
Application Service

Overview

The goal is to allow to integrate diverse existing / legacy applications or API services
by parsing theirs backend’s source data (in tabular, XML / JSON, graph, etc. forms)
and, by means of aggregated inference using semantic models over sources schema
and data, obtain a layered representation of the domains and data of source
applications to be integrated until reaching enough knowledge as for being able to
represent application’s behaviors into an inferred use-cases Activation model.

Expose the Activation model inferred use-cases types (Contexts) and transactions
use-cases instances (Interactions) through a Producer generic use-case browser
client / API. Allow to browse and execute use-cases Contexts and Interactions in and
between integrated applications, possibly enabling use cases involving more than
one source integrated application. Example: Inventory integrated application and
Orders integrated application interaction. When Inventory application level of one
product falls below some threshold an Order needs to be fulfilled to replenish the
Inventory with the products needed for operational levels.

The concept is to manage raw Datasources data and schema (inferred) into layers of
Aggregation, Alignment and Activation services. Then the Producer component is
able to parse and render Activation model into an application (API / generic frontend)
Contexts and Interactions browser. An Augmentation service provides for
orchestration between the three main layers of the service architecture and provides
for interaction between Datasources and Producer services.

Models Architecture

The idea is to enable model representations being equivalent (containing the same data) in
various layers to be switched back an forth between each layer representation to be used in
the most appropriate task for a given representation.

Reification: Statements could be about any type of URI (URIOcurrence(s)) in which
Statements subjects, predicates and objects occurrences plays determinate role
(Kind: Type / State) regarding this Statement occurrence context. Statements
themselves are URIOccurrence(s) with their URIOccurrence uri being their subject
URI, their statement being the statement itself (this) and their URIOccurrence Kind
uri being their subject uri, their Kind type its predicate Kind Type and its Kind state
being its object Kind State.

Those entities are to be able to be retrieved and their representations should enable
functional programming techniques to be applied to streams of their representations
to perform Aggregation, Alignment and Activation.

The nodes and arcs of the graph triples are URIs and should have a "retrievable"
internal representation with metadata that each service / layer populates through the
"helper" services: Registry, Naming (NLP) and Index service shared by each layer.
Describe core model classes serialization in JSON.

Materialize. Reification of RDFS / OWL. Ontology Schema Statements. Same as.
Schema (alignment) statements materialization.

Reference Model
(Aggregation / Grammar)

ID
- primeID : long
- urn : string
- occurrences : IDOccurrence[]
- embedding : double[]

IDOccurrence : ID
- occurringId : ID
- context : IDOccurrence
- embedding : double[]

Statement : IDOcurrence (Property Graphs)
- context : ID
- subject : ID
- predicate : ID
- object : ID

Statements

Data: (IDOccurrence(ID), IDOccurrence(ID), IDOccurrence(ID))
Schema: (ID(IDOccurrence), ID(IDOccurrence), ID(IDOccurrence)

FCA Contexts. Prime IDs. Embeddings

FCA Prime IDs (Embeddings): (link Sowa)

Each ID is assigned a unique prime number ID at creation time. FCA Context / Lattices built
upon, for example for a given Data / Schema predicate / arc occurrence role, having the
context objects being the statement occurrence subjects and the context attributes the

statement occurrence objects, Predicate FCA Context: (Subjects x Objects). For a subject
statement occurrence the context is: Subject FCA Context: (Predicates x Objects and for an
object statement occurrence role the context is: Object FCA Context (Subjectx x Predicates).

Embeddings: For an ID, its prime ID number plus all ID’s occurrences embeddings. For an
IDOccurrence, its ID class embeddings, its occurring ID embeddings and its context
embeddings.

Embeddings similarity: IDs, IDOccurrences sharing the same primes for their embeddings in
a given context. FCA Concept Lattice Clustering. (TODO).

Statements:
(Context, Attribute, Value)

TODO:
FCA / Multidimensional features (OLAP like):

Dimensions: Time, Product, Region
Units: Month / Year, Category / Item, State / City

Context : (Context, Attribute, Value)

Examples:
(soldDate, aProduct, aDate)
((soldDate, aProduct, aDate), Product, aProduct)
(((soldDate, aProduct, aDate), Product, aProduct), Region, aRegion)

URIs are identifiers (Strings) and have assigned an unique prime number ID at their
creation time. FCA (Formal Concept Analysis) techniques could be employed to build
a concept lattice for each URI in a given context where the product of the primes of
the URI context occurrence concept lattice attributes and values URIs are employed
to identify the concept the URI belongs to and to subsume other possible attributes.

Graph Model
(Alignment, Semantics, Sets / Kinds)

Context : IDOccurrence (Set)

Subject : IDOccurrence (Set)

Predicate : IDOccurrence (Set)

Object : IDOccurrence (Set)

Kind<AttributeType, ValueType> : Interface
- superKind : Kind

- attributeValues : Tuple<AttributeType, ValueType>[]

Reification: Kind implementations extends / plays Subject, Predicate and Object roles in
statement.

SubjectKind : extends Subject, implements Kind<Predicate, Object> (Predicates intersection
Objects)
- occurrences : Subject[]

PredicateKind : extends Predicate, implements Kind<Subject, Object> (Subjects intersection
Objects)
- occurrences : Predicate[]

ObjectKind : extends Object, implements Kind<Predicate, Subject> (Predicates intersection
Subjects)
- occurrences : Object[]

The underlying model Statements can be represented as sets being Subjects,
Predicates and Objects three sets where the intersection of Predicates and Objects
sets conforms the “Subject Kinds” set, the intersection of the Subjects and Objects
sets conforms the “Predicate Kinds” set, the intersection of the Subjects and
Predicates sets conforms the “Object Kinds” set and the intersection of the three sets
conforms the “Statements” set.

Sets based inference and functional algorithms should leverage this form of
representation of the model graph.

Statements

Data: Context(Subject, Predicate, Object)
Schema: Context(SubjectKind, PredicateKind, ObjectKind)

Activation Model
(Activation, DOM / DCI / Actor, Role. Pragmatics)

Instance : IDOccurrence
- id : ID
- label : string
- class : Class
- attributes : Map<string, Instance>

Class : Instance
- id : ID
- label : string
- fields : Map<string, Class>

Context
- roles : Role[]

Role : Class
- previous : Map<Context, Dataflow>
- current : Map<Context, Dataflow>
- next : Map<Context, Dataflow>

Dataflow : Context
- role : Role
- rule : Rule (TODO)

Interaction
- actors : Actor[]

Actor : Instance
- previous : Map<Context, Transform>
- current : Map<Context, Transform>
- next : Map<Context, Transform>

Transform
- actor : Actor
- production : Production (TODO)

Statements

Data: (Interaction, Actor, Transform)
Schema: (Context, Role, Dataflow)

COST (Conversational State Transfer)

REST API is in initial state for a given context. The client retrieves the ‘current’ role context
dataflow representation instance (Interaction, Actor, Transform), process it (DSL, ‘Activates’
and invokes API for the given representation Transform) and posts back the activated
representation. The service then is able to determine the next Dataflow Role representation
instance in a given use case (Context). TODO: Populate (infer) Dataflow Roles rules (state
flows), Populate (infer / execute) Transform Actors productions using data encoded in the
proposed models.

The goal is to integrate the domains and functionality of various applications into a
unified and integrated API or interface (unified front end). Given all the application /
services to integrate: Extract all data sources from the applications to be integrated
and represent them in a unified way. Perform Augmentation (Aggregation, Alignment
and Activation) over the source raw data and schema to achieve an unified interface
exposed through an unified API Consumer Service which exposes the Contexts (Use
Cases) and Interactions (Use Case executions) inferred and possible in and between
integrated applications (REST API).

Components (Services) Architecture

The idea is that by doing an "ETL" of all the tables / schemas / APIs / documents of
your domains and their applications, translating the sources into triples (nodes, arcs:
knowledge graph) the framework can infer your entity types, relationships and the
contexts ("use cases") possible in and between your integrated applications providing
means for a generic overlay (Producer API Service, generic front end) in which to
integrate in a unified, conversational and "discoverable" interface (API, web assistant,
“wizards”) the integrated contexts interactions in and between the source integrated
applications.

To unify and integrate diverse data sources, transform all the information from each
source into triples (Entity, Attribute, Value) into a graph in the "Datasources"
component. The other components / services deal with type / state inference
(Aggregation), relationships and equivalences / matching / ordering (dimensional)
inference (Alignment) and use case descriptions / executions (Activation) then
exposing the description of the possible contexts and their interactions in and
between the integrated applications. The user interface component could be a
generic front end or an API endpoint to interact according to the metadata of each
context (use case) augmentation allowing to make possible Contexts executable and
their executions (Interactions) browseable.

Simple example (use cases): I have fruits and vegetables, I can open a greengrocer's.
I want to open a greengrocer's, I need fruits and vegetables. Actors: supplier,

greengrocer, customer. Contexts / Interactions: supply, sale, etc.

Another example: I have these indicators that I inferred from the ETL, what reports
can I put together? I want a report about these aspects of this topic, what indicators
(roles) do I need to add.

Ultimately, it is about creating a "generator" of unified interfaces for the integration
of current or legacy applications or data sources (DBs, APIs, documents, etc.) in order
to expose diverse sources in an unified way, such as a web frontend (generic use
case wizards), chatbots, API endpoints, etc. integrating the functionality of integrated
applications use cases relating each other in an unified forms flow layout (wizards).

Services Layout

Services: Reactive Endpoints. Consumers / Producers <MessageType>. WebFlux:
onMessage (post), nextMessage (subscribe). Reactive Consumers / Producers with
Message IO in context (session / dialog history) #EAP.

All services should have an administration / management interface for each step of
the workflow. Example: Add datasources, view inferred types and their instances,
view aligned upper ontologies (endpoint), view current contexts / interactions,
browse available API endpoints definitions.

The communcation between services is in the form of serialized core model
statements messages and events which each service process and augments in a
functional reactive manner a core model graph in the helper Registry Service,
performs upper ontologies alignment and matching in the helper Naming Service
and provides for a repository of aligned resources to be activated (created, retrieved
and updated) in the helper Index Service.

Application Service

Datasource Service

ETL / Synchronization with the backend datasources of the integrated applications
providing and consuming graph models streams handling provenance and
comsumption / updating of the integrated applications backend datasources.

One basic translation from tabular data could be to represent a row in a source
application database as a triple in the form: (S: Row PK value, P: Row Column Name,
O: Row Column Value) for a given PK value).

Inputs / Outputs: Core Model Classes Statements (see below). SPO Triples.

Communication with the Datasource Service, integrated applications data retrieval
and synchronization / update (provenance) is between the Datasource Service and
the Augmentation Service. Augmentation Service dispatch messages and events with
context between the Datasource Service and the orchestrated services via Helper
Services messages and events, retrieving the needed information and providing
Datasource Service with updated information.

Augmentation Service

Handles Services Subscriptions. Dispatch Kafka (Reactor) Streams. Saga Pattern
(MessageType logs). Reactive Consumer / Producer with Message IO in context
(session / dialog history) #EAP.

Orchestrates core services (Aggregation, Alignment, Activation) feeding the
Aggregation service with the graph models streams provided from the (synchronized)
Datasources Service and provides the Consumer API Service with the Activation
streams facilities to instantiate Contexts (use cases) and perform Interactions
(transactions).

Provides helper (orthogonal) services access to the orchestrated services
(Aggregation, Alignment and Activation) which enable for the functional (streams)
manipulation of the Core Model Classes Statements (see below) between services.

Aggregation Service

Consumes: DataSources (CSPO) URI Strings Statements.
Produces: Reference Model (ID, ID, ID, ID) Statements.
Features:

• IDs / Embeddings.
• FCA Contexts (Clustering).
• Basic types / attributes inference (FCA).

Given a set of raw SPO triples from Datasources Service, performs type inference
(common attributes aggregation) and state inference (common attribute values
aggregation) and performs type / state hierarchies inference.

Type inference: Subjects with the same Attributes belong to the same type.
State inference: Subjects with Attributes (types) with the same Values are in the same
state.

Type / State hierarchies:

Entities with the same attributes are considered as of the same type, superset /
subset of attributes: type hierarchy. Attributes with the same values, same states.
Superset / subset of values / states: state hierarchy.

Types are ordered in respect to their common attributes. Most specific types (more
common attributes) are considered to inherit from types with less common attributes
included into the more specific types. A more specific type is considered to be “after”
a more generic type (Person Employee). Regarding state values, hierarchies are to →
be considered regarding attribute values, being resources with common state
grouped into hierarchies (Marital status attribute: Single Married Divorced).→ →

Order: Inferred via Type / State hierarchies. Types: Married extends from Single,
Divorced extends from Married. States: Young extends from Child, Old extends from
Young. Cycles in types resolved by state (Unemployed, Employed, Unemployed). Used
in (2.4) Alignment Service Ordering upper ontology.

Map<Subject, Set<Predicate>
Map<Set<Predicate>, Type>

Map<Type, Set<Map<Predicate,Value>>>
Map<Set<Map<Predicate,Value>>, State>

Inputs / Outputs: Core Model Classes Statements (see below). Leverages ML
Classification.

Alignment Service

Consumes: Reference Model (ID, ID, ID, ID) Statements.
Produces: Graph Model (CSPO) Statements.
Features:

• Upper (inferred) ontology alignment.
• Links completion, Ontology Matching.
• Types / Kinds Inference. Order (hierarchies / dimensional).

Aligns (links / attributes, ontology matching, upper ontologies alignment)
Aggregation Statements. Augments overall model.

Upper ontologies:

a) Domains: Aligned integrated application domains inferred common concepts and
relationships. Infer equivalent concepts and relationships between source

applications domains and populate Domains upper ontology. Materialize integrated
domains concepts and relationships mappings to inferred upper concepts and
relationships. Abstract common meaning (semantics) of source applications concepts
and relationships to enable inter domain contexts interactions.

b) Order: Dimensional arrangement of entities attributes and values. Align measures
(attribute values) into dimensional units. According Aggregation Service types and
states hierarchies establish order relationships (before, greater than, contains, etc.)
between measures. Materialize measures relationships and map dimensional units
measures occurrences into the materialized order relationships. See: [5. Dimensional
Features].

Ontology Matching: Find and map equivalent entities and relationships domains
occurrences (Core Model Classes), align core model resources into Domains upper
ontology.

Links / Attributes inference: Given an aligned model (mapped to Domains upper
ontology) infer possible links / relationships between resources and possible
attributes and their values.

Ordering: Order dimensional upper ontology alignment. Type / State hierarchies

Inputs / Outputs: Core Model Classes Statements (see below). Leverage ML
Clustering.

Activation Service

Consumes: Graph Model (CSPO) Statements.
Produces: Activation Model DCI (Context, Interaction, Role, Actor) Statements.
Features: Use case inference / execution. Browse / Run transactions across integrated
applications.

Activates Resources discovering from their types, states and order relationships
which Use Cases (Contexts) are available in and between Resource types, states and
order and which Roles are played by which types in state and order and allows to
instantiate Transactions (Use Case Contexts Interactions) assigning Actors Resources
to play specific Context Use Case Roles. The business logic of each Transaction (data
flow) between Actors of different integrated domains applications playing Roles in a
Context Interaction is to be inferred from the Alignment Service upper ontologies
(Domains and Order).

Contexts, Roles, Interactions and Actors are inferred and aligned to an Activation
upper ontology leveraging Alignment Service Domains and Order upper ontologies.

Activation upper ontology should enable Consumer API Service to expose available
Contexts, Contexts state (Interactions instances), instantiate Contexts into new
Interactions and fulfill Interactions Context Roles with the playing actors for this
transaction and performs any steps involved in the creation of the current
transaction (steps, forms flow, wizard like interface).

Activation upper ontology should be able to be queried by the Consumer API Service
to build an Context Interaction scenario given a desired Context Interaction
transaction outcome, letting the Activation Service populate possible Context Roles
Actors for the desired outcome and showing possible scenarios to the user.
Activation upper ontology follows the guidelines of the DCI: Data, Context and
Interactions design pattern, letting the part of the transactions ordered steps /
invocations data flow to be inferred from the current aligned Context Interactions
transactions instances materialized in a declarative fashion into the model.

Data flow encoding:

(Contexts / Roles, Interactions, Actors) : Kinds(Type, State).

(Buy, Product, Good
(Good, Price, Amount)
(aBuy, contextType, Buy) : has ContextType Interaction→
(aBuy, Product, aProduct
(aProduct, Price, anAmount)

(anAmount, buyer seller); (aProduct, seller buyer);→ →

Infer / Materialize / Perform operations. Encode functional mappings: assign /
transform roles attributes.

Inputs / Outputs: Core Model Classes Statements (see below). Leverages ML
Regression.

Contexts, Roles / Interactions, Actors
Contexts Actions flows and actions behavior declaratively stated from inference into
dynamically stated logic / dataflow (XSLT Transforms generated from inference) into
flows of reactive streams. SPARQL Backend CRUD, MCP Tools / Server.

Producer Service

Communication with the Producer API Service, unified REST APIs exposure, is between
the Consumer API Service and the Augmentatio Service. Augmentation Service dispatch
messages and events between the Consumer API Service and the orchestrated services
via Helper Services messages and events, retrieving the needed information and providing

Consumer API Service with updated information (dialog conversational state).

Find relationships and equivalences between the data of the applications to be
unified and their possible interactions. Use cases in and between applications.

Expose through an API the possible interactions to be invoked, their contexts roles
and transactions interactions actors, and synchronize transaction data with the
original applications. Provide a generic API Service front end (REST / Web). Provide a
generic forms front end for rendering Contexts Interactions instances.

One should be able to ask for Contexts Interactions with a desired outcome, via
inference performed determining which Actors should play which Roles in which
Interactions (state, order) to achieve which Context Interactions results are desired.

Example: Launch new product to the market Context. Manufacturing, Inventory,
Orders Delivery and Public Advertising integrated applications interacts as Actors
with their respective roles in each step of the Launch new product to the market use
case (Context) instance (Interaction).

One should be able to navigate previous Interactions (Contexts executions) or to
create new ones (Contexts invocation).

Generic REST API Frontend: Exposes Activation Service Contexts Use Cases and allows
to create, browse, update or continue existing Contexts Interactions transactions.

Possible Scenarios: Given a desired outcome, browse possible actors in context roles
that would fulfill the desired result.

Gestures (Functions. Content Type available verbs). Domain Driven Design.

Forms / Flows: Roles Placeholders, Actor Values given Context. HATEOAS / HAL.

Inputs / Outputs: Core Model Classes Statements (see below). Leverages ML
Regression.

Services Dataflow (see Protocols)

DataSource ApplicationService Augmentation Aggregation Alignment ↔ ↔ ↔ ↔ ↔
Activation Augmentation ApplicationService Producer ↔ ↔ ↔

Helper Services

MCP Host. Servers. Structured Outputs / Inputs (prompt templates).
DIDs / FCA Contexts / PrimeIDs.
Index / Embeddings / Similarity.
Shared State (representations aware backend).
Message Types Marshall / UnMarshall (models / layers interoperability).
#Tools

Index Service

TODO

Repository of aligned resources to be activated (created, retrieved and updated) in
the Activation service via similarity resolution. Dialog state based interface
(Conversational State Transfer).

Resolve possible / actual contexts / interactions given resource representations.
Resolve interaction possible / populated context templates (actors in roles
placeholders).

Given a Resource representation in a given context and a given verb (Content Type
method), retrieve the next Resource representation in the Activation flow (form with
Content Type placeholders). Consumer fills in forms placeholders and the index is
asked to retrieve again the next Resource representation for a given verb in the
Activation flow.

Streams / events based interfaces.

Naming Service

TODO

Upper ontologies (Domains, Dimensional Order and Activation) matching and
alignment.

Sets (See: [4 Sets Representation]) internal inference model representation. Sets API
and functional set processing operations for matching and alignment tasks.

FCA (Formal Concept Analysis) contexts representation. Concepts Lattices for
concepts alignment and attribute inference.

Links / relationships resolution in contexts. Attribute values, Context interaction roles.
Order inference materialization.

SPARQL Endpoint. URI Based retrieval. Streams / events based interfaces.

Registry Service

TODO

Core graph model repository. To store / retrieve / share results of streams functional
processing in each Augmentation (Aggregation, Alignment and Activation)
orchestrated services. Hierarchical key / value store. TMRM (ISO Topic Maps
Reference Model). Provenance repository (applications datasources synchronization).
Embeddings.

SPARQL Endpoint. URI Based retrieval. Streams / events based interfaces.

Protocol (Message Types) Architecture

Context / History (session) aware Dialogs #EAP

TODO

CSPO URI Strings Statements

Statement<String, String, String, String>.

Reference Model Statements

Statement<ID, ID, ID, ID>.

Graph (Sets) CSPO Statements

Statement<Context, Subject, Predicate, Object>.

Activation (DCI) Statements

Statement<Context, Interaction, Role, Actor>.

Interactions (Reactive Services Messages Dataflow)
Architecture

Functional (Use Case) Architecture

Integration Example

Configured Datasources of Applications to integrate from (examples). Produces
(CSPO) URI Strings Statements Streams.
Aggregation: ETL Consumes previous Statements, Produces Reference Model IDs /
IDOccurrences Statements Streams.

Prime IDs / DIDs Assignation. DCI Contexts Concept Lattices Tables population.

Alignment matches sources equivalences.

Activation discovers available Contexts Interactions and past Interactions
Transactions.

Producer UI selects next step from current state (available transaction or next if
previous state). Submits Context Interaction Role Actor Form: Browses previous or
perform next.

Activation consumes Producer statements and forwards to Alignment for backend
sync processing.

Alignment matches Activation inferred Contexts into DataSources source data.

Aggregation converts Alignment source aligned data into Datasource quads.

Augmentation submits stream for updating and syncing to Datasource.

TODO

Dimensional Features

Dimensional Upper Ontology.

Type / State hierarchies.

Entities with the same attributes are considered as of the same type, superset /
subset of attributes: type hierarchy. Attributes with the same values, same states.
Superset / subset of values / states: state hierarchy.

Types are ordered in respect to their common attributes. Most specific types (more
common attributes) are considered to inherit from types with less common
attributes. A more specific type is considered to be “after” a more generic type
(Person Employee). Regarding state values, hierarchies are to be considered →
regarding attribute values, being resources with common state grouped into
hierarchies (Marital status attribute: Single Married Divorced).→ →

Order encoding (octal).

Common Attributes between Kinds occurring in linking Statements (S1, Attr1, O1; O1,
Attr2, O2; S1, Attr2, O2). Paired Attributes by Kind. Example: Project / Language;
Developer / Project; Developer / Language.

Attributes paths attribute closures: S, brotherOf, O; O, fatherOf, O2; S unkleOf O2.

Semiotics: Context / Sign, Role / Object (SPO). Recursive (parts / whole).

Data / Information / Knowledge Services Layers separation:

Data: (Aggregation Statements)
Type (Attributes) / State (Attribute Values)
Example: Product price.

Information: (Alignment Statements

Matching / Linking (Domains upper ontology alignment) / Ordering (Dimensional
upper ontology alignment)
Example: Product price variation.

Knowledge: (Activation Statements)
Contexts Roles
Interactions Actors
Example: Product price tendency (increase / decrease) over time (ordered price
values variation across time dimension).

Dimensional Relationship Statements:
Measures: (Dimension, Unit, Value)

Speed Measure: (Speed, “Kilometers per hour”, 120)
Distance Measure: (Distance, “Kilometers”, 120)
Time Measure: (Time, “Hours”, 1)

Translations:
Speed / Time: (speed, distance, time);
Speed / Distance: (speed, time, distance);
Distance / Time: (distance, Speed, Time);
Distance / Speed: (distance, Time, Speed);
Time / Speed: (time, distance, speed);
Time / Distance: (time, speed, distance);

Features to explore:

There is something called "Web3" that uses decentralized blockchain for the
management of identifiers (URIs as DIDs: W3C Decentralized Identifiers*) and their
interactions and semantics (smart contracts for example). Since the nodes and arcs of
the graphs are URIs, it would not be unreasonable to use the Java APIs that are
available on GitHub for this (DIDs) to facilitate the interaction of different instances or
deployments of this framework between different organizations.

[Explain W3C DIDs Use Cases in the microservices architecture]

The following is a spare list of topics / keywords which should be considered
regarding implementation features and related tools that could be used during
implementation:

Semantically Annotated Hypermedia Resources / Objects Addressing. HyTime / XML.
ISO Topic Maps / ISO 15926. W3C RDF. Addressable Hypermedia / Hypermedia

Addressing Augmentation and linking (actors, roles and contexts interactions).

TMRM (Topic Maps Reference Model) / TMDM (Topic Maps Data Model) like SPO URIs
underlying representation embeddings.

Representation / Functional Transforms: XML / Dynamic XSLT (codat). De
referenceable Resources Representations (functional layers 'views'). Reactive
Functional Engine (service layers streams XML / XSLT).

Semiotic Layer: Objects / Signs Concepts Occurrences in Contexts. Hypermedia
Augmentation / Annotation: Aggregation, Alignment, Activation Functional
Definitions (domain / range). Occurrences.

Layers inputs / outputs. Designer (Service layer management interface).

Streams Flow. Layers Functions.

Function<URI / Resource, URI / Resource>(Statement[] stats / URI strategy).
Functional Monadic Parser.

Functional "getters" / "setters" (Monads traversal).

Association rule mining. Regression.

Activation: Resource Content Type Capabilities.
 Buy-able (Transaction, Product)◦
 Identify-able (Features, Image)◦
 Locatable (Space, Position)◦

Domains. Alignment. Upper Ontologies.

Encoding (definitions / assertions: rules / grammar / productions).

TMDM / TMRM, RDF / OWL (ISO).

Encoding: Naming, Index, Registry. Context / Roles Definitions, Interactions / Actors
Assertions. Apply Functional Transforms.

Encoding: Semantic Virtual Machine.

Representation Levels. Transforms. Context / Sign / Concept / Instance level
operations (dataflow / transforms).

Drop-able (drivers) ML Models (Activation). LLM Outlined (Naming, Index, Registry)

functional abstractions integration backed (MCP Activation / streams contexts
resolution).

Core DOM. Type Object / Actor Role Pattern Implementatíon. DCI. Qi4j. DDD.

Upper / Domain (inferred / aligned) DCI Use Cases ontologies alignment. Fine
grained (operations / dataflow). Coarse grained (transactions).

LLMs / MCP / Agents / ML Foundation APIs. SCDF Like, tools / streams / events
bindings. Functional Services / Workflows. GraphNNs. Ontology Alignment /
Matching.

Lectures / Bookmarks. Syllabus.Summarize (outline): Features, Lectures / Bookmarks
refs. Spring AI + MCP + Reactive Functional Streams + FCA (embeddings), DCI, etc.
Encodings (embeddings). Inference server. Ollama.

Semantic Virtual Machine (embeddings). State transitions dataflow / behaviors
schema / instances (previous, current, next). Embeddings (IndexService, Blockchain
DIDs). Semantic Virtual Machine: Graph traversal layout arrangements. Schema /
instance embeddings possible states flow (previous , current, next) dataflow given
(other flows traversal) context. Possible graph transitions.

Tools / References

FRAMEWORKS:

https://docs.spring.io/spring-ai/reference/index.html

https://projects.eclipse.org/projects/ee4j.jca/developer

https://rdf4j.org/

https://rdf4j.org/documentation/programming/spring/

https://spring.io/microservices

https://spring.io/reactive

https://spring.io/event-driven

FCA:

https://en.wikipedia.org/wiki/Formal_concept_analysis

https://docs.spring.io/spring-ai/reference/index.html
https://en.wikipedia.org/wiki/Formal_concept_analysis
https://spring.io/event-driven
https://spring.io/reactive
https://spring.io/microservices
https://rdf4j.org/documentation/programming/spring/
https://rdf4j.org/
https://projects.eclipse.org/projects/ee4j.jca/developer

https://arxiv.org/abs/1703.02819

https://jfsowa.com/logic/math.htm#Lattice

https://github.com/julianmendez/fcalib

https://arxiv.org/pdf/1109.2140

https://arxiv.org/pdf/cs/0410065

https://www.researchgate.net/publication/
221237700_Aligning_Ontologies_through_Formal_Concept_Analysis

https://www.researchgate.net/publication/
221186115_Similarity_measures_in_formal_concept_analysis

https://hal.science/hal-00180601/document

https://scispace.com/pdf/a-proposal-for-combining-formal-concept-analysis-and-
27rx6aknzx.pdf

https://www.upriss.org.uk/papers/arist.pdf

https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=41913b3effe31d222ac661b9c6bebfb2490c96e3

https://www.researchgate.net/publication/289938076_Faceted_Document_Navigation

https://www.researchgate.net/publication/
220923352_Formal_Concept_Analysis_for_Knowledge_Discovery_and_Data_Mining_Th
e_New_Challenges

https://www.researchgate.net/publication/
46429981_Formal_Concept_Analysis_in_Knowledge_Discovery_A_Survey

https://www.researchgate.net/publication/
223759298_Formal_concept_analysis_for_an_e-learning_semantic_web

https://www.researchgate.net/publication/
263243733_Knowledge_representation_and_processing_with_formal_concept_analysi
s

XML:

https://www.researchgate.net/publication/263243733_Knowledge_representation_and_processing_with_formal_concept_analysis
https://www.researchgate.net/publication/263243733_Knowledge_representation_and_processing_with_formal_concept_analysis
https://www.researchgate.net/publication/263243733_Knowledge_representation_and_processing_with_formal_concept_analysis
https://www.researchgate.net/publication/223759298_Formal_concept_analysis_for_an_e-learning_semantic_web
https://www.researchgate.net/publication/223759298_Formal_concept_analysis_for_an_e-learning_semantic_web
https://www.researchgate.net/publication/46429981_Formal_Concept_Analysis_in_Knowledge_Discovery_A_Survey
https://www.researchgate.net/publication/46429981_Formal_Concept_Analysis_in_Knowledge_Discovery_A_Survey
https://www.researchgate.net/publication/220923352_Formal_Concept_Analysis_for_Knowledge_Discovery_and_Data_Mining_The_New_Challenges
https://www.researchgate.net/publication/220923352_Formal_Concept_Analysis_for_Knowledge_Discovery_and_Data_Mining_The_New_Challenges
https://www.researchgate.net/publication/220923352_Formal_Concept_Analysis_for_Knowledge_Discovery_and_Data_Mining_The_New_Challenges
https://www.researchgate.net/publication/289938076_Faceted_Document_Navigation
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=41913b3effe31d222ac661b9c6bebfb2490c96e3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=41913b3effe31d222ac661b9c6bebfb2490c96e3
https://www.upriss.org.uk/papers/arist.pdf
https://scispace.com/pdf/a-proposal-for-combining-formal-concept-analysis-and-27rx6aknzx.pdf
https://scispace.com/pdf/a-proposal-for-combining-formal-concept-analysis-and-27rx6aknzx.pdf
https://hal.science/hal-00180601/document
https://www.researchgate.net/publication/221186115_Similarity_measures_in_formal_concept_analysis
https://www.researchgate.net/publication/221186115_Similarity_measures_in_formal_concept_analysis
https://www.researchgate.net/publication/221237700_Aligning_Ontologies_through_Formal_Concept_Analysis
https://www.researchgate.net/publication/221237700_Aligning_Ontologies_through_Formal_Concept_Analysis
https://arxiv.org/pdf/cs/0410065
https://arxiv.org/pdf/1109.2140
https://github.com/julianmendez/fcalib
https://jfsowa.com/logic/math.htm#Lattice
https://arxiv.org/abs/1703.02819

https://en.wikipedia.org/wiki/ISO_15926

https://topicmaps.org/

https://en.wikipedia.org/wiki/HyTime

https://www.hytime.org/papers/htguide.html

https://www.isotopicmaps.org/

https://en.wikipedia.org/wiki/XForms

https://www.w3schools.com/xml/xsl_intro.asp

https://www.w3schools.com/xml/xpath_intro.asp

https://www.w3schools.com/xml/xquery_intro.asp

https://www.w3schools.com/xml/xml_xlink.asp

DCI:

https://en.wikipedia.org/wiki/Data,_context_and_interaction

https://dci.github.io/documents/

https://www.cs.sjsu.edu/~pearce/oom/patterns/new/Riehle.pdf

https://www.cs.sjsu.edu/~pearce/oom/patterns/analysis/Actor.htm

https://users.exa.unicen.edu.ar/catedras/faya2000/rop.pdf

https://www.martinfowler.com/apsupp/roles.pdf

https://micro-workflow.com/PDF/domaw.pdf

https://www.researchgate.net/publication/228831333_Dynamic_object_model

https://polygene.apache.org/

https://dzone.com/articles/dci-architecture-is-visionary

https://poetisania.com/val/pub/DCIexp-c.pdf

https://poetisania.com/val/pub/DCIexp-c.pdf
https://dzone.com/articles/dci-architecture-is-visionary
https://polygene.apache.org/
https://www.researchgate.net/publication/228831333_Dynamic_object_model
https://micro-workflow.com/PDF/domaw.pdf
https://www.martinfowler.com/apsupp/roles.pdf
https://users.exa.unicen.edu.ar/catedras/faya2000/rop.pdf
https://www.cs.sjsu.edu/~pearce/oom/patterns/analysis/Actor.htm
https://www.cs.sjsu.edu/~pearce/oom/patterns/new/Riehle.pdf
https://dci.github.io/documents/
https://en.wikipedia.org/wiki/Data,_context_and_interaction
https://www.w3schools.com/xml/xml_xlink.asp
https://www.w3schools.com/xml/xquery_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xsl_intro.asp
https://en.wikipedia.org/wiki/XForms
https://www.isotopicmaps.org/
https://www.hytime.org/papers/htguide.html
https://en.wikipedia.org/wiki/HyTime
https://topicmaps.org/
https://en.wikipedia.org/wiki/ISO_15926

https://martinfowler.com/bliki/CQRS.html

RDF / SEMANTIC WEB:

https://airccse.org/journal/ijwest/papers/6315ijwest04.pdf

https://arxiv.org/pdf/1909.04881

https://www.semantic-web-journal.net/system/files/swj1910.pdf

https://hal.science/hal-01722792v1/file/sparql-micro-services.pdf

https://openengiadina.net/papers/content-addressable-rdf.html

https://web.archive.org/web/20110721134455/http://www.openrdf.org/doc/elmo/1.5/user-guide.html

https://arxiv.org/abs/1312.0001

THEORY:

https://en.wikipedia.org/wiki/Group_theory

https://en.wikipedia.org/wiki/Category_theory

https://en.wikipedia.org/wiki/Representation_theory

https://wisnesky.net/thesis_slides.pdf

https://en.wikipedia.org/wiki/Information_theory

DDD:

https://www.domainlanguage.com/ddd/reference/

https://www.domainlanguage.com/wp-content/uploads/2016/05/
DDD_Reference_2015-03.pdf

https://www.researchgate.net/publication/284731280_Naked_Objects

https://www.infoworld.com/article/2176119/rest-easy-with-the-javabeans-activation-
framework.html

https://www.infoworld.com/article/2176119/rest-easy-with-the-javabeans-activation-framework.html
https://www.infoworld.com/article/2176119/rest-easy-with-the-javabeans-activation-framework.html
https://www.researchgate.net/publication/284731280_Naked_Objects
https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.domainlanguage.com/ddd/reference/
https://en.wikipedia.org/wiki/Information_theory
https://wisnesky.net/thesis_slides.pdf
https://en.wikipedia.org/wiki/Representation_theory
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Group_theory
https://arxiv.org/abs/1312.0001
https://web.archive.org/web/20110721134455/http://www.openrdf.org/doc/elmo/1.5/user-guide.html
https://openengiadina.net/papers/content-addressable-rdf.html
https://hal.science/hal-01722792v1/file/sparql-micro-services.pdf
https://www.semantic-web-journal.net/system/files/swj1910.pdf
https://arxiv.org/pdf/1909.04881
https://airccse.org/journal/ijwest/papers/6315ijwest04.pdf
https://martinfowler.com/bliki/CQRS.html

https://medium.com/@ygnhmt/a-soft-introduction-to-domain-driven-design-from-
theory-to-java-code-implementation-part-2-5aa7e1cfef65

https://medium.com/@ygnhmt/before-joining-my-current-company-domain-driven-
design-ddd-used-to-be-a-subject-that-required-1a6af0c4535d

https://www.baeldung.com/java-modules-ddd-bounded-contexts

https://dzone.com/refcardz/getting-started-domain-driven

https://www.geeksforgeeks.org/domain-driven-design-ddd/

STANDARDS:

https://www.simplilearn.com/tutorials/blockchain-tutorial/what-is-web-3-0

https://en.m.wikipedia.org/wiki/Web3

https://aws.amazon.com/es/what-is/web3/

https://en.m.wikipedia.org/wiki/Blockchain

https://www.w3.org/TR/did-1.0/#a-simple-example

https://www.w3.org/TR/did-1.1/

https://www.w3.org/TR/did-resolution/

https://www.w3.org/TR/did-core/

https://www.w3.org/TR/did-spec-registries/

https://www.w3.org/TR/did-use-cases/

https://en.wikipedia.org/wiki/Decentralized_identifier

https://aws.amazon.com/what-is/web3/

https://ont.io/

https://github.com/decentralized-identity/did-common-java

https://en.m.wikipedia.org/wiki/JXTA

https://en.m.wikipedia.org/wiki/JXTA
https://github.com/decentralized-identity/did-common-java
https://ont.io/
https://aws.amazon.com/what-is/web3/
https://en.wikipedia.org/wiki/Decentralized_identifier
https://www.w3.org/TR/did-use-cases/
https://www.w3.org/TR/did-spec-registries/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-resolution/
https://www.w3.org/TR/did-1.1/
https://www.w3.org/TR/did-1.0/#a-simple-example
https://en.m.wikipedia.org/wiki/Blockchain
https://aws.amazon.com/es/what-is/web3/
https://en.m.wikipedia.org/wiki/Web3
https://www.simplilearn.com/tutorials/blockchain-tutorial/what-is-web-3-0
https://www.geeksforgeeks.org/domain-driven-design-ddd/
https://dzone.com/refcardz/getting-started-domain-driven
https://www.baeldung.com/java-modules-ddd-bounded-contexts
https://medium.com/@ygnhmt/before-joining-my-current-company-domain-driven-design-ddd-used-to-be-a-subject-that-required-1a6af0c4535d
https://medium.com/@ygnhmt/before-joining-my-current-company-domain-driven-design-ddd-used-to-be-a-subject-that-required-1a6af0c4535d
https://medium.com/@ygnhmt/a-soft-introduction-to-domain-driven-design-from-theory-to-java-code-implementation-part-2-5aa7e1cfef65
https://medium.com/@ygnhmt/a-soft-introduction-to-domain-driven-design-from-theory-to-java-code-implementation-part-2-5aa7e1cfef65

https://stateless.group/hal_specification.html

https://dev.to/nevnet99/wtf-is-hal-hypertext-application-language-2fo6

https://apigility.org/documentation/api-primer/halprimer

https://en.wikipedia.org/wiki/Hypertext_Application_Language

FUNCTIONAL PROGRAMMING:

https://medium.com/@potatoscript/a-beginners-guide-to-functional-programming-
in-javascript-b644bfa02172

https://www.toptal.com/javascript/functional-programming-javascript

https://www.freecodecamp.org/news/functional-programming-in-javascript/

https://nurkiewicz.com/2016/06/functor-and-monad-examples-in-plain-java.html

https://medium.com/modernnerd-code/dsls-with-the-free-monad-in-java-8-part-i-701408e874f8

https://medium.com/@johnmcclean/dsls-with-the-free-monad-in-java-8-part-ii-f0010f012ae1

https://importantshock.wordpress.com/2009/01/18/jquery-is-a-monad/

https://www.baeldung.com/java-monads

https://dev.to/aelassas/functional-programming-in-typescript-575j

https://www.baeldung.com/java-functional-programming

https://www.freecodecamp.org/news/functional-programming-in-java/

https://www.geeksforgeeks.org/functional-programming-in-java-with-examples/

REACTIVE PROGRAMMING / MICROSERVICES:

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-
9316ee6aeda7/

https://www.rxjava.com/tutorials

https://www.rxjava.com/tutorials
https://www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-9316ee6aeda7/
https://www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-9316ee6aeda7/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://www.geeksforgeeks.org/functional-programming-in-java-with-examples/
https://www.freecodecamp.org/news/functional-programming-in-java/
https://www.baeldung.com/java-functional-programming
https://dev.to/aelassas/functional-programming-in-typescript-575j
https://www.baeldung.com/java-monads
https://importantshock.wordpress.com/2009/01/18/jquery-is-a-monad/
https://medium.com/@johnmcclean/dsls-with-the-free-monad-in-java-8-part-ii-f0010f012ae1
https://medium.com/modernnerd-code/dsls-with-the-free-monad-in-java-8-part-i-701408e874f8
https://nurkiewicz.com/2016/06/functor-and-monad-examples-in-plain-java.html
https://www.freecodecamp.org/news/functional-programming-in-javascript/
https://www.toptal.com/javascript/functional-programming-javascript
https://medium.com/@potatoscript/a-beginners-guide-to-functional-programming-in-javascript-b644bfa02172
https://medium.com/@potatoscript/a-beginners-guide-to-functional-programming-in-javascript-b644bfa02172
https://en.wikipedia.org/wiki/Hypertext_Application_Language
https://apigility.org/documentation/api-primer/halprimer
https://dev.to/nevnet99/wtf-is-hal-hypertext-application-language-2fo6
https://stateless.group/hal_specification.html

https://www.baeldung.com/rx-java

https://spring.io/blog/2019/10/15/simple-event-driven-microservices-with-spring-cloud-stream

https://medium.com/ms-club-of-sliit/lets-build-a-microservice-with-spring-boot-faf39b968857

https://www.geeksforgeeks.org/java-spring-boot-microservices-example-step-by-step-guide/

https://www.geeksforgeeks.org/building-reactive-microservices-with-spring-webflux/

https://medium.com/simform-engineering/implementing-reactive-microservices-with-spring-boot-
and-rsocket-fcd205916a4c

https://dev.to/tutorialq/building-reactive-microservices-a-step-by-step-guide-1jha

https://dzone.com/articles/spring-reactive-microservices-a-showcase

https://axella-gerald.medium.com/reactive-rest-api-using-spring-boot-rxjava-4efb620c69ac

https://medium.com/analytics-vidhya/reactive-programming-using-rxjava-in-spring-boot-part-1-
b33834bed8ea

GRAPHS / MACHINE LEARNING:

http://neuralnetworksanddeeplearning.com/

https://www.geeksforgeeks.org/dsa/dsa-tutorial-learn-data-structures-and-
algorithms/

https://www.geeksforgeeks.org/dsa/graph-data-structure-and-algorithms/

https://distill.pub/2021/gnn-intro/

https://blog.tensorflow.org/2024/02/graph-neural-networks-in-tensorflow.html

https://www.kdnuggets.com/2020/11/friendly-introduction-graph-neural-networks.html

https://medium.com/@bscarleth.gtz/introduction-to-graph-neural-networks-an-illustrated-guide-
c3f19da2ba39

LLMs / MCP:

https://playbooks.com/mcp/kludgeworks-sparql

https://playbooks.com/mcp/ramuzes-jena-sparql

https://playbooks.com/mcp/ramuzes-jena-sparql
https://playbooks.com/mcp/kludgeworks-sparql
https://medium.com/@bscarleth.gtz/introduction-to-graph-neural-networks-an-illustrated-guide-c3f19da2ba39
https://medium.com/@bscarleth.gtz/introduction-to-graph-neural-networks-an-illustrated-guide-c3f19da2ba39
https://www.kdnuggets.com/2020/11/friendly-introduction-graph-neural-networks.html
https://blog.tensorflow.org/2024/02/graph-neural-networks-in-tensorflow.html
https://distill.pub/2021/gnn-intro/
https://www.geeksforgeeks.org/dsa/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/dsa/dsa-tutorial-learn-data-structures-and-algorithms/
https://www.geeksforgeeks.org/dsa/dsa-tutorial-learn-data-structures-and-algorithms/
http://neuralnetworksanddeeplearning.com/
https://medium.com/analytics-vidhya/reactive-programming-using-rxjava-in-spring-boot-part-1-b33834bed8ea
https://medium.com/analytics-vidhya/reactive-programming-using-rxjava-in-spring-boot-part-1-b33834bed8ea
https://axella-gerald.medium.com/reactive-rest-api-using-spring-boot-rxjava-4efb620c69ac
https://dzone.com/articles/spring-reactive-microservices-a-showcase
https://dev.to/tutorialq/building-reactive-microservices-a-step-by-step-guide-1jha
https://medium.com/simform-engineering/implementing-reactive-microservices-with-spring-boot-and-rsocket-fcd205916a4c
https://medium.com/simform-engineering/implementing-reactive-microservices-with-spring-boot-and-rsocket-fcd205916a4c
https://www.geeksforgeeks.org/building-reactive-microservices-with-spring-webflux/
https://www.geeksforgeeks.org/java-spring-boot-microservices-example-step-by-step-guide/
https://medium.com/ms-club-of-sliit/lets-build-a-microservice-with-spring-boot-faf39b968857
https://spring.io/blog/2019/10/15/simple-event-driven-microservices-with-spring-cloud-stream
https://www.baeldung.com/rx-java

https://github.com/ekzhu/mcp-server-sparql

https://github.com/ai4curation/owl-mcp

https://www.kdnuggets.com/agentic-ai-a-self-study-roadmap

https://towardsdatascience.com/agents-apis-and-the-next-layer-of-the-internet/

https://medium.com/@nimritakoul01/the-model-context-protocol-mcp-a-complete-
tutorial-a3abe8a7f4ef

https://github.com/modelcontextprotocol/servers

https://www.anthropic.com/news/model-context-protocol

https://modelcontextprotocol.io/introduction

https://modelcontextprotocol.io/introduction
https://www.anthropic.com/news/model-context-protocol
https://github.com/modelcontextprotocol/servers
https://medium.com/@nimritakoul01/the-model-context-protocol-mcp-a-complete-tutorial-a3abe8a7f4ef
https://medium.com/@nimritakoul01/the-model-context-protocol-mcp-a-complete-tutorial-a3abe8a7f4ef
https://towardsdatascience.com/agents-apis-and-the-next-layer-of-the-internet/
https://www.kdnuggets.com/agentic-ai-a-self-study-roadmap
https://github.com/ai4curation/owl-mcp
https://github.com/ekzhu/mcp-server-sparql

	Application Service
	Overview
	Models Architecture
	Reference Model
	Statements
	FCA Contexts. Prime IDs. Embeddings

	Graph Model
	Statements

	Activation Model
	Statements

	COST (Conversational State Transfer)
	Components (Services) Architecture
	Services Layout
	Application Service
	Datasource Service
	Augmentation Service
	Aggregation Service
	Alignment Service
	Activation Service
	Producer Service
	Services Dataflow (see Protocols)

	Helper Services
	Index Service
	Naming Service
	Registry Service

	Protocol (Message Types) Architecture
	Context / History (session) aware Dialogs #EAP
	CSPO URI Strings Statements
	Reference Model Statements
	Graph (Sets) CSPO Statements
	Activation (DCI) Statements

	Interactions (Reactive Services Messages Dataflow) Architecture
	Functional (Use Case) Architecture
	Integration Example

	Dimensional Features
	Tools / References

