof we first check to see whether the node has
/ been used. If so, then structure sharing as occurred and the ontology is not in DL. A
- If not, then we mark the node as used and carry on. Processing

mf(5: owl:equivalentClass and owl:disjointwith triples is slightly more complicated as
/(.,(,(k ,xqpe mapping rules permit us to share structure in particular ways.

%U&\ij EquivalentClass

"O\)\@/J(In general, an equivalence axiom

EquivalentClasses(D, D,...D,)

is translated to a collection of nodes, one for each expression in the equivalence,
and a number of owl:equivalentcClass triples between these nodes such that
those triples form a connected graph over the nodes. In other words, starting from
any node in the collection, we can get to any other node in the collection along a
path that only traverses owl:equivalentclass edges in either direction.

In practice, this means that a blank node may participate in more than one
owl:equivalentClass triple (but note that it cannot also participate in other triples).

A possible strategy for dealing with owl:equivalentclass triples is as follows.

1. Collect all owl:equivalentclass triples that occur in the graph.

2. Partition the nodes that occur in these triples into sets, where each set
consists of connected blank nodes and URI references connected to them, or
pairs of URI references: if n and m are in a set, there is a path between them
consisting only of owl:equivalentclass edges.

3. For each set of nodes n, n,...n,, add an equivalence axiom:

T

EquivalentClasses(tn;tn,...tn;

where tn, is the translated description of n,. In addition, if any of the n, are

blank nodes, check that they have not been used. If they have, this is not an
OWL DL ontology. If they are not used, mark as used

An improvement to this strategy is to attempt to identify the situations where the
owl:equivalentClass triple may have come from a class definition (recall the
ambiguity of the mapping). To address this, if any of the node sets have size 2,
and have been produced because of a single triple:

c owl:equivalentClass d

where c is a named class, then we translate the assertion as a definition of the
class and add the axiom:

Class(¢ complete dt)

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 16 of 18

to the ontology. In order to correctly parse OWL Lite ontologies, this approach is
essential, as it ensures that a situation such as:

c owl:equivalentClass _:a
_:a rdf:type owl:Restriction
_:a owl:onProperty p

_:a owl:minCardinality 0

is translated to a definition of the class rather than a class axiom (the resulting
axiom would not be permitted in OWL Lite).

DisjointClass

The rules for pisjointclasses axioms tell us that an axiom:

D,...D_)

DisjointClasses(D 5 n

1

is translated to a collection of nodes, one for each expression in the equivalence,
and a number of owl:disjointwith triples, such that every node in the collection is
connected to every other node by at least one triple (in either direction). Again, this
may lead to blank nodes being used in more than one place.

A possible strategy for dealing with owl:disjointwith triples is as follows:

o Collect all owl:disjointwith triples that occur in the graph.
o While there are blank nodes in the collection of nodes that we have not
already dealt with, do the following:
o Pick a blank node from the collection of nodes involved in those triples
that we haven't already dealt with.

° th er together all the nodes n, n,...n, that can be r ache from o via

" A 7 rCe Ve

S %1/ owl:disjointWith trlpleg

S o pass through-a-ramed-ctassnede — mrotherwords the-traversat-stops

T when we reach-a-ramedTiode. Include n in this collection.

o In order for the graph to be in OWL DL, the subgraph formed from
these nodes considering owl :disjointwith edges must be fully

connected: every node must have an edge to every other node. If this is

i Z&g not the case, the graph is not in DL.
)a/f;.ﬁ " Vﬁ{é - o Add a new disjoint axiom:
/ /—\
Z 7

(Equlvalenxclasses(tn tn,...tn,)

A)C [f

C wwe translated description of n;. In addition, if any of the n;

/ € are blank nodes, check that they have not been used. If they have, this
is not an OWL DL ontology. If they are not used, mark as used.
o For any remaining pairs of nodes related by a triple:

c owl:disjointWith d

if the two nodes have not already been included in a single axiom produced

by the process above, a new gxiom:
(i (J F{‘! K l’ (.(prt A

DisjointClasses(ct dt)

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 17 of 18

/ 1 ~
\?)eéct is thety@ation (y/to a class ;dé.criptioy,/and d‘;,,’fhe translation of

W AL Aa
Tests for Structure Sharing

There are a number of tests in the OWL Test Cases which are designed to
illustrate these issues, in particular:

e owl:disjointWith tests.

e« OWL DL Syntax Tests.
e owl:equivalentClass tests.

Everything Else

Once all the triples that relate to primitive object definitions and axioms have been
processed, (more or less) everything else is assumed to be a fact relating to
individuals. For all remaining triples:

XpYy

the action taken depends on the type of p. If no explicit type has been given for the
property p, raise an error.

If p is an annotation property, then add an appropriate annotation to the object x
(which should correspond to a ngmed class, property or individual).

a7 30((P lff)y‘-ﬂ > On Hqu o aovrsned] /’?(Ml
If p is an ObjectProperty, assume that the subject and object*are individuals and
add a fact:

sy

" Individual(x value(p vy))

If p is an DatatypeProperty, assume that the subject is an individual and add a fact:

Individual(x value(p dy))

\ h:m{ .
where dy is the translation of vy to a Aa.ta-bfpe value.

Error Recovery

There are many cases in the above discussion where errors may be raised — for
example if properties are used without explicit typing. Strictly speaking, an OWL DL
or Lite parser could choose to fail when encountering such situations. Of course, in
practice, we might expect parsers to be more resilient and be able to recover. So
for example, if the parser detects the following use of a property p:

x rdf:type owl:Thing
y rdf:type owl:Thing
XPYy

it is reasonable to assume that the property p is intended to be an

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

WonderWeb : Parsing OWL Page 18 of 18

owl:ObjectProperty. In this case, we might expect the parser to assume that p is
an ObjectProperty and try and proceed with the parse (but would of course warn
the user about the assumption being made).

Sean Bechhofer, University of Manchester, 10/09/03.

Last modified 17:16:58 10/08/03 %f‘, ’,‘“,;m’
R il

http://wonderweb.semanticweb.org/owl/parsing-03-10-09.shtml 17/12/2003

