
Application Integration and Multi 
Domain Generic Client Rendering 
Services 
2025 Sebastián Samaruga 

Enterprise Application Integration (EAI) / Business Intelligence (BI) stack leveraged by 
Semantic Web and GenAl / ML. Implemented in a Functional / Reactive stream-oriented 
fashion. Allow the integration of diverse applications by parsing application backends source 
data (tabular, XML, JSON, graph), inferring layered domain schemas, states, and data models, 
and exposing an activation-model API for cross-application interactions while synchronizing 
source backends. Infer existing applications behaviors or tasks and recreate them into an 
augmented interoperable model. 

Overview 
Semantic Web / GenAl enabled EAI (Enterprise Application 
Integration) Framework Proposal 
This document covers the inception phase documentation links related to a novel approach of 
doing EAI through the use of Functional / Reactive Programming leveraging GenAl and 
Semantic Web (graphs inference) and also the implementation of a novel approach of doing 
embeddings, not only for similarity calculation but also for relationships inference, query and 
traversal in an algebraic fashion. 

The goal is to allow to integrate diverse existing / legacy applications or API services by 
parsing theirs backend's source data (in tabular, XML / JSON, graph, etc. forms) and, by 
means of aggregated inference using semantic models over sources schema and data, obtain 
a layered representation of the domains and data of source applications to be integrated until 
reaching enough knowledge as for being able to represent application's behaviors into an 
inferred use-cases Activation model. 

Expose the Activation model inferred use-cases types (Contexts) and transactions use-cases 
instances (Interactions) through a Producer generic use-case browser client / API. Allow to 
browse and execute use-cases Contexts and Interactions in and between integrated 
applications, possibly enabling use cases involving more than one source integrated 
application. Example: Inventory integrated application and Orders integrated application 
interaction. When Inventory application level of one product falls below some threshold an 
Order needs to be fulfilled to replenish the Inventory with the products needed for operational 
levels. 



The concept is to manage raw Datasources data and schema (inferred) into layers of 
Aggregation, Alignment and Activation services. Then the Producer component is able to 
parse and render Activation model into an application (API / generic frontend) Contexts and 
Interactions browser. An Augmentation service provides for orchestration between the three 
main layers of the service architecture and provides for interaction between Datasources and 
Producer services. 

Vision 
Brief definition of intelligence: 

The ability to convert entities Data (subjects key / value properties: product price) into 
Information (subjects key / value relationships, properties in a given context: product price 
across the last couple of months) and the ability to convert such Information into Actionable 
Knowledge (actionable tools / inferences into a given context / analogy: product price 
increase / decrease rate, determine if it is convenient to buy). 

The goal is to facilitate the integration of diverse existing/legacy applications or API services 
by parsing their backend's source data in tabular, XML, JSON, graph, etc. forms and, by 
means of aggregated inference using semantic models over sources data, obtain a layered 
representation of the applications domains inferred schema, states and data of source 
applications to be integrated until reaching enough knowledge as for being able to represent 
application's behaviors into an inferred use-case oriented activation model API, rendering 
usable interactions in and between integrated applications inferred scenarios and keeping in 
sync integrated applications backends source data with the results of this interactions. 

In today's competitive landscape, organizations are often hampered by a portfolio of 
disconnected legacy and modern applications. This creates information silos, manual process 
inefficiencies, and significant barriers to innovation. This Application Integration Framework 
project is a strategic initiative designed to address these challenges head-on. 

The project's core goal is to "integrate diverse existing / legacy applications or API services" 
by creating an intelligent middleware layer. This framework will automatically analyze data 
from various systems, understand the underlying business processes, and expose the 
combined functionality / use cases through a single, modern, and unified interface keeping in 
sync this interactions with the underlying integrated applications backends. 

Mission 
●​ Implement a Semantic (graphs inference) / AI / GenAI enabled Business Intelligence / 

Enterprise Application Integration (EAI) platform with a reactive microservices backend 
leveraging functional programming techniques. 

●​ Implement a novel custom way to encode embeddings algebraically, enabling GenAI / 
MCP custom interactions, not just similarity but also mathematical relationships inference 



and reasoning. This by means of FCA (Formal Concept Analysis) contexts and lattices. 
●​ Expose an unified API façade / frontend (Generic Client / Hypermedia Application 

Language: HAL Implementation) of integrated applications use cases (Contexts) and use 
cases instances (Interactions) by means of Domain Driven Development and DCI (Data, 
Contexts and Interactions) design patterns and render inter-integrated applications use 
cases that could arise between integrated applications. 

●​ Exposing this Activation model inferred use-cases types (Contexts) and transactions 
use-cases instances (Interactions) through a Producer generic use-case browser client / 
API. Allow to browse and execute use-cases Contexts and Interactions in and between 
integrated applications, possibly enabling use cases involving more than one source 
integrated application. Example: Inventory integrated application and Orders integrated 
application interaction. When Inventory application level of one product falls below some 
threshold an Order needs to be fulfilled to replenish the Inventory with the products 
needed for operational levels. 

Values 
●​ Determinism: Favor explainable, reproducible behavior in inference and execution. 
●​ Explainability: Provide transparent semantics for schemas, roles, and transformations. 
●​ Interoperability: Align models and APIs to enable cross-application scenarios. Upper 

Ontologies. 
●​ Modularity: Compose functionality via reusable monads, kinds, and nodes. Functional 

Reactive Streams. 
●​ Scalability: Support large event streams, FCA lattices for numerical inference, and graph 

traversals. 

Implementation 
The idea is to build a layered set of semantic models, with their own levels of abstraction, 
backing a set of microservices from data ingestion from integrated business / legacy 
applications from their datasources, files and APIs feed to an Aggregation layer which 
performs type inference / matching, then to an Alignment layer which performs Upper 
Ontologies Matching and then to an Activation layer which exposes a unified interface to the 
integrated applications use cases, keeping in sync integrated applications backends with this 
Activation layer's interactions. 

The proposal is not only to "integrate" but to "replicate" the functionalities of integrated or 
"legacy" applications based solely on the knowledge of their data sources (inputs and 
outputs) and, through heuristics (FCA: Formal Concept Analysis) and semantic inference, 
provide a unified API / frontend for each application's use cases (replicated) and for any use 
cases that may arise "between" integrated applications (workflows, wizards), all while keeping 
the original data sources synchronized. 

Generic Client 



Incorporating or directly creating a new application or service (perhaps to be integrated with 
the previous ones) would simply be a matter of defining a source model schema and a set of 
initial reference data. And this today could certainly benefit greatly from GenAI / LLMs and 
MCP in both client and server modes. 

The idea is that by doing an "ETL" of all the tables / schemas / APIs / documents of your 
domains and their applications, translating the sources into triples (nodes, arcs: knowledge 
graph) the framework can infer your entity types, relationships and the contexts ("use cases") 
possible in and between your integrated applications providing means for a generic overlay 
(Producer API Service, generic front end) in which to integrate in a unified, conversational and 
"discoverable" interface (API, web assistant, "wizards") the integrated contexts interactions in 
and between the source integrated applications. 

To unify and integrate diverse data sources, transform all the information from each source 
into triples (Entity, Attribute, Value) into a graph in the "Datasources" component. The other 
components / services deal with type / state inference (Aggregation), relationships and 
equivalences / matching / ordering (dimensional) inference (Alignment) and use case 
descriptions / executions (Activation) then exposing the description of the possible contexts 
and their interactions in and between the integrated applications. The user interface 
component could be a generic front end or an API endpoint to interact according to the 
metadata of each context (use case) augmentation allowing to make possible Contexts 
executable and their executions (Interactions) browseable. 

Simple example (use cases): I have fruits and vegetables, I can open a greengrocer's. I want 
to open a greengrocer's, I need fruits and vegetables. Actors: supplier, greengrocer, customer. 
Contexts / Interactions: supply, sale, etc. 

Another example: I have these indicators that I inferred from the ETL, what reports can I put 
together? I want a report about these aspects of this topic, what indicators (roles) do I need 
to add. 

Ultimately, it is about creating a "generator" of unified interfaces for the integration of current 
or legacy applications or data sources (DBs, APIs, documents, etc.) in order to expose diverse 
sources in an unified way, such as a web frontend (generic use case wizards), chatbots, API 
endpoints, etc. integrating the functionality of integrated applications use cases relating each 
other in an unified forms flow layout (wizards). 

Core Architecture 
Reactive Message Driven Services Core Streaming Layout: 
●​ Single Topic Architecture 
●​ Blackboard design pattern 



Data Model 
The idea is to enable model representations being equivalent (containing the same data) in 
various layers to be switched back and forth between each layer representation to be used in 
the most appropriate task for a given representation. 

The nodes and arcs of the graph triples are URIs and should have a "retrievable" internal 
representation with metadata that each service / layer populates through the "helper" 
services: Registry, Naming (NLP) and Index service shared by each layer. Describe core model 
classes serialization in JSON. 

Reference Model 
Underlying Model for main persistence in the RDF store, reifying other models knowledge and 
enabling conversion back and forth other models representations handled by the Model 
Service. 

FCA Model (Reference Model View) 
FCA Prime IDs (Embeddings): 
Each ID is assigned a unique prime number ID at creation time. FCA Context / Lattices built 
upon, for example for a given Data / Schema predicate / arc occurrence role, having the 
context objects being the statement occurrence subjects and the context attributes the 
statement occurrence objects, Predicate FCA Context: (Subjects x Objects). For a subject 
statement occurrence the context is: Subject FCA Context: (Predicates x Objects and for an 
object statement occurrence role the context is: Object FCA Context (Subject x Predicates). 
Embeddings: For an ID, its prime ID number plus all ID's occurrences embeddings. For an 
IDOccurrence, its ID class embeddings, its occurring ID embeddings and its context 
embeddings. 

Embeddings similarity: IDs, IDOccurrences sharing the same primes for their embeddings in 
a given context. FCA Concept Lattice Clustering. 

Statements: 
(Context, Attribute, Value) 
FCA / Multidimensional features (OLAP like): 

●​ Dimensions: Time, Product, Region 
●​ Units: Month / Year, Category / Item, State / City 
●​ Context: (Context, Attribute, Value) 
●​ Examples: 

○​ (soldDate, aProduct, aDate) 
○​ ((soldDate, aProduct, aDate), Product, aProduct) 
○​ (((soldDate, aProduct, aDate), Product, aProduct), Region, aRegion) 



URIs are identifiers (Strings) and have assigned an unique prime number ID at their creation 
time. FCA (Formal Concept Analysis) techniques could be employed to build a concept lattice 
for each URI in a given context where the product of the primes of the URI context occurrence 
concept lattice attributes and values URIs are employed to identify the concept the URI 
belongs to and to subsume other possible attributes. 

Classes: 

●​ Context 
●​ Relation 
●​ Object 
●​ Attribute 

Statements: 
(Context, Relation, Object, Attribute) 
CPPE/RCV inference schema / data Statements. 

Sets Model (Reference Model view) 
Classes: 

●​ Context extends IDOccurrence 
●​ Subject extends IDOccurrence 
●​ Predicate extends IDOccurrence 
●​ Object extends IDOccurrence 

Interface: Kind<OccurrenceType, AttributeType, ValueType> 

●​ superKind: Kind 
●​ attributeValues: Tuple<Attribute Type, ValueType>[] 
●​ occurrences: Occurrence Type[] 

Reification: Kind implementations extends / plays Subject, Predicate and Object roles in 
statement. 

●​ SubjectKind extends Subject, implements Kind<Subject, Predicate, Object> 
●​ PredicateKind extends Predicate, implements Kind<Predicate, Subject, Object> 
●​ ObjectKind extends Object, implements Kind<Object, Predicate, Subject> 

The underlying model Statements can be represented as sets being Subjects, Predicates and 
Objects three sets where the intersection of Predicates and Objects sets conforms the 
"Subject Kinds" set, the intersection of the Subjects and Objects sets conforms the "Predicate 
Kinds" set, the intersection of the Subjects and Predicates sets conforms the "Object Kinds" 
set and the intersection of the three sets conforms the "Statements" set. The set that 
encloses Subject, Predicate and Object sets is the Context set. 

Sets based inference and functional algorithms should leverage this form of representation of 
the model graph. 



Statements: 

●​ Data: (Context, Subject, Predicate, Object) 
●​ Schema: (Context, SubjectKind, PredicateKind, ObjectKind) 

Dimensional Model (Reference Model view) 
Classes: 

●​ ContextStatement extends Statement(C, S, P, O) 
●​ Dimension 
●​ Attribute / Axis 
●​ Value / Measure 

Statements: 
(ContextStatement: recursive, Dimension, Attribute / Axis, Value / Measure) 
Examples: 

●​ (Time, soldDate, aProduct, aDate) 
●​ ((Time, soldDate, aProduct, aDate), Item, Product, aProduct) 
●​ (((Time, soldDate, aProduct, aDate), Item, Product, aProduct), Region, Country, aCountry) 

Encode inference of order relationships. Implement Order inference as a feature of the 
Dimensional Model: type (schema) and instances (data) hierarchies inferred in FCA Contexts. 

DOM Model (Reference Model view) 
Classes: 

●​ Instance extends IDOccurrence 
○​ id: ID 
○​ label: string 
○​ class: Class 
○​ attributes: Map<string, Instance> 

●​ Class extends Instance 
○​ id: ID 
○​ label: string 
○​ fields: Map<string, Class> 

Statements: 
(Class, Instance, Field, Instance) 
Activation (DCI, Actor / Role) Model (Reference Model view) 
Classes: 

●​ Context 
○​ roles: Role[] 

●​ Role extends Class 
○​ previous: Map<Context, Dataflow> 



○​ current: Map<Context, Dataflow> 
○​ next: Map<Context, Dataflow> 

●​ Dataflow extends Context 
○​ role: Role 
○​ rule: Rule 

●​ Interaction 
○​ actors: Actor[] 

●​ Rule: Dataflow specification. 
●​ Actor extends Instance 

○​ previous: Map<Context, Transform> 
○​ current: Map<Context, Transform> 
○​ next: Map<Context, Transform> 

●​ Transform 
○​ actor: Actor 
○​ production: Production 

●​ Production: Transform execution. 

Statements: 

●​ Data: (Context, Interaction, Actor, Transform) 
●​ Schema: (Context, Context / Dataflow, Role, Dataflow) 

Class Model: Resource Occurrence Hierarchy 
Resource Monad bound objects. 

●​ ResourceOccurrence 
○​ representation: Representation 
○​ onOccurrence(ResourceOccurrence occurrence) 
○​ getOccurrences(S, P, O) 
○​ getOccurringContexts(S, P, O) 
○​ getAttributes(): String[] 
○​ getAttribute(String): String 
○​ setAttribute(String, String) 

●​ ID extends ResourceOccurrence 
○​ primeID: long 
○​ urn: string 
○​ occurrences: Map<Kind, IDOccurrence[]> 
○​ CPPEembedding: long 

●​ IDOccurrence extends ID 
○​ occurringId: ID 
○​ occurringContext: ID 
○​ occurringKind: Kind 

●​ Subject extends IDOccurrence 
○​ occurringId: ID 



○​ occurrenceContext: Statement 
○​ occurringKind: SubjectKind 

●​ Predicate extends IDOccurrence 
○​ occurringId: ID 
○​ occurrenceContext: Statement 
○​ occurringKind: PredicateKind 

●​ Object extends IDOccurrence 
○​ occurringId: ID 
○​ occurrenceContext: Statement 
○​ occurringKind: ObjectKind 

●​ Statement extends IDOccurrence 
○​ subject: Subject 
○​ predicate: Predicate 
○​ object: Object 

●​ Parameterized interface Kind<Player, Attribute, Value> 
○​ getSuperKind(): Kind 
○​ getKindStatements(): KindStatement 
○​ getPlayers(): Player[] 
○​ getAttributes(): Attribute[] 
○​ getValues(Attribute): Value[] 

●​ Parameterized class KindStatement<Player extends Kind, Attribute, Value> extends 
Statement 

●​ SubjectKind extends Subject implements Kind<Subject, Predicate, Object> 
○​ statements: SubjectKindStatement[] 

●​ SubjectKindStatement extends KindStatement<SubjectKind, Predicate, Object> 
●​ PredicateKind extends Predicate implements Kind<Predicate, Subject, Object> 

○​ statements: PredicateKindStatement[] 
●​ PredicateKindStatement extends KindStatement<PredicateKind, Subject, Object> 
●​ ObjectKind extends Object implements Kind<Object, Predicate, Subject> 

○​ statements: ObjectKindStatement[] 
●​ ObjectKindStatement extends KindStatement<ObjectKind, Predicate, Subject> 

Kinds Aggregation 
●​ Kinds: Statements Predicate FCA Contexts (concepts hierarchies) 
●​ States: Statements Subject FCA Contexts (concept hierarchies) 
●​ Roles: Statements Object FCA Contexts (concept hierarchies) 

Kinds Schema Aggregation 
Aggregation over KindStatement(s) SPOs. 

●​ Graph (Statements Occurrences given their SPOs / Kinds contexts) implements 
Kind<Subject, Predicate, Object> 
○​ context: Kind 



○​ statements: Statement[] 
●​ Model (Graph Occurrences) extends Graph 

○​ graphs: Graph[] 
○​ merge(m: Model): Model 

●​ ContentType extends Model 
○​ kind: Kind 
○​ typeSignature: String 

●​ Representation extends ContentType 
○​ contentType: ContentType 
○​ encodedState: String (Encoding Types) 

ResourceOccurrence hierarchy Resource Monad bound API 
Dispatches to ResourceOccurrence Representation ContentType. 

ResourceOccurrence Events: 

●​ ResourceOccurrence::onOccurrence(ResourceOccurrence occurrence): 
ResourceOccurrence context. 

●​ ID::onOccurrence(IDOccurrence): URN 
●​ IDOccurrence::onOccurrence(SPO / Kinds): ID 
●​ SPO / Kinds::onOccurrence(Statement): IDOccurrence 
●​ Statement::onOccurrence(Graph): SPO / Kinds 
●​ Graph::onOccurrence(Model): Statement 
●​ Model::onOccurrence(ContentType): Graph (merge) 
●​ ContentType::onOccurrence(Representation): Model 
●​ Representation::onOccurrence(ResourceOccurrence): ContentType 

ResourceOccurrence Occurrences: 

●​ ResourceOccurrence::getOccurrences(S, P, O): ResourceOccurrence. S, P, O filter 
/criteria / matching. Leverages CPPE / RCV / FCA / Kinds / Alignment schema / instances 
inference / filter / query / traversal. 

●​ Representation::getOccurrences(S, P, O): ResourceOccurrence 
●​ ContentType::getOccurrences(S, P, O): Representation 
●​ Model::getOccurrences(S, P, O): ContentType 
●​ Graph::getOccurrences(S, P, O): Models 
●​ Statement::getOccurrences(S, P, O): Graphs 
●​ SPO / Kinds::getOccurrences(S, P, O): Statements 
●​ IDOccurrence::getOccurrences(S, P, O): SPO / Kinds 
●​ ID::getOccurrences(S, P, O): IDOccurrence 

ResourceOccurrence Occurring Contexts: 

●​ ResourceOccurrence::getOccurringContext(S, P, O): ResourceOccurrence. S, P, O filter 
/criteria / matching. Leverages CPPE / RCV / FCA / Kinds / Alignment schema / instances 
inference / filter / query / traversal. 



●​ ResourceOccurrence::getOccurringContexts(S, P, O): Representation 
●​ Representation::getOccurringContexts(S, P, O): ContentType 
●​ ContentType::getOccurringContexts(S, P, O): Model 
●​ Model::getOccurringContexts(S, P, O): Graphs 
●​ Graph::getOccurringContexts(S, P, O): Statements 
●​ Statement::getOccurringContexts(S, P, O): SPO / Kinds 
●​ SPO / Kinds::getOccurringContexts(S, P, O): IDOccurrence 
●​ IDOccurrence::getOccurringContexts(S, P, O): ID 
●​ ID::getOccurringContexts(S, P, O): URN 

Statements, SPOs and Kinds 
Elevate statements into higher-order kinds for schema and instance traversal. 

●​ Identifiers: Represent IDs and IDOccurrences with URNs, prime IDs, and kind-specific 
occurrences. 

●​ SPOs / Kinds: 
○​ Data 
○​ Kinds 
○​ Schema 

Statements Dataflow: ContentType Representation Model Graphs (Kind augmented 
Statements). 

Statements 
Model Subjects, Predicates, and Objects IDs with typed statement Idoccurrence(s). 

SPOs 
Model Subjects, Predicates, and Objects IDs with typed statement IDoccurrence(s). 

Kinds 
Entities & Implementation: 

●​ Kind: A set of IDOccurrences that share common structural properties. A SubjectKind like 
:Customer is formed by grouping all Subjects that interact with a similar set of (Predicate, 
Object) pairs. 

Aggregate kinds for Statement’s Subjects, Predicates and Objects into concept hierarchies. 
Kinds aggregate IDs IDOccurrence(s) (SPOs) Attributes and Values, thus performing a very 
simple Resource Type (attributes) and State (values) inference. 

●​ In the case of a SubjectKind, its attributes are its occurrences Predicates and its values 
are its occurrences Objects. 

●​ In the case of a PredicateKind, its attributes are its occurrences Subjects and its values 
are its occurrences Objects. 



●​ In the case of an ObjectKind, its attributes are its occurrences Predicates and its values 
are its occurrences Subjects. 

Kind hierarchies occur in the case that a Kind attributes / values are in a superset / subset 
relationship. 

Instance Aggregation 
Aggregate kind occurrences into Graph(s) and Model(s) instances for traversal and matching. 

SPO / Kinds Sets Layout 
(Image description: A Venn diagram showing the intersection of Subject, Predicate, and 
Object sets to form SubjectKind, PredicateKind, ObjectKind, and StatementKind.) 

Model Abstractions 
Define IDs, occurrences, SPO structures, and kinds for schema aggregation. 

Content Types 
Models: 
●​ Schema (Model): Upper Alignment. (SubjectKind, PredicateKind, ObjectKind) 

Statements Graphs. 
●​ Instances (Model): Kind aggregated (Subject, Predicate, Object) Statements Graphs. 
●​ Composite Model Graphs Statements. Example: (Employee : Kind, :salary : Predicate, 

10K) : Criteria. (Employee : Kind, :salary : Predicate, GreaterThan : ComparisonKind). 
●​ Built in Schema Kinds (Alignment): Relationship / Role / Player / Transform 

(Relationship) / Data / Information / Knowledge / Comparison. 
●​ Streams Dataflow: Models Merge. 

Inferred Kinds Schema Alignment 
Organize relationship, role, and player kinds and align upper ontologies. Statements 
composed by Kinds (SPOs). 

Inference & Traversal (Functional Interfaces): 
Capability: "Given the :Customer type, what types of actions can they perform?” 

●​ Schema (Model): Upper Alignment. (SubjectKind, PredicateKind, ObjectKind) 
Statements Graphs. 

●​ Instances (Model): Kind aggregated (Subject, Predicate, Object) Statements Graphs. 

Relationships and Events upper Schema (Kinds) Alignment 
Relationships (Events / Roles / Players): 



●​ Schema: (Relationship, Role, Player); Relationship, Role, Player : Kinds. 
●​ Examples: (Promotion, Promoted, Employee);, (Marriage, Married, Person); 

Relationship, Role, Player attributes: from Kinds definitions. Example: Married.marryDate : 
Date. 

Events: Relationship Transforms (Roles) 

●​ Schema: (SourceRole, Transform, DestRole); SourceRole, Transform, DestRole : Kinds. 
●​ Examples: (Developer, Promotion, Manager);, (Single, Marriage, Married); 

SourceRole, Transform, DestRole attributes: from Kinds definitions. Example: 
Manager.projects : Project[]. 

Infer Relationship / Roles / Players / Events / Transforms schema Kinds (upper Alignment 
Kinds). Order Alignment. 
Infer / Align Relationship / Roles / Players / Events / Transforms Instances (from aligned Kinds 
schema attributes occurrences). Attributes resolution from context: Ontology matching / Link 
prediction. 
Streams Dataflow: 
ResourceOccurrence onOccurrence chain plus getters and helper services: schema, 
instances, resolution inference. 
●​ Example: 

○​ TransformKind::onOccurrence(SourceKind) : DestKind; 
○​ RelationshipKind::onOccurrence(RoleKind) : PlayerKind; 

Traverse Kinds / Instances (ResourceOccurrence functional chain). 
Roles Promotion: From Resource Monad bound Transforms. 
Models (Kinds Alignment): Definitions, Aligned schemas (attributes) and Model Instances. 

●​ Kinds: Upper alignment concepts. Aligned Kinds. 
●​ Statements: Upper schemas, aligned Kinds and Instance occurrences. 

Resource Monad API Semantics: i.e.: Roles Promotion. 

ContentType / Representation (Model Graphs Statements). 

●​ FCA: 
○​ (Context, Object, Attribute); 
○​ (expand: positions. Attributes: align / match). 

●​ Relationships / Events: 
○​ (Relationship, Role, Player); 
○​ (Role, EventTransform, Role); 
○​ (expand: positions. Attributes: align / match) 

●​ Dimensional (base upper ontology?): 
○​ Data Statements. 
○​ Information Statements. 
○​ Knowledge Statements. 



●​ DOM: 
○​ Type / Instance Statements. 

●​ DCI: 
○​ Context / Interaction Statements. 
○​ Actor / Role Statements. 

(XSalaryEmployee, SalayRaise, YSalaryEmployee); RaiseAmount Relationship with pattern 
matching (rule execution). Roles are SubjectKinds with their corresponding Kinds in the 
Statement context. 

Upper Ontologies (Models Alignment): 

●​ Reified models types (Kinds): :Statement, :Subject, :SubjectKind, etc. 
●​ Pattern Statements: (MatchingKind : PatternKind, MatchingKind : PatternKind, 

MatchingKind : PatternKind); Recursive: PatternKind as MatchingKind. 
●​ PatternTransform: Relationship: (PatternTransform, Role, Player). Objects Attributes 

(types) / Values (state) Matching. 
●​ Event: (MatchingKind, PatternTransform, PatternKind); PatternTransform: Kind => Kind. 
●​ Pattern Statements: (PatternTransform, PatternTransform, PatternTransform); 

Relationships Roles / Players Reification: (Role, Role, Player); (Player, Role, Player); 

●​ (Marriage, Married, Person); 
●​ (Married, Spouse, Person); 
●​ (Person, Marriage, Spouse) : Event / Transform. 

Functional helpers: 

●​ SPO / Kinds::onOccurrence(Statement) : IDOccurrence; 
●​ SPO / Kinds::getOccurrences(S, P, O) : Statements; 
●​ Statement::getOccurringContexts(S, P, O) : SPO / Kinds; 
●​ SPO / Kinds::getOccurringContexts(S, P, O) : IDOccurrence; 

FCA: 

●​ (Context, Object, Attribute) : SPO / Kinds 
●​ Patterns: 

○​ (:Predicate : Context, :Subject : Object, :Object : Attribute); 
○​ (:Subject : Context, :Predicate : Object, :Object : Attribute); 
○​ (:Object : Context, :Predicate : Object, :Subject : Attribute); 

●​ (Concept, Objects, Attributes); 
●​ (:Kind : Concept, :Kind : Objects, :Kind : Attributes); 
●​ Relationship: (:Employment : PredicateKind, :Employee : SubjectKind, :Person : 

ObjectKind); 
●​ DOM 
●​ Dimensional / Comparisons 
●​ Relationships 
●​ Events / Transforms 



●​ DCI (Actor / Role) 

Relationships and Alignment 
Define composed relations (e.g., knowsLanguage) and leverage reasoners for closure. 

Dimensional Alignment 
Align data, information, and knowledge layers to support comparisons and events. 
Dimensional Upper Model Kinds. Relationships / Events inference. 
●​ Data: Measures. Players. 
●​ Information: Dimensions: Measures in Context. Roles. 
●​ Knowledge: Measures in Context inferred Relationships / Events (Transforms, from State 

Comparisons / Order). 

Relationships / Events order / closures. 

Algebraic Embeddings 
CPPE Embeddings 
FCA-based Embeddings: A Deterministic Approach 

We will replace LLM-based embeddings with deterministic, structural embeddings derived 
from FCA contexts and prime number products. This provides explainable similarity based on 
shared roles and relationships. 

●​ Contextual Prime Product Embedding (CPPE): For any IDOccurrence (i.e., a resource 
in a specific statement), we can calculate an embedding based on its relational context. 
1.​ Define FCA Contexts: For a given relation (predicate), we can form an FCA context. 

Example: For the predicate :worksFor: 
■​ Objects (G): The set of all subjects of :worksFor statements (e.g., {id:Alice, 

id:Bob}). 
■​ Attributes (M): The set of all objects of :worksFor statements (e.g., {id:Google, 

id:StartupX}). 
2.​ Calculate Prime Product: The CPPE for id:Google within the :worksFor context is 

the product of the primeIDs of all employees who work there. CPPE(Google, 
worksFor) = primeID(Alice) * primeID(Bob) * ... 

●​ Similarity Calculation & Inference: 
○​ Similarity: The similarity between two entities in the same context is the Greatest 

Common Divisor (GCD) of their CPPEs. GCD(CPPE(Google), CPPE(StartupX)) reveals 
the primeID product of their shared employees, giving a measure of personnel 
overlap. 

○​ Relational Inference: We can infer complex relationships. Consider the goal of 
finding an "uncle". 
1.​ Calculate the CPPE for "Person A" in the :brotherOf context (the product of their 



siblings' primes). 
2.​ Calculate the CPPE for "Person B" in the :fatherOf context (the product of their 

children's primes). 
3.​ If GCD(CPPE_brotherOf(A), CPPE_fatherOf(B)) > 1, it means A is the brother of 

B's father. The system can then materialize a new triple: (A, :uncleOf, ChildOfB). 
This inference is stored and queryable. 

FCA-based Relational Schema Inference 
The system can infer relational schemas (rules or "upper concepts") from the structure of the 
data itself using FCA. 

●​ FCA Contexts for Relational Analysis: We use three types of FCA contexts to analyze 
relationships from different perspectives: 
1.​ Predicate-as-Context: (G: Subjects, M: Objects, I: relation). This context reveals 

which types of subjects relate to which types of objects for a given predicate. 
2.​ Subject-as-Context: (G: Predicates, M: Objects, I: relation). This reveals all the 

relationships and objects associated with a given subject, defining its role. 
3.​ Object-as-Context: (G: Subjects, M: Predicates, I: relation). This reveals all the 

subjects and actions that affect a given object. 
●​ Algorithm: Inferring Relational Schema: 

1.​ Select Context: For a given predicate P (e.g., :worksOn), the Alignment Service 
constructs the Predicate-as-Context. 

2.​ Build Lattice: It uses an FCA library (e.g., fcalib) to compute the concept lattice from 
this context. 

3.​ Identify Formal Concepts: Each node in the lattice is a formal concept (A, B), where 
A is a set of subjects (the "extent") and B is the set of objects they all share (the 
"intent"). 

4.​ Materialize Schema: Each formal concept represents an inferred relational schema or 
"upper concept". The system creates a new RDF class for this concept. For a concept 
where the extent is {dev1, dev2} (both :Developers) and the intent is {projA, projB} 
(both :Projects), the system can materialize a schema:​
:DeveloperWorksOnProject a rdfs:Class, :RelationalSchema ;​
:hasDomain :Developer ;​
:hasRange :Project . 

Relational Context Vectors 
The core of this approach is the Relational Context Vector (RCV). For any given statement (a 
reified triple), we compute a vector of three BigInteger values, (S, P, O). Each component is a 
CPPE calculated from one of the three FCA context perspectives, providing a holistic 
numerical signature of the statement's role in the graph. 

●​ RCV Definition: RCV(statement) = (S, P, O) 
○​ S (Subject Context Embedding): The CPPE of the statement's subject from the 

Subject-as-Context perspective. This number encodes everything the subject does. 



S = calculateCPPE(statement.subject, SubjectAsContext) 
○​ P (Predicate Context Embedding): The CPPE of the statement's predicate from the 

Predicate-as-Context perspective. This number encodes every subject-object pair 
the predicate connects. P = calculateCPPE(statement.predicate, PredicateAsContext) 

○​ O (Object Context Embedding): The CPPE of the statement's object from the 
Object-as-Context perspective. This number encodes everything that happens to the 
object. O = calculateCPPE(statement.object, ObjectAsContext) 

●​ Implementation: A Java record RCV(BigInteger s, BigInteger p, BigInteger o). The Index 
Service is responsible for calculating and caching the RCV for every reified statement in 
the graph. 

Schema Archetypes 
This dual representation is key to performing inference. 

●​ Instance RCV: The RCV calculated for a specific, concrete statement (e.g., stmt_123: 
(dev:Alice, :worksOn, proj:Orion)) is its unique numerical signature. It represents a single 
data point. 

●​ Schema RCV (Archetype): The RCV for a relational schema (e.g., the 
:DeveloperWorksOnProject schema) is an "archetype" vector. It is calculated by finding 
the Least Common Multiple (LCM) of the corresponding components of all instance RCVs 
that belong to that schema. 
○​ Algorithm: calculateSchemaRCV(schemaURI) 

1.​ Find all instance statements s_i where s_i rdf:type schemaURI. 
2.​ For each instance s_i, retrieve its cached RCV_i = (S_i, P_i, O_i). 
3.​ Calculate the schema RCV components: 

■​ S_schema = LCM(S_1, S_2, ..., S_n) 
■​ P_schema = LCM(P_1, P_2, ..., P_n) 
■​ O_schema = LCM(O_1, O_2, ..., O_n) 

4.​ The result (S_schema, P_schema, O_schema) is the numerical archetype for the 
schema. The LCM ensures that the schema's numerical signature is "divisible" by 
all of its instances. 

Subsumption 
Subsumption / Instance Checking (rdf:type): 

●​ Concept: An instance belongs to a schema if the instance's RCV "divides into" the 
schema's RCV. 

●​ Algorithm: isInstanceOf(instanceRCV, schemaRCV) 
1.​ Perform a component-wise modulo operation. 
2.​ boolean isS = schemaRCV.s.mod(instanceRCV.s).equals(BigInteger.ZERO); 
3.​ boolean isP = schemaRCV.p.mod(instanceRCV.p).equals(BigInteger.ZERO); 
4.​ boolean isO = schemaRCV.o.mod(instanceRCV.o).equals(BigInteger.ZERO); 
5.​ Return isS && isP && isO. 

●​ Use Case: This is a high-speed, purely numerical method for checking type constraints, 



which can be performed in memory without a complex graph query. 

Property Chains 
Define composed relations (e.g., knowsLanguage) and leverage reasoners for closure. This 
section details the specific numerical algorithm for the (:Developer)-[:worksOn]->(:Project) 
and (:Project)-[:usesLanguage]->(:Language) ==> 
(:Developer)-[:knowsLanguage]->(:Language) inference. 

●​ Step 1: Define the Composition Operator​
compose(RCV1, RCV2) 
○​ Inferred Subject (S_inferred): S_inferred = RCV1.s * RCV2.o 
○​ Inferred Object (O_inferred): O_inferred = RCV1.s * RCV2.o 
○​ Inferred Predicate (P_inferred): P_inferred = RCV1.p * RCV2.p 

●​ Step 2: Calculate Schema Archetypes 
○​ The Alignment Service calculates archetypal RCVs for source schemas: 

■​ RCV_worksOn_schema = (S_wo, P_wo, O_wo) 
■​ RCV_usesLang_schema = (S_ul, P_ul, O_ul) 

○​ It then calculates the archetypal RCV for the inferred schema (knowsLanguage): 
■​ S_kl = S_wo * O_ul 
■​ P_kl = P_wo * P_ul 
■​ O_kl = S_wo * O_ul 

○​ This resulting RCV_knowsLang_schema = (S_kl, P_kl, O_kl) is stored. 
●​ Step 3: The Inference Algorithm at Query Time​

A user asks: "Does dev:Alice know lang:Java?" 
1.​ Retrieve Instance RCVs: Retrieve RCV1 for (dev:Alice, :worksOn, proj:Orion) and 

RCV2 for (proj:Orion, :usesLanguage, lang:Java). 
2.​ Calculate Hypothetical Instance RCV: RCV_hypothetical = compose(RCV1, RCV2). 
3.​ Retrieve Schema Archetype: Retrieve RCV_knowsLang_schema. 
4.​ Perform Numerical Check: boolean knows = isInstanceOf(RCV_hypothetical, 

RCV_knowsLang_schema). 
5.​ Result: If knows is true, the inference is validated. 

Querying and Traversal by Numerical Properties: 
●​ Find by Relational Role: "Find all entities that have acted as a :Developer". 

○​ The query becomes: "Find all statements whose instanceRCV.s component divides 
RCV_dev_schema.s." 

●​ Traversal by Numerical Similarity: 
○​ Start at stmt_A with RCV_A. 
○​ The next step: "Find stmt_B whose RCV_B has the highest GCD with RCV_A." 
○​ Allows traversal based on numerically similar relational contexts. 

Appendix E: Numerical Representation and Inference 



of Relational Schemas 
(This section re-iterates the details from "Algebraic Embeddings" through "Querying and 
Traversal" in a formal appendix format.) 

E.1. The Relational Context Vector (RCV) 
... 

E.2. Numerical Representation of Schema vs. Instance 
... 

E.3. Inference via Mathematical Operators 
... 

E.3.1. Subsumption / Instance Checking (rdf:type) 

... 

E.3.2. Numerical Inference of Attribute Closure (knowsLanguage) 

... 

E.4. Querying and Traversal by Numerical Properties 
... 

Functional Resources Approach 
Resource Monad API 
●​ The Resource Monad: Functional wrapper, Resource<ResourceOccurrence>. 
●​ Wraps successive ResourceOccurrence class hierarchy occurrence events, getter and 

context methods. 

ContentType (Representations Transforms) 
●​ Transforms (XSLT / Custom Logic) for each ContentType type instance 
●​ Model Types: 

1.​ FCA 
2.​ DOM (OGM) 
3.​ Activation (Actor / Role) 

●​ Resource Occurrence Types: 
1.​ ResourceOccurrence Classes 

●​ Encoding Types: 



1.​ Reference (Topic Maps TMRM) 
2.​ RDF / RDFS 
3.​ JSON-LD 

Representation : ContentType instance 
●​ ContentType 
●​ Encoded State (XML / Custom Classes) 

ResourceOccurrence 
●​ Representation 
●​ Methods (Dispatch to Representation ContentType Transforms): 

○​ onOccurrence(ResourceOccurrence occurrence) : ResourceOccurrence context 
(event) 

○​ getOccurrences(S, P, O) 
○​ getOccurringContexts(S, P, O) 
○​ getAttributes() : Attributes (by means of occurrences / schema) 

■​ getAttribute(Attribute) 
■​ setAttribute(Attribute, Value) 

●​ Hierarchies (TODO): ContentType hierarchies? 

ResourceOccurrence(s) Activation 
●​ ResourceOccurrence::onOccurrence(...) 
●​ ResourceOccurrence::getOccurrences(...) 
●​ ResourceOccurrence::getOccurringContexts(...) 

Functional Output Model Building (Representation folding): 

●​ ID::getOccurrences(...) -> IDOccurrence 
●​ ... 
●​ Representation::getOccurrences(...) -> ResourceOccurrence 
●​ Publish Augmented Model (Representation?) 

MESSAGES 
Messages (Services and Models Statements exchange): Services / Components interactions 
and Registry Models storage is in the form of Reference Model Statements. 

Runtime 
●​ Events: Model Messages. 
●​ Main Event Loop: Aggregation, Alignment, Activation stream nodes Model Events Topic 

consumers / producers. Matches for Models ContentType(s). 
●​ Topic streaming: Stream nodes consume and publish augmented Model Events. 

Functional Retrieval / Traversal Operations 



●​ getOccurrences across IDs, statements, graphs, models, and representations. 
●​ getOccurringContexts across IDs, statements, graphs, models, and representations. 

Event Streams 
Aggregation 
●​ Produce SPO and kinds aggregated statements with DIDs, prime IDs, and FCA clustering. 
●​ Inference: type / state / order. FCA Model. 
●​ Hierarchies: Type / State hierarchies. 
●​ Consumes (ID, ID, ID) Statements; produces SPO / Kinds Aggregated Statements. 

Alignment 
●​ Infer equivalences, link predictions, and kind hierarchies for models and instances. 
●​ Model: DOM (OGM) Model. 
●​ Consumes SPO / Kinds Aggregated Statements; produces Graph / Models Statements. 
●​ Functionality: Ontology matching, Link Prediction, Clustering, Classification. 

Activation 
●​ Expose contexts, interactions, actors, and roles via the activation API. 
●​ Model: DCI (Actor / Role) Model. 
●​ Consumes Graph / Models Statements; produces ContentType Representation 

Statements. 
●​ Provides Contexts, Interactions, Actors, Roles State API. 

Nodes Functional Reactive Behavior 
●​ Consume Augmented Model (Representation?) 
●​ Functional Input Model Traversal (Representation unfolding) 
●​ Functional Output Model Building (Representation folding) 
●​ Publish Augmented Model (Representation?) 

Events Stream and Augmentation Services 
●​ Messages: Models (Representations) 
●​ Events: Model (Representation?) Messages. 
●​ Topic Event loop / Registry: Blackboard design pattern. 
●​ Datasource node: Produces and listens for Model Events for syncing backends. 
●​ Producer node: Consumes Model Events, publishes Activation API, produces API 

interaction Events. 

Core Services 
Model Service (Content Types) 



Main RDF store persistence handler. Handles persistence of Reference Model Statements and 
conversion between model views. 

Application Service 
Encloses Datasource, Augmentation, Producer Service interactions. 

Augmentation Service 
Encloses Aggregation, Alignment, Activation Service Interactions. 

All services should have an administration / management interface for each step of the 
workflow. 

Datasource Service 
Produce and consume raw integrated datasource triples. Keep source backends consistent. 

Aggregation Service 
Infer domain schemas, states, and data. Perform FCA / Kinds Augmentation, CPPE / RCVs 
handling. 

Alignment Service 
Infer Relationships, Events and Transforms. Equivalent entities ontology matching. Missing 
links prediction. 

Activation Service 
Expose use-case contexts and interactions. Instantiates inferred use cases (Contexts) 
executions (Interactions). 

Producer Service 
Exposes a Context / Interaction aware API for browsing / initiating application transactions. 
Handles dynamic transactions flows (wizard-like interface). 

Helper Services 
MCP Service 
MCP Server and Client features. Enable Application Service as an MCP Client. 

Index Service 
Functionality related to inference, query, retrieval and traversal of models. Cache RCVs. 



Naming Service 
Functionality related to name resolution and inference, such as labeling Kinds and 
Relationships. LLM MCP bridge. 

Registry Service 
Main ResourceOccurrence(s) repository. IDs generation. Core graph model repository. 

Semantic Hypermedia Addressing 
Imagine the possibility of not only annotating resources (Text, Images, Audio, Video, Tabular, 
Hierarchical, Graph) with metadata and links but having those annotations and links being 
generated by inference and activation. RESTful principles could apply rendering annotations 
and links as resources also, making them discoverable and browsable / query-able. 

This "Semantic Hypermedia Addressing" knowledge layer, rendered in RDF, could be 
consumed further by LLMs Agents. User-generated resources and business application 
interactions would leverage this semantic addressing, becoming part of a resource-oriented 
linked knowledge network. 

Implementation Details 
●​ Technologies: RDF / FCA (Formal Concept Analysis) for inference, an FCA-based 

embeddings model, and DDD (Domain Driven Development) / DOM (Dynamic Object 
Model) / DCI (Data, Context and Interaction) and Actor / Role Pattern. 

●​ References: 
○​ [FCA] 
○​ [DDD] 
○​ [DOM] 
○​ [DCI] 
○​ [Actor / Role Pattern] 

Use Case Example: Federated Supply Chain 
Demonstrate end-to-end integration across independent participants. 

Participants 
●​ Manufacturer: SportProducts Manufacturing Inc. (SPM) 
●​ Consumer: Sport and Fitness Stores (SFS) 
●​ Provider: Sports Goods Raw Materials LLC (SGRM) 

Order Flow 
From low inventory trigger at the retailer (SFS) to automated order placement via MCP to the 



manufacturer (SPM). 

Procurement 
Manufacturer (SPM) checks for raw materials and places orders with the provider (SGRM) via 
MCP. 

Federated BI / Analytics 
Participants share anonymized measures to evaluate end-to-end efficiency with dimensional 
models, building a federated view of the supply chain's health. 

Miscellaneous Features 
FRONTEND 
●​ COST / HAL WebUI: Implement a reactive functional dynamic forms COST / HAL 

frontend in reactive Angular. 

ADMINISTRATION / CONFIGURATION 
●​ Reified Components / Services configuration data as Application Models Instances. 
●​ Editable via COST (Producer WebUI client). 

TECHNICAL CONCEPTS 
●​ TOPIC MAPS REFERENCE MODEL (RDF/XML / XSLT) 
●​ XSLT DRIVEN ACTIVATION TRANSFORMS 
●​ SEMANTIC OBJECT MAPPING 
●​ HOMOICONIC APPROACH (DATA AS CODE / CODE FROM DATA) 
●​ Data, Information, Knowledge Model levels. 

Functional Reactive Stream Pipeline Components 
●​ Naming: URN Crafting / Matching. 
●​ Registry: Resource Repository. 
●​ Index: Resource Contents URNs Resolution. 
●​ Main Event Loop: Topic for resource publishing/subscriptions. 

Custom Resources (IO Monad) 
●​ Datasources Resource Instances: Configured declaratively. 
●​ Producer Resource Instance: Produces APIs / UI. 
●​ Wrap LLM / MCP into a Resource. 


	Application Integration and Multi Domain Generic Client Rendering Services 
	Overview 
	Semantic Web / GenAl enabled EAI (Enterprise Application Integration) Framework Proposal 

	Vision 
	Mission 
	Values 
	Implementation 
	Generic Client 

	Core Architecture 
	Reactive Message Driven Services Core Streaming Layout: 

	Data Model 
	Reference Model 
	FCA Model (Reference Model View) 
	Sets Model (Reference Model view) 
	Dimensional Model (Reference Model view) 
	DOM Model (Reference Model view) 
	Activation (DCI, Actor / Role) Model (Reference Model view) 

	Class Model: Resource Occurrence Hierarchy 
	Kinds Aggregation 
	Kinds Schema Aggregation 
	ResourceOccurrence hierarchy Resource Monad bound API 
	ResourceOccurrence Events: 
	ResourceOccurrence Occurrences: 
	ResourceOccurrence Occurring Contexts: 

	Statements, SPOs and Kinds 
	Statements 
	SPOs 
	Kinds 
	Instance Aggregation 
	SPO / Kinds Sets Layout 
	Model Abstractions 

	Content Types 
	Models: 
	Inferred Kinds Schema Alignment 
	Inference & Traversal (Functional Interfaces): 
	Relationships and Events upper Schema (Kinds) Alignment 
	Relationships and Alignment 
	Dimensional Alignment 

	Algebraic Embeddings 
	CPPE Embeddings 
	FCA-based Embeddings: A Deterministic Approach 

	FCA-based Relational Schema Inference 
	Relational Context Vectors 
	Schema Archetypes 
	Subsumption 
	Property Chains 
	Querying and Traversal by Numerical Properties: 

	Appendix E: Numerical Representation and Inference of Relational Schemas 
	E.1. The Relational Context Vector (RCV) 
	E.2. Numerical Representation of Schema vs. Instance 
	E.3. Inference via Mathematical Operators 
	E.3.1. Subsumption / Instance Checking (rdf:type) 
	E.3.2. Numerical Inference of Attribute Closure (knowsLanguage) 

	E.4. Querying and Traversal by Numerical Properties 

	Functional Resources Approach 
	Resource Monad API 
	ContentType (Representations Transforms) 
	Representation : ContentType instance 
	ResourceOccurrence 
	ResourceOccurrence(s) Activation 
	MESSAGES 
	Runtime 

	Functional Retrieval / Traversal Operations 
	Event Streams 
	Aggregation 
	Alignment 
	Activation 

	Nodes Functional Reactive Behavior 
	Events Stream and Augmentation Services 
	Core Services 
	Model Service (Content Types) 
	Application Service 
	Augmentation Service 
	Datasource Service 
	Aggregation Service 
	Alignment Service 
	Activation Service 
	Producer Service 

	Helper Services 
	MCP Service 
	Index Service 
	Naming Service 
	Registry Service 

	Semantic Hypermedia Addressing 
	Implementation Details 
	Use Case Example: Federated Supply Chain 
	Participants 
	Order Flow 
	Procurement 
	Federated BI / Analytics 

	Miscellaneous Features 
	FRONTEND 
	ADMINISTRATION / CONFIGURATION 
	TECHNICAL CONCEPTS 
	Functional Reactive Stream Pipeline Components 
	Custom Resources (IO Monad) 



