
Implementation Roadmap: Application Service Framework
Version: 2.0
Date: July 29, 2025
Copyright 2025 Sebastián Samaruga
1. Introduction
This document provides a deeply technical, implementation-focused roadmap for the
Application Service framework. It moves beyond high-level architecture to specify the
concrete implementation details of each service, model, and pattern. The central
theme is the realization of a fully reactive, functional, and behavior-driven system,
ensuring a non-blocking, event-driven dataflow from data source to user interaction.

We will provide detailed explanations and code examples for the practical application
of key patterns and frameworks, including:

●​ Reactive & Functional Programming: Using Spring WebFlux, Project Reactor,
and functional composition.

●​ Core Patterns: DCI, DDD, Dynamic Object Model, and the Actor-Role pattern.
●​ Semantic & AI Technologies: Formal Concept Analysis (FCA), Spring AI for LLM

integration, and the Model Context Protocol (MCP).
●​ Enterprise Integration: Java EE Connector Architecture (JCA) and JavaBeans

Activation Framework (JAF) principles.
●​ Decentralized Identity: W3C Decentralized Identifiers (DIDs) for verifiable,

interoperable identity.

Phase 1: Core Infrastructure & Reactive Data Ingestion (Months 1-3)
Objective

Establish a robust, scalable, and fully reactive microservices foundation and a
versatile, non-blocking data ingestion pipeline.

1.1. Datasource Service (Java, Spring WebFlux)

This service is the entry point for all external data, built entirely on a non-blocking
stack.

●​ Reactive Core: We will use Spring WebFlux's functional handler functions instead
of traditional @RestController annotations. This provides a more explicit,
functional way to define endpoints.

●​ JCA Integration (for Enterprise Systems): The Java EE Connector Architecture
is critical for transactional, bidirectional communication with legacy systems like
ERPs.

○​ Implementation: We will implement a javax.resource.spi.ResourceAdapter.
○​ Inbound (Events from EIS): The adapter's endpointActivation method will be

given a javax.resource.spi.endpoint.MessageEndpointFactory by the
application server. When the adapter receives an event from the EIS (e.g., an
SAP IDoc), it uses the factory to get a MessageEndpoint. This endpoint is a
proxy that, when invoked, pushes the message into a Project Reactor
Sinks.Many processor, which acts as the source of a Flux. This bridges the
listener-based JCA model with the reactive streams world.

○​ Outbound (Write-Back): The adapter exposes a
javax.resource.cci.ConnectionFactory. The Activation Service will later use this
to get a Connection and execute an Interaction (e.g., updating a record). This
provides the crucial mechanism for synchronizing state back to source
systems, as detailed in the Eclipse JCA documentation.

●​ Reactive Ingestion Adapters:
○​ RestApiAdapter: Uses WebClient to consume external APIs. It natively returns

a Flux<T>, allowing the service to stream paginated results without holding a
thread, processing each item as it arrives.​
// Example: Fetching paginated items reactively​
public Flux<Item> fetchAllItems() {​
 return webClient.get()​
 .uri("/items?page=0")​
 .retrieve()​
 .bodyToFlux(Item.class)​
 .expand(lastItem -> { // expand operator for pagination​
 if (lastItem.isLastPage()) {​
 return Mono.empty();​
 }​
 return webClient.get()​
 .uri("/items?page=" + (lastItem.getPageNumber() + 1))​
 .retrieve()​
 .bodyToFlux(Item.class);​
 });​
}​

○​ R2DBCAdapter: For supported SQL databases, it will use R2DBC
(spring-boot-starter-data-r2dbc) to perform non-blocking database queries,
returning a Flux<Row>.

●​ Functional Transformation: The transformation from source format to SPO
triples will be a pure function within a reactive pipeline, aligning with functional

https://projects.eclipse.org/projects/ee4j.jca/developer

principles from resources like "Functional Programming in JavaScript".​
// Example: Functional transformation in a reactive pipeline​
public Flux<Statement<String, String, String, String>>
processSourceData(Flux<SourceData> sourceStream) {​
 return sourceStream​
 .flatMap(data -> Flux.fromIterable(transformer.toTriples(data))); // 1-to-many
transform​
}​

1.2. Augmentation Service (Java, Spring Cloud Stream)

This service is the reactive backbone, orchestrating the dataflow between all other
services.

●​ Reactive Dataflow: It will bind java.util.function.Function<Flux<T>, Flux<R>>
beans to Kafka topics. This is a powerful feature of Spring Cloud Stream that
allows for the entire service to be composed of reactive functions.​
// Example: A Spring Cloud Stream function bean​
@Bean​
public Function<Flux<RawStatement>, Flux<AggregatedStatement>> aggregate() {​
 return rawFlux -> rawFlux​
 .log()​
 .flatMap(aggregationService::processStatement);​
}​

●​ Saga Pattern for Distributed Transactions: We will implement the Saga pattern
using Flux.usingWhen to manage long-running, distributed transactions. This
operator is perfect for handling resource allocation and cleanup in a reactive
chain.​
// Simplified Saga example for an ingestion process​
Flux<Void> ingestionSaga = Flux.usingWhen(​
 transactionManager.begin(), // 1. Begin transaction, get a resource​
 tx -> aggregationService.process(tx) // 2. Use the resource​
 .then(alignmentService.process(tx)),​
 transactionManager::commit, // 3. On success, commit​
 (tx, err) -> transactionManager.rollback(tx), // 4. On error, rollback​
 transactionManager::rollback // 5. On cancellation, rollback​
);​

https://medium.com/@potatoscript/a-beginners-guide-to-functional-programming-in-javascript-b644bfa02172

1.3. Registry Service (Java, Spring Boot, Neo4j)

This is the central repository for the unified property graph.

●​ Reactive API: The REST API will be built with Spring WebFlux functional
endpoints, returning Mono<ServerResponse> for writes and Flux<Statement> for
reads.

●​ Non-Blocking Database Interaction: The official Neo4j Java driver is blocking.
To prevent this from consuming a precious event-loop thread, we will offload the
work to a dedicated scheduler, a core tenet of reactive programming as explained
in "Building Reactive Microservices with Spring WebFlux".​
public Mono<Void> saveStatement(Statement stmt) {​
 return Mono.fromRunnable(() -> {​
 // This blocking driver call runs on a different thread pool​
 try (Session session = driver.session()) {​
 session.run("MERGE (s:Resource {uri: $s_uri}) ...", parameters(...));​
 }​
 }).subscribeOn(Schedulers.boundedElastic()).then();​
}​

Phase 2: Semantic Core & Knowledge Representation (Months 4-7)
Objective

Transform raw data into an interconnected, semantically rich knowledge graph using
reactive streams, Formal Concept Analysis, and AI/ML models.

2.1. Deep Dive: The Reference Model & Prime Number Semantics

This model moves from string-based URIs to a formal, mathematically grounded
identification system.

●​ ID & IDOccurrence: An ID is the canonical concept of an entity, identified by a
unique primeID. An IDOccurrence is an ID appearing in a specific role within a
specific context.

●​ Prime Number Semantics: We leverage the Fundamental Theorem of Arithmetic.
An IDOccurrence's "embedding" is a set of primeIDs defining its full context.
Similarity is a deterministic Jaccard Index on these sets. This mathematical
foundation is inspired by the lattice theory concepts discussed in sources like
Sowa's "Mathematical Foundations".

2.2. Deep Dive: Formal Concept Analysis (FCA) with Prime IDs

FCA is a cornerstone of the Aggregation Service for inferring types and hierarchies.

https://www.geeksforgeeks.org/building-reactive-microservices-with-spring-webflux/
https://jfsowa.com/logic/math.htm#Lattice

Using primeIDs as identifiers for objects and attributes provides unique mathematical
properties for inference.

●​ FCA Context Model: We will define a formal context as a triplet (G, M, I) where G
is a set of objects, M is a set of attributes, and I is a binary relation I ⊆ G × M. The
Index Service will be able to retrieve these contexts. For example, for a
statement's predicate:
○​ FCA Context Relation: The predicate itself (e.g., worksFor).
○​ FCA Context Objects: The set of subjects in statements with that predicate

(e.g., {Alice, Bob}).
○​ FCA Context Attributes: The set of objects in statements with that predicate

(e.g., {Google, StartupX}).
●​ Inference via Prime Products: This is the model's key innovation. A "formal

concept" in the resulting lattice is a pair (A, B), where A is a set of objects and B is
the set of attributes they all share. The "intent" B can be uniquely identified by the
product of its attribute primeIDs.
○​ Subsumption Checking: A concept C1 is a sub-concept of C2 if C1's

intent-product is cleanly divisible by C2's intent-product. This transforms
expensive set logic into simple integer arithmetic, making large-scale
hierarchy inference computationally feasible, a technique vital for knowledge
discovery as explored in "Formal Concept Analysis for Knowledge Discovery
and Data Mining".

2.3. Aggregation Service (Java, Spring AI, fcalib)

●​ Reactive AI Integration: Embeddings will be generated within the reactive
stream using Spring AI's ReactiveEmbeddingClient. This ensures that the network
call to an embedding model (like one from Hugging Face or a local Ollama
instance via Spring AI) is non-blocking.​
// Example: Generating embeddings within a reactive stream​
.flatMap(statement ->​
 // Spring AI's reactive client​
 reactiveEmbeddingClient.embed(statement.getObject())​
 .map(embedding -> statement.withEmbedding(embedding))​
)​

●​ FCA Implementation: The inferTypeFromPredicates method will use the fcalib
library. The set of predicates for a group of subjects is used to build a
FormalContext. The resulting ConceptLattice provides the type hierarchy, which is
then flattened back into a Flux of type assertion statements.

https://www.researchgate.net/publication/220923352_Formal_Concept_Analysis_for_Knowledge_Discovery_and_Data_Mining_The_New_Challenges
https://www.researchgate.net/publication/220923352_Formal_Concept_Analysis_for_Knowledge_Discovery_and_Data_Mining_The_New_Challenges

2.4. Alignment Service (Java, RDF4J)

●​ Reactive Ontology Matching: This service consumes the
Flux<AggregatedStatement> and uses the RDF4J framework's MemoryStore for
in-memory graph operations. It will load pre-defined upper ontologies (e.g.,
Schema.org) and use the SPARQL engine with SHACL rules to find and materialize
equivalences (owl:sameAs, rdfs:subClassOf).

●​ Link Completion: Implemented with SPARQL CONSTRUCT queries within the
reactive pipeline. For example, a query can find paths like (A)-[:hasRole]->(B) and
(B)-[:partOf]->(C) to infer a new link (A)-[:contributesTo]->(C).

Phase 3: Activation & Behavior-Driven Interactions (Months 8-10)
Objective

Infer and enable the execution of business processes by implementing a dynamic,
message-driven model based on DCI, DDD, and a JAF-inspired semantic engine.

3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM)

The runtime logic is a direct implementation of the ideas found in works like "Dynamic
Object Model" and the Actor Role pattern.

●​ DDD (Domain-Driven Design): The entire Activation Service is a single Bounded
Context. Its Ubiquitous Language consists of entities like Context, Role,
Interaction, etc., following the principles from Eric Evans' "Domain-Driven Design:
Tackling Complexity in the Heart of Software".

●​ DCI (Data, Context, and Interaction): This pattern is the blueprint for the
runtime logic. An Interaction (Context) "casts" plain data Instances into Actors by
dynamically injecting Roles (behavior). This avoids bloating data objects, a core
tenet of DCI described by James Coplien and Trygve Reenskaug.
○​ Role (Functional Interface): A Role is a Function<Flux<ActorState>,

Flux<TransformedState>>. It's a functional interface defining the behavior an
Actor will perform.

○​ Interaction (Reactive Orchestrator): An Interaction subscribes to the Flux
streams representing its Actors' states and applies the Role functions to drive
the dataflow.

3.2. The Activation Service: A JAF-Inspired Semantic Engine

The Activation Service operates like a distributed, semantic JavaBeans Activation
Framework (JAF), as described in "REST easy with the JavaBeans Activation
Framework".

●​ ContentTypeDataHandler: For each Content-Type (e.g., buy-able), a

https://www.researchgate.net/publication/228831333_Dynamic_object_model
https://www.researchgate.net/publication/228831333_Dynamic_object_model
https://www.domainlanguage.com/ddd/reference/
https://www.domainlanguage.com/ddd/reference/
https://dci.github.io/documents/
https://www.infoworld.com/article/2176119/rest-easy-with-the-javabeans-activation-framework.html
https://www.infoworld.com/article/2176119/rest-easy-with-the-javabeans-activation-framework.html

corresponding Spring bean implementing this interface is registered. This handler
defines the available Verbs (commands like BUY) and the Dataflow (sequence of
Transforms) for each verb.

●​ Context Inference from Content Types: The availability of use cases (Contexts)
is inferred dynamically. If the system finds a set of Actors whose ContentTypes
match the required Roles for a Context, that Context becomes available.

●​ JCA for Transactional Write-Back: When an Interaction's Dataflow completes,
its final Transform is processed by the relevant ContentTypeDataHandler. This
handler obtains a JCA Connection from the Datasource Service and invokes the
outbound transaction on the backend ERP, guaranteeing data consistency.

Phase 3.5: LLM Integration & Agentic Architecture (Parallel)
Objective

Elevate the Activation Service to an intelligent, agentic system capable of
communicating with LLMs and other ApplicationService instances using standardized
protocols.

3.1. Deep Dive: The ApplicationService as a Model Context Protocol (MCP) Server

The ApplicationService will expose an MCP Server endpoint, allowing external clients
(like LLM-based agents) to interact with its capabilities in a standardized way. We will
use Spring AI as the primary tool to bridge our internal services with the LLM world,
as discussed in the MCP Introduction.

●​ MCP Endpoint Implementation (Spring WebFlux): A single REST endpoint
(/mcp) will handle all MCP requests.

●​ Exposing Capabilities via MCP & Spring AI:
1.​ Resources (Aggregation/Index): An MCP client can ask for resources. "Find

me resources similar to 'a senior Java developer'."
■​ Implementation: The MCP endpoint routes this to the Index Service. The

text query is fed into Spring AI's ReactiveEmbeddingClient to get a vector.
This vector is used to perform a similarity search in the vector DB.

2.​ Tools (Activation/Registry): An MCP client can request to use a tool.
"Execute the 'OnboardNewEmployee' tool for resource 'user:JohnDoe'."
■​ Implementation: The MCP endpoint maps the tool name

"OnboardNewEmployee" to an Activation Context. It then instantiates an
Interaction for that Context. The LLM decides what to do; our framework
provides the verifiable, stateful Tool to do it.

3.​ Prompt Templates (Alignment/Naming): An MCP client can request a
template for complex reasoning. "Give me the 'ConceptAlignment' prompt

https://modelcontextprotocol.io/introduction

template to compare 'Customer' and 'Client'."
■​ Implementation: The endpoint fetches a pre-defined prompt string from

the Naming Service. The MCP client populates this and sends the
completed prompt to an LLM using Spring AI's ReactiveChatClient. The
LLM's response can then be fed back into the system to augment the
Graph Model.

3.2. Deep Dive: COST (COnversational State Transfer) & The HAL Protocol

The communication between the Producer Service and the Activation Service will be
implemented as COST, a stateful, conversational protocol built using the Hypertext
Application Language (HAL) specification.

●​ HAL Link with Placeholders: A link for a next action is a template for the next
Transform message.​
// Part of a HAL response for an Interaction​
"_links": {​
 "next": [​
 {​
 "href": "/interactions/123/transform",​
 "method": "POST",​
 "name": "SelectProductForPurchase",​
 "schema": { // The placeholder definition​
 "type": "object",​
 "properties": {​
 "selectedProduct": {​
 "type": "string",​
 "description": "The DID of the product to purchase.",​
 "_links": {​
 "possibleValues": { "href":
"/interactions/123/roles/Product/possibleActors" }​
 }​
 }​
 }​
 }​
 }​
]​
}​

●​ Conversational Flow:
1.​ The client UI sees the SelectProductForPurchase action and its schema.

https://stateless.group/hal_specification.html
https://stateless.group/hal_specification.html

2.​ It sees that the selectedProduct placeholder has a possibleValues link. It
performs a GET on that link to retrieve a list of available products to render in
a dropdown.

3.​ The user selects a product. The client constructs the Transform message
body according to the schema and POSTs it to the href.

4.​ The server processes the transform and responds with the new state and the
next set of possible actions. This makes the client incredibly dynamic and
resilient to changes in the backend workflow.

3.3. Deep Dive: W3C Decentralized Identifiers (DIDs)

All canonical resource IDs are W3C DIDs, providing a foundation for verifiable
provenance and secure interoperability, as outlined in the W3C DID Use Cases.

●​ Implementation:
1.​ Creation: In the Aggregation Service, when a new resource is first

encountered, we will use a library like did-common-java to generate a did:ion
or did:key. The resource's primeID can be part of the DID string for
deterministic generation.

2.​ Storage: The generated DID Document (containing cryptographic keys and
service endpoints like the resource's MCP endpoint) is stored in the Registry
Service's property graph.

●​ Enabled Features:
○​ Verifiable Provenance: Any Statement can be cryptographically signed using

the private key associated with the service's own DID. Downstream consumers
can verify this signature, guaranteeing data integrity.

○​ Secure Interoperability: When one ApplicationService acts as an MCP Client
to another, it can use DID-Auth to authenticate, eliminating the need for
traditional API keys or OAuth tokens.

Phase 4: The Behavior-Driven API & UI (Months 11-12)
Objective

Expose the framework's capabilities through a fully reactive API and a real-time,
behavior-driven user interface.

4.1. Producer Service (API/Frontend - Java/Spring WebFlux, React)

●​ Fully Reactive API: The entire API will be built with Spring WebFlux.
●​ Server-Sent Events (SSE): For real-time updates on long-running Interactions,

the API will use SSE. A client can subscribe to an endpoint which returns a
Flux<InteractionState> with the Content-Type of text/event-stream.​

https://www.w3.org/TR/did-use-cases/

@GetMapping(value = "/interactions/{id}/stream", produces =
MediaType.TEXT_EVENT_STREAM_VALUE)​
public Flux<InteractionState> streamInteractionUpdates(@PathVariable String id)
{​
 return interactionService.getInteractionUpdates(id);​
}​

●​ Frontend (React with RxJS): The React frontend will use RxJS to manage the
SSE streams, binding component state directly to an Observable so the UI
updates automatically. This aligns with the "Thinking in React" and "Thinking in
RxJava" mental models, as discussed in A Complete Roadmap for Learning
RxJava.

4.2. Complete End-to-End Example: Onboarding a New Product

1.​ Ingestion: A new row for "Pro-Lite Running Shoe" is added to a legacy ERP
database. The Datasource Service's JCA adapter captures this event and
produces a raw triple: ("sku:PL-789", "stock", "500").

2.​ Aggregation: The Aggregation Service receives the triple.
○​ It's the first time seeing "sku:PL-789". It generates a primeID (e.g., 937) and a

W3C DID: did:key:z6Mkp....
○​ Using Spring AI's ReactiveEmbeddingClient, it generates a vector embedding

for the product's name and description.
○​ It runs this new entity through its FCA engine. Based on its attributes (stock,

price, category), the FCA lattice places it within the PurchasableItem formal
concept.

3.​ Alignment: The Alignment Service receives the aggregated statement.
○​ Using its RDF4J store, it matches PurchasableItem to schema.org/Product.
○​ It analyzes the resource's JCA provenance (knowing it comes from an ERP

with an updateStock capability) and the graph patterns, inferring and adding
the inventory-trackable and buy-able ContentTypes to the node in the
Registry.

4.​ Activation & Interaction (COST/HAL):
○​ A user browses the store via the Producer Service (React frontend).
○​ The frontend makes a call to get available products. The Activation Service

knows did:key:z6Mkp... is buy-able and includes it in the list.
○​ The user adds it to their cart. The frontend POSTs a Transform message

based on the HAL template provided by the API: { "transformName":
"AddToCart", "payload": { "product": "did:key:z6Mkp..." } }.

○​ The Activation Service instantiates a Checkout Interaction, casting the user

https://www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-9316ee6aeda7/
https://www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-9316ee6aeda7/

and the product into Buyer and Item Actors.
5.​ Agentic Interaction (MCP):

○​ An external marketing agent (an LLM) connects to the ApplicationService's
MCP Server.

○​ It asks for "tools related to new products". The server, via the Activation
Service, exposes a LaunchMarketingCampaign tool because it has detected
a new Product Actor that is not yet part of any campaign.

○​ The agent invokes the tool with the product's DID. This triggers a new
Interaction that could, for example, automatically generate ad copy using
another LLM call via Spring AI.

6.​ Write-Back: When the user completes the purchase, the FinalizePurchase
transform is dispatched to the buy-able ContentTypeDataHandler. This handler
gets a JCA connection and invokes the createOrder interaction on the backend
ERP, completing the cycle.

	Implementation Roadmap: Application Service Framework
	1. Introduction
	Phase 1: Core Infrastructure & Reactive Data Ingestion (Months 1-3)
	Objective
	1.1. Datasource Service (Java, Spring WebFlux)
	1.2. Augmentation Service (Java, Spring Cloud Stream)
	1.3. Registry Service (Java, Spring Boot, Neo4j)

	Phase 2: Semantic Core & Knowledge Representation (Months 4-7)
	Objective
	2.1. Deep Dive: The Reference Model & Prime Number Semantics
	2.2. Deep Dive: Formal Concept Analysis (FCA) with Prime IDs
	2.3. Aggregation Service (Java, Spring AI, fcalib)
	2.4. Alignment Service (Java, RDF4J)

	Phase 3: Activation & Behavior-Driven Interactions (Months 8-10)
	Objective
	3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM)
	3.2. The Activation Service: A JAF-Inspired Semantic Engine

	Phase 3.5: LLM Integration & Agentic Architecture (Parallel)
	Objective
	3.1. Deep Dive: The ApplicationService as a Model Context Protocol (MCP) Server
	3.2. Deep Dive: COST (COnversational State Transfer) & The HAL Protocol
	3.3. Deep Dive: W3C Decentralized Identifiers (DIDs)

	Phase 4: The Behavior-Driven API & UI (Months 11-12)
	Objective
	4.1. Producer Service (API/Frontend - Java/Spring WebFlux, React)
	4.2. Complete End-to-End Example: Onboarding a New Product

