
Functional Requirements Specification: Unified Application 
Integration Framework 
Version 1.0 

Date: 2025-07-14 

1. Introduction 
1.1 Purpose 

This document provides a detailed breakdown of the functional requirements for the 
Unified Application Integration Framework. It elaborates on the Software 
Requirements Specification (SRS) by defining the specific behaviors, actions, inputs, 
and outputs for each component of the system. The purpose is to provide a clear and 
unambiguous guide for the development team, outlining precisely what the system 
must do. 

1.2 Scope 

This FRS covers the complete set of functions for all services within the framework's 
architecture, including data ingestion, the three layers of semantic augmentation 
(Aggregation, Alignment, Activation), service orchestration, shared helper services, 
and the final API exposure. Each requirement is intended to be testable. 

2. Functional Requirements 
FR-1: Datasource Service 

This service is the entry point for all external data into the framework. 

●​ FR-1.1: Pluggable Data Source Connection 
○​ Description: The service must provide a mechanism to connect to 

heterogeneous data sources. It shall support, at a minimum, relational 
databases via JDBC and REST APIs. The connection mechanism must be 
extensible to support other sources like document stores or message queues 
in the future. 

○​ Inputs: Connection parameters for a given data source (e.g., JDBC URL, 
username, password; API base URL, authentication token). 

○​ Outputs: An active connection to the specified data source. 
○​ Processing: The service shall use a factory pattern to instantiate the 

appropriate connector based on the source type. Connection details will be 
provided via a configuration file or an administrative UI. 

●​ FR-1.2: Source Schema Discovery 



○​ Description: For structured sources like RDBMS, the service must be able to 
introspect the database schema to identify tables, columns, primary keys, and 
foreign keys. 

○​ Inputs: An active database connection. 
○​ Outputs: A structured representation of the source schema. 
○​ Processing: The service will use JDBC DatabaseMetaData to retrieve schema 

information. This information will be used to guide the transformation process 
in FR-1.3. 

●​ FR-1.3: Data-to-Quad Transformation 
○​ Description: The service must transform data from the source format into a 

stream of raw Statement<String, String, String, String> quads. This process 
must be consistent and reversible where possible [Source: 
ApplicationService.odt, ETL]. 

○​ Inputs: Data retrieved from a source (e.g., a row from a database table). 
○​ Outputs: A stream of quad Statement objects. 
○​ Processing Rules: 

■​ For a relational table row, each column's value shall be transformed into a 
quad: (Context: table_name, Subject: row_primary_key, Predicate: 
column_name, Object: column_value). 

■​ The service must handle data type conversions to their string 
representations. 

■​ The output stream of quads will be published to a dedicated Kafka topic. 
●​ FR-1.4: Data Synchronization 

○​ Description: The service must implement a strategy to keep the framework's 
data synchronized with the source applications. 

○​ Inputs: A schedule (for polling) or a subscription endpoint (for event-driven 
updates). 

○​ Outputs: A continuous stream of new or updated data quads. 
○​ Processing: The service shall support both polling-based synchronization 

(e.g., querying for new rows based on a timestamp or ID) and, where possible, 
event-based synchronization (e.g., listening to database change data capture 
(CDC) events). It must maintain provenance information (source, timestamp) 
for each quad. 

FR-2: Aggregation Service 

This service consumes raw data and enriches it with basic semantic structure. 

●​ FR-2.1: URI to ID Assignment 
○​ Description: The service must consume the raw string quads and assign a 

unique, persistent ID object to every unique URI (string) encountered in the 



subject, predicate, and object positions. 
○​ Inputs: A stream of Statement<String, String, String, String>. 
○​ Outputs: A stream of Statement<ID, ID, ID, ID> (the Reference Model). 
○​ Processing: 

1.​ For each string in the input statement, check if an ID already exists in the 
Registry Service. 

2.​ If not, create a new ID object. 
3.​ The new ID must be assigned a unique prime number [Source: 

ApplicationService.odt, Aggregation]. A centralized counter or algorithm 
must ensure prime uniqueness. 

4.​ The new ID must be assigned a URN. 
5.​ The mapping from the string URI to the new ID is stored in the Registry 

Service. 
6.​ The output statement is constructed using the corresponding ID objects. 

●​ FR-2.2: Type Inference via FCA 
○​ Description: The service must infer the "type" of a subject based on the set 

of predicates associated with it. Subjects sharing the same set of predicates 
are considered to be of the same type [Source: ApplicationService.odt, 
Aggregation]. 

○​ Inputs: A stream of Reference Model statements. 
○​ Outputs: A set of (Subject_ID, rdf:type, Type_ID) statements added to the 

model. 
○​ Processing: 

1.​ Maintain a map Map<Set<Predicate_ID>, Type_ID>. 
2.​ For each Subject_ID, gather the set of all its Predicate_IDs. 
3.​ Look up this set in the map. If a Type_ID exists, assign this type to the 

subject. 
4.​ If not, create a new Type_ID, add it to the map, and then assign it to the 

subject. 
5.​ This process leverages Formal Concept Analysis (FCA), where subjects are 

objects and predicates are attributes. 
●​ FR-2.3: State Inference 

○​ Description: The service must infer the "state" of a subject based on the 
specific values of its attributes (predicates). Subjects of the same type with 
identical predicate-value pairs are considered to be in the same state [Source: 
ApplicationService.odt, Aggregation]. 

○​ Inputs: A stream of Reference Model statements, augmented with type 
information from FR-2.2. 

○​ Outputs: A set of (Subject_ID, hasState, State_ID) statements added to the 



model. 
○​ Processing: 

1.​ Maintain a map Map<Type_ID, Map<Set<Pair<Predicate_ID, Object_ID>>, 
State_ID>>. 

2.​ For each subject, gather the set of all its <Predicate, Object> pairs. 
3.​ Using the subject's Type_ID, look up this set of pairs in the map to find the 

corresponding State_ID. 
4.​ If not found, create a new State_ID and update the map. 

●​ FR-2.4: Embedding Calculation 
○​ Description: The service must calculate an embedding vector for each ID and 

IDOccurrence. 
○​ Inputs: An ID or IDOccurrence. 
○​ Outputs: A double[] embedding vector stored with the ID object. 
○​ Processing: The embedding for an ID shall be a function of its prime ID and 

the embeddings of its occurrences. The embedding for an IDOccurrence is a 
function of its own ID's embedding, its context's embedding, and the 
occurring ID's embedding [Source: ApplicationService.odt, Aggregation]. This 
can be implemented using techniques like graph embedding algorithms (e.g., 
Node2Vec) or simpler compositional methods. The resulting embeddings are 
stored in the Index Service. 

FR-3: Alignment Service 

This service takes the typed and state-inferred graph and aligns it with broader 
semantic models. 

●​ FR-3.1: Domain Ontology Alignment 
○​ Description: The service must match and align inferred types from different 

source applications into a unified "Domains Upper Ontology". 
○​ Inputs: The Graph Model containing inferred types from multiple sources. 
○​ Outputs: A set of owl:equivalentClass or rdfs:subClassOf statements linking 

source types to the upper ontology concepts. 
○​ Processing: 

1.​ Use ML clustering (on embeddings from the Index Service) or FCA-based 
similarity measures [Ref: Similarity measures in formal concept analysis] 
to identify candidate types for alignment. 

2.​ For example, if Type_A from the Inventory app and Type_B from the 
Orders app are found to be highly similar, a new upper concept 
IntegratedProduct can be created, and statements (Type_A, 
rdfs:subClassOf, IntegratedProduct) and (Type_B, rdfs:subClassOf, 
IntegratedProduct) are generated. 



3.​ This alignment is stored in the Naming Service. 
●​ FR-3.2: Dimensional Order Alignment 

○​ Description: The service must arrange entities and their values along ordered 
dimensions (e.g., time, geography, state progressions) in an "Order Upper 
Ontology" [Source: ApplicationService.odt, Alignment]. 

○​ Inputs: Type and state hierarchies from the Aggregation Service. 
○​ Outputs: A set of statements defining ordering relationships (e.g., 

(State_Married, follows, State_Single)). 
○​ Processing: 

1.​ Analyze inferred state hierarchies (e.g., Child -> Young -> Old). 
2.​ Materialize these sequences using a standard vocabulary (e.g., flow:next, 

time:before). 
3.​ For quantitative values, it must align them into dimensional units (e.g., 

map various price attributes to a single Currency dimension). 
●​ FR-3.3: Link Completion 

○​ Description: The service must infer and add missing relationships (links) to 
the graph based on logical patterns. 

○​ Inputs: The aligned Graph Model. 
○​ Outputs: New triple statements representing inferred links. 
○​ Processing: This can be implemented using rule-based inference (e.g., 

SPARQL CONSTRUCT queries or a rules engine like Drools) or statistical 
relational learning models. An example rule is the "uncle" relationship: (?s 
:brotherOf ?o), (?o :fatherOf ?o2) -> (?s :uncleOf ?o2) [Source: 
ApplicationService.odt, Dimensional Features]. 

FR-4: Activation Service 

This service interprets the semantically rich graph to discover and execute application 
behaviors. 

●​ FR-4.1: Use Case (Context) Inference 
○​ Description: The service must analyze the aligned graph to identify potential 

use cases, modeled as DCI Contexts. A Context is defined by a set of 
interacting Roles [Source: ApplicationService.odt, Activation]. 

○​ Inputs: The aligned Graph Model. 
○​ Outputs: A catalog of Context definitions stored in the Registry Service. 
○​ Processing: Identify patterns of interaction between different types in the 

graph. For example, a consistent pattern of Order types being created by 
Customer types and fulfilled by Inventory types would be inferred as a Sales 
context, with Buyer, Seller, and Product as its Roles. 

●​ FR-4.2: Role Fulfillment Inference 



○​ Description: The service must determine which entity types are capable of 
playing which Roles in a given Context. 

○​ Inputs: A Context definition. 
○​ Outputs: Mappings between Roles and the entity types that can fulfill them. 
○​ Processing: This is based on matching the attributes required by a Role with 

the attributes possessed by an entity type. 
●​ FR-4.3: Interaction Instantiation and Execution 

○​ Description: The service must allow a client (via the Producer API) to 
instantiate a Context into a concrete Interaction by assigning specific Actors 
(instances) to the Roles. It must then manage the state transitions of this 
Interaction. 

○​ Inputs: A Context ID and a map of Role IDs to Actor IDs. 
○​ Outputs: A new Interaction instance with a unique ID and an initial state. 
○​ Processing: 

1.​ Create a new Interaction resource. 
2.​ Link the assigned Actors to the Interaction. 
3.​ Determine the initial step in the Interaction's dataflow. The dataflow logic 

itself is inferred from existing transaction patterns or defined declaratively 
[Source: ApplicationService.odt, Activation]. 

4.​ Subsequent calls to execute steps in the Interaction will trigger state 
transitions according to the defined dataflow. 

●​ FR-4.4: Goal-Based Scenario Generation 
○​ Description: The service must be able to respond to a query describing a 

desired outcome by generating a list of possible Interactions (and potential 
Actor assignments) that could achieve it [Source: ApplicationService.odt, 
Producer]. 

○​ Inputs: A description of a goal (can be structured or natural language 
processed by Spring AI). 

○​ Outputs: A list of candidate Interaction plans. 
○​ Processing: This requires backward-chaining inference. Starting from the 

desired final state, the service works backward through the possible dataflow 
transitions to find valid starting points and actor combinations. 

FR-5: Producer API Service 

This service is the single, unified gateway for external clients to interact with the 
framework. 

●​ FR-5.1: Expose Contexts as Navigable Resources 
○​ Description: The API must provide endpoints to list all available Contexts (use 

cases). 



○​ Inputs: An HTTP GET request to /contexts. 
○​ Outputs: A HAL-formatted JSON response listing available Contexts, each 

with a _link to start a new Interaction. 
●​ FR-5.2: Manage Interaction Lifecycle 

○​ Description: The API must provide endpoints to create, retrieve, update, and 
execute Interactions. 

○​ Inputs: HTTP POST, GET, PUT requests to /interactions and /interactions/{id}. 
○​ Outputs: HAL-formatted JSON representations of Interaction resources, with 

links for valid next actions (e.g., "next_step": { "href": 
"/interactions/{id}/execute" }). 

●​ FR-5.3: Generic Form/Wizard Metadata Generation 
○​ Description: When a client needs to provide data for an Interaction step, the 

API must respond with metadata describing the required fields, types, and 
constraints. 

○​ Inputs: An HTTP GET request to a resource representing an Interaction step. 
○​ Outputs: A JSON object describing the form fields (e.g., using a schema like 

JSON Schema or a custom format) [Source: ApplicationService.odt, 
Producer]. 

FR-6: Helper Services (Functional View) 

●​ FR-6.1: Registry Service Functions 
○​ FR-6.1.1: Statement Storage: Must provide CRUD operations for Statement 

objects across all four model layers. 
○​ FR-6.1.2: SPARQL Endpoint: Must expose a standard SPARQL 1.1 endpoint 

for complex queries against the entire graph model [Source: 
ApplicationService.odt, Registry Service]. 

○​ FR-6.1.3: Provenance Tracking: For every statement, it must store metadata 
about its source, the service that created/modified it, and the timestamp. 

●​ FR-6.2: Naming Service Functions 
○​ FR-6.2.1: Ontology Storage: Must provide an interface to store and manage 

the Domains and Order upper ontologies. 
○​ FR-6.2.2: Alignment Lookup: Must provide a function to resolve an inferred 

type/predicate to its corresponding concept in an upper ontology. 
●​ FR-6.3: Index Service Functions 

○​ FR-6.3.1: Embedding Storage: Must provide an interface to store and 
retrieve the embedding vector for any given ID. 

○​ FR-6.3.2: Similarity Search: Must provide a function that, given an ID and a 
context, returns a ranked list of the most similar IDs based on cosine similarity 
of their embeddings [Source: ApplicationService.odt, Index Service]. 


	Functional Requirements Specification: Unified Application Integration Framework 
	Version 1.0 
	Date: 2025-07-14 
	1. Introduction 
	1.1 Purpose 
	1.2 Scope 

	2. Functional Requirements 
	FR-1: Datasource Service 
	FR-2: Aggregation Service 
	FR-3: Alignment Service 
	FR-4: Activation Service 
	FR-5: Producer API Service 
	FR-6: Helper Services (Functional View) 



