Designing Software Accessibility Standards

Greg Lowney, 2009-06-24

It’s not always easy or clear how to assign a priority level to a proposed success criterion. Here are some thoughts that might be useful in the process, and I'd greatly appreciate any feedback or discussion.
Table of Contents

1Table of Contents


1Priority Levels


1General vs. Specific Language


2Questions for Prioritizing


3Assigning Priorities


3Splitting and Combining Provisions


4Scope and Exemptions




Priority Levels

The current drafts of UAAG20 use three priority levels, but do not define the difference between them. In this discussion I use a system derived from ISO 9241-171 and ANSI 200.2, dividing success criteria into three categories:

1. Requirements represent the minimum accessibility requirements that are expected of all software. They represent the set that would be required and hopefully verified when compliance has significant impact (e.g. government purchasing requirements), and so should be objectively measurable and represent a reasonable expectation. It means, “If you don’t do this, you’re not even meeting minimum expectations.” Requirements are denoted in ISO as “shall” statements, and in ANSI 200.2 as “Level 1”.
2. Recommendations are optional, and do not need to be worded as a strict contract because organizations are not under as intense economic pressure to claim conformance. It means, “We really think you should do this, where feasible.” Recommendations are denoted in ISO as “should” statements, and in ANSI 200.2 as “Level 2”.
3. Suggestions are a subset of recommendations identified by as lower priority, to help readers prioritize the large number of recommendations and to flag provisions that are very difficult or inappropriate to implement in some circumstances. It means, “If you can do this, it would be appreciated and going beyond expectations.” Suggestions are denoted in ISO as “should” statements, and in ANSI 200.2 as “Level 3”.
General vs. Specific Language
When developing a success criterion for a standard you have two routes: be general, or be very specific. 

Being general is good in that it allows developers flexibility to implement solutions that make sense in their contexts and to take advantage of new ideas and techniques, and makes for rules that—unlike a contract—are easily read and understood. 
Unfortunately, being general also makes it hard to be objectively verifiable, as evaluators often need leeway to determine how to measure compliance.
Being specific with detailed, prescriptive language is appropriate when you really, truly need to make sure developers are doing the right thing, such as when the standard will have teeth and so parties may have incentive to abuse the spirit of the law in order to claim one product complies or another does not.
Unfortunately, being specific is also dangerous, because it’s very hard to do it right. It’s surprisingly easy to inadvertently force developers to do something actually detrimental in order to comply with badly worded requirements, or lock them into a specific implementation even after a better option has become available. You may also leave loopholes which, by allowing developers to avoid complying with the spirit of the law, undercut the entire reason for having such a guideline. You may also force the developer to add behaviors which are actually detrimental to other users.

And, it’s often very difficult to write specific, detailed guidelines without making them complex and difficult for the reader—like contracts, which is essentially what they are.
Recommendation

One approach to deciding between them is the following guideline:

Be specific and detailed to leave no room for error when it’s really, truly important that developers do it right, and/or it will be enforced in the near future.
Otherwise, avoid hassle for yourself and your readers by being general, and leaving implementation details to supplemental (non-normative) materials.

Questions for Prioritizing
Six key questions for assigning priority:

1. How important is it for accessibility? Which users will benefit, and to what extent? How much more important is it for the disability community than for other users? Will lack of this feature make a product inaccessible or nearly so, and to what population? Does it change something to possible from impossible, or merely make something more convenient? If it concerns assistive technology, is it making a fundamental change or merely working around limitations in some or all current assistive technology products, and could the solution to be AT be modified instead of mainstream software? Are there other solutions, or could there be? Are other solutions better? If additional tools are required, are they expensive or difficult to find out about, obtain, learn, or use? (It may sound callous to say that a feature which is critical for anyone is less important than one that is critical for a large population, but keep in mind that no product can be made accessible to everyone, resources are limited, and that in some cases it is not to the users’ advantage to have every feature built into every piece of software.)
2. Will compliance hurt or inconvenience any population? Does it conflict with the needs or preferences of some users? Can or should it be “always on”, or the default setting, or a non-default user option? Could it prevent or discourage developers from offering better solutions? If the feature is significantly detrimental to some users, ensure it is worded so they can avoid it, or make it a recommendation rather than a requirement.
3. Is it always possible? Are there circumstances that would make it impossible for a product to comply? Is it possible for all platforms and technologies? Does the wording need to include explicit exemptions? If it is not always possible, be sure to include appropriate exemption in the wording, or else make it a recommendation rather than a requirement.
4. Can it be objectively measurable? Will it be a problem if the developer, evaluators, and/or users disagree as to its compliance? Is testing possible? Is it realistic? Could testing be automated? If it cannot be objectively measured at reasonable expense, it should be a recommendation rather than a requirement.
5. How difficult is it to implement? What would be the impact on developers and their products? If it is so difficult or costly that it would have a severe detrimental effect on the company or other users, consider making it a recommendation rather than a requirement.
6. When is compliance likely? Is compliance already so widespread as to be expected? Which products already comply, which are planning to do so, and which are unable able to comply by the time the requirement goes into effect? Should the requirement go into effect immediately, or scheduled to give developers more time to comply? If a requirement would cause all or almost all products to fail basic-level compliance, you must seriously consider whether this helps or hurts your ultimate goal. If we cannot expect at least two products to comply in a reasonable time frame, make it a recommendation or future requirement. If it is already widespread enough to be expected, and the other criteria are met, consider making it a requirement even if is not of high importance.
Assigning Priorities
After evaluating those questions, you may use the results as follows:
1. It should be a requirement (Level A) if it is VERY important, can be worded so as to not be detrimental to other users, can be worded to only be required in situations where it’s possible, is not horrendously expensive, can be objectively measurable, and can be expected to be implemented by at least two developers by the time the requirement comes into force.

2. It should be a future requirement (Level AA but marked as scheduled for promotion to Level A) if it is VERY important, can be worded so as to not be detrimental to other users, can be worded to only be required in situations where it’s possible, is not horrendously expensive, can be objectively measurable, and is not expected to be implemented by at least two developers by the time the requirement is enforced.

3. It MAY be a requirement (Level A) if it IS NOT very important, but it is so widely implemented as to be expected (as well as being objectively measurable, can be worded so as to not be detrimental to other users, and can be worded to only be required in situations where it’s possible).

4. It SHOULD BE A RECOMMENDATION (Level AA) if it is at least moderately important, not detrimental to other users, and not extraordinarily difficult.

5. IT MAY BE A SUGGESTION (Level AAA) if it is at least of some importance.

Here it the same thing in table format. Starting at the top, use the first row in which all the criteria are “True” for the success criterion.

	1.
	Very Important
	Not Detrimental
	Always Possible
	Objectively Measurable
	Not Extraordinarily Difficult
	Compliance Likely
	SHOULD BE a REQUIREMENT (Level A)

	2.
	Very Important
	Not Detrimental
	Always Possible
	Objectively Measurable
	Not Extraordinarily Difficult
	Compliance Unlikely
	SHOULD BE a FUTURE REQUIREMENT (Level AA now; Level A in the future)

	3.
	Not Very Important
	Not Detrimental
	Always Possible
	Objectively Measurable
	Not Extraordinarily Difficult
	Compliance Already Widespread
	MAY BE a REQUIREMENT (Level A)

	4.
	Moderately Important
	Not Detrimental
	
	
	Not Extraordinarily Difficult
	
	SHOULD BE a RECOMMENDATION (Level AA)

	5.
	Of at least some benefit
	
	
	
	
	
	MAY BE a SUGGESTION (Level AAA)


Splitting and Combining Provisions
Sometimes it’s useful to split one provision into two or more. This is most useful when:
1. Different aspects of the provision deserve different priority levels. 
2. Where it’s likely that products will comply in some areas and not others, and such information is thought to be useful for developers, reviewers, or users.

For example, allowing the user to customize the keyboard command for an action may be very important if the shortcut command is the only way to access the feature, but less critical if it is merely a shortcut to a menu item.
For example, if a user agent allows customizing keyboard shortcuts in its user interface but not those in rendered content, the developer may appreciate recognition of where it does apply rather than simply being listed as failing a combined provision. Users could use that information when choosing between products.

On the other hand, it’s sometimes useful to combine multiple provisions into one, if only to reduce length and complexity of the guidelines.

For example, one recommendation that toolbar settings be persistent and one that keyboard settings be persistent could be combined into a single recommendation that user preference settings in general be persistent.
Scope and Exemptions

When writing very specific requirements, it's important to make sure the wording doesn't cause products to fail compliance or add useless features to meet requirements that shouldn't apply to them or of no value to the users. This happens if the requirement’s scope is too broad and it fails to include appropriate exemptions. 
Here are some examples of such unintended consequences:

1. A requirement says that a certain option should be triggered by pressing the F1 key, so an application fails because it runs on handheld device that has no F1 key.
2. A requirement says that the viewport with the current focus must be highlighted using a mechanism that isn't just text colors, so an application wastes screen space with a highlighted border or icon even though it always displays a single viewport.
3. A requirement says that viewports display scrollbars, so an application provides scrollbars even if the standard for its platform is the different mechanism of moving a zoom rectangle on an overview map
.

4. A requirement says that viewports display scrollbars when the content extends beyond the viewport boundary, so a virtual globe application fails because scrollbars don't make sense when there is no limit to how far the user can scroll.

5. A requirement says that the user be able to change the font family, so an application fails because it is run on a device that only uses a single font.

6. A requirement says that the user be able to change font characteristics of all text, so an operating system fails because the user cannot change the font used in character mode screens displayed on fatal errors.

7. A requirement says that software support a programmatic interface for assistive technology, so every application written for closed systems fails even if they provide built-in magnification and text-to-speech, and every other conceivable accessibility feature.
There are four approaches to avoiding these types of problems:

1. Appropriately structure requirements so the only apply in certain contexts (scope). For example, ISO 9241-171 provision 8.1.5 starts “If a user interface element has a visual representation…”, and provision 8.2.1 starts “When the software enables the user to set personal preferences, these settings should…”.
2. Include specific exemptions into specific requirements. For example, ISO 9241-171 provision 11.1.4 states “Instructions and ‘Help’ for software should be written so that they refer to the user’s actions and resulting output without reference to a specific device. References to devices, e.g. the mouse or the keyboard, should only be made when they are integral to, and necessary for, understanding of the advice being given.”
3. Provide category exemptions for specific classes of circumstances. For example, the Conformance section of ANSI 200.2 provides that software used on, or intended to be used on closed systems should be exempt from clauses regarding compatibility with assistive technology.

4. Provide a general-purpose exemption, such as allowing “Not Applicable” as a valid response to any requirement. For example, the Conformance section of ISO 9241-171 states that any requirements that have been determined not to be applicable shall also be listed, together with a statement of the reasons why they are not applicable.

� Scrollbar - Wikipedia, the free encyclopedia - Simultanous 2D-scrolling - � HYPERLINK "http://en.wikipedia.org/wiki/Scrollbar#Simultaneous_2D-scrolling" ��http://en.wikipedia.org/wiki/Scrollbar#Simultaneous_2D-scrolling�








Determining Priorities in Software Accessibility Standards, 6/24/2009 10:26:00 PM
Page 1 of 3

