Use cases: collection management

Guus Schreiber

with contributions from Stephen Buswell, Jeremy Carrol, Nick Gibbins and Mike Smith

Collection management area

 Large data/text/image/multimedia/website sets with a common theme/context/focus

Classes as instances of other classes

```
Aircraft-type
no-of-engines: integer >0
propulsion: {propeller, jet}
```

```
Fokker-50
instance of Aircraft-type
no-of-engines = 2
propulsion = jet
```

Aircraft

no-of-seats: positive integer owner: Airline

Fokker-50 subclass of Aircraft no-of-seats: 40-50

PH-851 instance of Fokker-50 no-of-seats = 45 owner = KLM

WebOnt , 14-15 Jan 2002

Some remarks about classes as instances

- Common modeling issue
 - Martin: all classes are instances, some instances are not classes (introduces notion of "power class")
 - Cf. Protégé-2000 modeling tool
- Representing Fokker-50 as a subclass of Aircrafttype does not solve the problem
 - Instances of Fokker-50 are not instances of Aircraft-type
 - Fixing class/instance border leads to constant revisions of ontology (cf. HPKB paper by Valente et al.)
- RDF and DAML+OIL allow it (?!), but semantics are problematic

Constraints (use cases 2, 3, 4)

Examples:

- wing-spar.length < wing.length</pre>
- furniture.style = Late-Georgian <=>
 furniture.culture = British AND
 furniture.date-created = 1760-1811
- Can be expressed in DAML+OIL solution
 - Late Georgian things are an intersection of British things and 1760-1811 things
- But:
 - Syntax is awful (debatable whether this is an issue)
 - Language idioms required for usage in practice

Default knowledge (1, 2, 4)

Examples:

- living things don't fly
- Late Georgian chests of drawers are typically made of mahogany wood
- Essential for semantic search in collection
- Solution: distinguish between definition and query semantics?!

Part-whole relation (use cases 2, 3, 4)

- Examples:
 - a wing spar is
 part of a wing
 assembly
 - chests of drawers
 have feet with
 their own style
- Most items in collections have some internal structure

Relation typing

- Example:
 - property P represents a time relation
- Possible in RDF
 - Define TimeProperty as subclass of Property
 - rdf:type P TimeProperty
- Is this desirable for OWL?
 - E.g. in a layered approach
 - Mechanism can also be used to define part-whole relation

Other requirements

- Synonyms / lexical term -> concept (1, 5)
- Provenance (1, 5)
 - Typical examples: distinguishing annotations by experts and non-experts, authorship of hyperlinks.
- Version management (1)
 - Ability to extend/revise ontology.
- Query support (1)
 - Ability to reason with falsehood, e.g. "whales as fish".
- Support for content standards (1, 3)
 - General thesauri (WordNet, TGN) as well as domain-specific thesauri (AAT, ICONCLASS) are often used to standardize annotations.

Using existing hierarchies from thesauri

<color>
 <chromatic color>
 pink
 vivid pink
 strong pink
 <intermediate pink>
 purplish pink
 brilliant purplish pink
 yellowish pink
 <neutral color>

[Content interoperability issue?!]