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1. Introduction 

This document provides a comprehensive, implementation-focused roadmap for the 
Application Service framework. It breaks down each phase into specific technical 
tasks, architectural decisions, and technology choices. This version provides a deep 
dive into the reactive and functional programming paradigms central to the 
architecture, ensuring a non-blocking, event-driven dataflow. It offers detailed 
explanations and examples of the practical application of key patterns and 
frameworks like DCI, DDD, Spring AI, and a significant focus on the Reference 
Model, Formal Concept Analysis (FCA), the Set-Oriented Graph Model, 
Dimensional Ordering, and the Activation Model and the agentic communication 
layer enabled by the Model Context Protocol (MCP) and W3C Decentralized 
Identifiers (DIDs)., with inline citations to the provided reference materials. 

Phase 1: Core Infrastructure & Data Ingestion (Months 1-3) 

Objective: Establish a robust, scalable, and fully reactive microservices foundation 
and a versatile data ingestion pipeline. 

1.1. Components & Implementation Details: 

●​ Datasource Service (Java, Spring Boot): 
○​ Core Logic: Implement a DataSourceAdapter interface with concrete 

strategies for each data source type. 
■​ JdbcAdapter: Use spring-boot-starter-data-jdbc and JdbcTemplate for 

direct SQL execution. A configuration file will map tables and columns to 
predicate names (e.g., users.name -> hasName). The adapter will 
dynamically query table metadata to handle schema evolution. 

■​ RestApiAdapter: Use spring-webflux's non-blocking WebClient. It will 
support paginated APIs by following next links in response headers or 
bodies. 

■​ FileAdapter: Use the Jackson library for JSON/XML parsing. It will watch a 
designated directory for new or updated files. 

○​ Transformation: The core transformation logic will convert source entities 
into SPO triples. For a database row (PK=123, table='Product', column='Name', 
value='Laptop'), the output will be a message: ("product:123", "hasName", 



"Laptop", "source:db1"). The subject URI is a composite of the entity type and 
its primary key. 

○​ Synchronization: Implement a polling mechanism using @Scheduled 
annotations in Spring for sources without push notifications. For event-driven 
sources, it will expose a webhook endpoint to receive update events. 
Provenance is maintained by adding a context string (e.g., the source 
application's name) to each triple. 

○​ JCA Integration: The primary mechanism for interacting with enterprise 
systems (ERPs, SCMs, etc.) is through the Java EE Connector Architecture 
(JCA). We will implement custom JCA 1.7 compliant resource adapters for key 
backends. 
■​ JcaResourceAdapter: This cornerstone component implements 

javax.resource.spi.ResourceAdapter. 
■​ Inbound Communication: The adapter uses the JCA Message Inflow 

contract (javax.resource.spi.endpoint.MessageEndpointFactory) to listen 
for events from the backend system (e.g., an IDoc from SAP). When an 
event occurs, the adapter creates a standard RawStatement message and 
publishes it to the internal Kafka bus, preserving the full transaction 
context. 

■​ Outbound Communication (Write-Back): The adapter exposes a 
javax.resource.cci.ConnectionFactory. Other services can obtain a 
Connection and execute outbound operations (Interactions) against the 
backend EIS, such as updating a record. This provides the crucial 
mechanism for synchronizing state back to the source systems. 

○​ Other Adapters (RestApiAdapter, JdbcAdapter): These remain for simpler, 
non-JCA sources, primarily for read-only data ingestion. 

●​ Augmentation Service (Java, Spring Cloud Stream): 
○​ This service is the reactive backbone of the framework, built using Spring 

Cloud Stream's functional programming model. It orchestrates the flow of 
messages between all services, binding java.util.function.Function<Flux<T>, 
Flux<R>> beans to Kafka topics for a fully event-driven dataflow. It also 
implements the Saga pattern using Flux.usingWhen to manage long-running, 
distributed transactions. 

○​ Message Bus: Use Apache Kafka as the backbone. Define clear, versioned 
Avro schemas for all message types to ensure compatibility. 

○​ Topics: 
■​ datasource-raw-triples-v1: For raw data from the Datasource Service. 
■​ aggregation-reference-model-v1: For typed and identified data. 
■​ alignment-graph-model-v1: For semantically enriched data. 



■​ activation-dci-model-v1: For executable use cases. 
○​ Orchestration & Saga Pattern: Implement the Saga pattern using a state 

machine. For a multi-step process like "Ingest and Align," the service listens 
for a RAW_TRIPLE_INGESTED event, triggers the Aggregation Service, then 
listens for an AGGREGATION_COMPLETE event to trigger the Alignment 
Service. State transitions and compensating actions (e.g., deleting partially 
processed data on failure) are logged to a dedicated Kafka topic 
(saga-log-v1). 

○​ Resiliency: Use Spring Retry for transient failures and a dead-letter queue 
(DLQ) pattern for messages that repeatedly fail processing. 

●​ Registry Service (Helper Service - Java, Spring Boot, Neo4j): 
○​ This is the central repository for the unified property graph, implemented on 

Neo4j. It provides a reactive API for graph operations. 
○​ Provenance: The graph model is updated to store detailed JCA provenance 

for each resource. Each node will have properties like connectorId and 
resourceAdapterId, enabling the Activation Service to know exactly which 
adapter to use for write-back operations. 

○​ Database: Use a Neo4j graph database. 
○​ Schema: Nodes will have the label :Resource and a uri property (which is 

indexed). Relationships will represent the predicates. 
○​ API: A RESTful API built with Spring Boot and spring-data-neo4j. 

■​ POST /v1/graph/statements: A batch endpoint that accepts a list of triples 
and executes a single, optimized Cypher UNWIND ... MERGE query for 
high-performance writes. 

■​ GET /v1/graph/resource?uri={uri}: Retrieves a resource and its immediate 
relationships. 

○​ Provenance: Store provenance data (e.g., sourceApplication, 
ingestionTimestamp) as properties on the nodes and relationships. 

Phase 2: Semantic Core & Knowledge Representation (Months 4-7) 

Objective: Transform raw data into an interconnected, semantically rich knowledge 
graph. Transform raw data into a semantically rich knowledge graph where resources 
are defined not just by their data, but by their behaviors (Content Types). 

2.0. The Layered Model Architecture 

The framework processes data through three distinct, progressively richer conceptual 
models. These models can be implemented on a single underlying property graph, 
with an entity's state in each model represented by labels and properties on a single 
node. 



1.​ Reference Model (Aggregation Layer): Focuses on identity and grammar. 
2.​ Graph Model (Alignment Layer): Focuses on relationships, types, and 

semantics. 
3.​ Activation Model (Activation Layer): Focuses on behavior, state, and 

pragmatics. 

2.1. Deep Dive: The Reference Model and Prime Number Semantics 

The Reference Model, produced by the Aggregation Service, moves from 
string-based URIs to a formal, mathematically grounded identification system. 

●​ ID & IDOccurrence: An ID is the canonical concept of an entity, identified by a 
unique primeID. An IDOccurrence is an ID appearing in a specific role within a 
specific context (e.g., as the subject of a statement). 

●​ Prime Number Semantics: We leverage the Fundamental Theorem of 
Arithmetic. An IDOccurrence's "embedding" is a set of prime IDs defining its full 
context. Similarity is a deterministic Jaccard Index on these sets. 

●​ FCA with Prime IDs: In Formal Concept Analysis, we use primeIDs for objects 
and attributes. A concept's "intent" (its set of shared attributes) can be uniquely 
identified by the product of its attribute primeIDs. This allows for 
hyper-efficient subsumption checking: a concept C1 is a sub-concept of C2 if 
C1's intent-product is cleanly divisible by C2's intent-product. This 
transforms expensive set logic into simple integer arithmetic, a technique vital for 
large-scale inference as explored in works like "Formal Concept Analysis for 
Knowledge Discovery and Data Mining". 

2.1. Components & Implementation Details: 

●​ Aggregation Service (Java, Spring AI, Python): 
○​ Core Logic: Consumes from the datasource-raw-triples-v1 topic. 
○​ ID & Embedding Generation: For each new URI, generate a unique ID and an 

embedding vector. This can be a separate Python service called via RPC, 
using models like Sentence-BERT from the Hugging Face library to create 
meaningful embeddings. The mapping of URI to ID and embedding is cached 
in Redis. 

○​ Type/State Inference: Use in-memory Caffeine caches for high-speed 
aggregation. 
■​ Map<String, Set<String>> subjectToPredicates: This map tracks all 

attributes for a given subject. 
■​ A background job periodically analyzes this map. Subjects with a high 

Jaccard similarity in their predicate sets are grouped into an inferred Type. 
○​ FCA (Formal Concept Analysis): Use the fcalib Java library. Create a formal 



context where "objects" are the subject URIs and "attributes" are their 
predicates. The resulting concept lattice directly forms the is-a type hierarchy. 

○​ Output: Produces Statement<ID, ID, ID, ID> messages to the 
aggregation-reference-model-v1 topic. 

Given a set of raw SPO triples from Datasources Service, performs type inference 
(common attributes aggregation) and state inference (common attribute values 
aggregation) and performs type / state hierarchies inference. 

Type inference: Subjects with the same Attributes belong to the same type. 

State inference: Subjects with Attributes (types) with the same Values are in the same 
state.  

Hierarchies: Attributes / Values subset / superset relationship (less common attributes 
are “higher” into the type hierarchy, same for values). Entities with the same attributes 
are considered as of the same type, superset / subset of attributes: type hierarchy. 
Attributes with the same values, same states. Superset / subset of values / states: state 
hierarchy. 

Types are ordered in respect to their common attributes. Most specific types (more 
common attributes) are considered to inherit from types with less common attributes 
included into the more specific types. A more specific type is considered to be “after” a 
more generic type (Person → Employee). Regarding state values, hierarchies are to be 
considered regarding attribute values, being resources with common state grouped into 
hierarchies (Marital status attribute: Single → Married → Divorced). 

Order: Inferred via Type / State hierarchies. Types: Married extends from Single, 
Divorced extends from Married. States: Young extends from Child, Old extends from 
Young. Cycles in types resolved by state (Unemployed, Employed, Unemployed). Used 
in Alignment Service Ordering upper ontology. 

Data structures: 

Map<Subject, Set<Predicate>​
Map<Set<Predicate>, Type>​
Map<Type, Set<Map<Predicate,Value>>>​
Map<Set<Map<Predicate,Value>>, State> 

●​ Alignment Service (Java, RDF4J): 
○​ Core Logic: Consumes from the aggregation-reference-model-v1 topic. 
○​ Ontology Matching: Use the RDF4J framework's MemoryStore for 

in-memory graph operations. Load the Reference Model and pre-defined 
upper ontologies (e.g., Schema.org, custom domain ontologies in OWL 
format). Use the SPARQL engine with SHACL rules to find and materialize 



equivalences (owl:sameAs, rdfs:subClassOf). 
○​ Link Completion: Implement this with SPARQL CONSTRUCT queries. For 

example, a query can find paths like (A)-[:hasRole]->(B) and 
(B)-[:partOf]->(C) to infer a new link (A)-[:contributesTo]->(C). 

○​ Output: Produces enriched Statement<Context, Subject, Predicate, Object> 
messages to the alignment-graph-model-v1 topic. 

Upper ontologies: 

a) Domains: Aligned integrated application domains inferred common concepts and 
relationships. Infer equivalent concepts and relationships between source applications 
domains and populate Domains upper ontology. Materialize integrated domains 
concepts and relationships mappings to inferred upper concepts and relationships. 
Abstract common meaning (semantics) of source applications concepts and 
relationships to enable inter domain contexts interactions. 

b) Order: Dimensional arrangement of entities attributes and values. Align measures 
(attribute values) into dimensional units. According Aggregation Service types and 
states hierarchies establish order relationships (before, greater than, contains, etc.) 
between measures. Materialize measures relationships and map dimensional units 
measures occurrences into the materialized order relationships. See: [Dimensional 
Features]. 

Ontology Matching: Find and map equivalent entities and relationships domains 
occurrences (Core Model Classes), align core model resources into Domains upper 
ontology. 

Links / Attributes inference: Given an aligned model (mapped to Domains upper 
ontology) infer possible links / relationships between resources and possible 
attributes and their values. 

Common Attributes between Kinds occurring in linking Statements (S1, Attr1, O1; O1, 
Attr2, O2; S1, Attr2, O2). Paired Attributes by Kind. Example: Project / Language; 
Developer / Project; Developer / Language. 

Attributes paths attribute closures: S, brotherOf, O; O, fatherOf, O2; S unkleOf O2. 

Ordering: Order dimensional upper ontology alignment. Materialize inferred Type / 
State hierarchies order relationships. 
The refactored Alignment Service is the central point for deep inference. 

●​ Content-Type Inference: A Content Type defines a resource's behavioral 
essence (e.g., buy-able, inventory-trackable). These are inferred by analyzing a 
combination of: 
1.​ Graph Patterns: The roles a resource plays in various Interactions. 



2.​ JCA Capabilities: The verbs/commands its underlying source system 
supports. 

○​ Materialization: Inferred Content Types are stored as a list property on the 
resource's node in the graph: contentTypes: ['buy-able', 'view-able']. 

●​ Logical Entailment: The service enriches the graph by materializing new, inferred 
relationships. 
○​ Techniques: It uses rules (SPARQL CONSTRUCT or Cypher MERGE) to infer 

links based on properties like Transitivity, Symmetry, and InverseOf. 
○​ Attribute Closure: It discovers and materializes complex, domain-specific 

entailments. For example, the pattern 
(:Developer)-[:WORKS_ON]->(:Project)-[:USES_LANGUAGE]->(:Language) 
entails the creation of a new link: 
(:Developer)-[:KNOWS_LANGUAGE]->(:Language). 

Multidimensional features (OLAP like): 

Dimensions: Time, Product, Region.​
Units: Month / Year, Category / Item, State / City.​
Context : (Context, Attribute, Value) 

Examples:​
(soldDate, aProduct, aDate)​
((soldDate, aProduct, aDate), Product, aProduct)​
(((soldDate, aProduct, aDate), Product, aProduct), Region, aRegion) 

TODO: Materialize / Query Cubes Context Statements into graph models. 
●​ Naming Service (Helper Service - Java, Apache Jena): 

○​ Core Logic: A dedicated service that manages ontologies. 
○​ Storage: Use Apache Jena with a TDB2 persistent backend. 
○​ API: Expose a full SPARQL 1.1 endpoint using Jena Fuseki. This allows other 

services to query the ontologies directly. It will also have custom REST 
endpoints like POST /v1/align/concepts which takes two sets of concepts and 
returns a mapping of potential matches with confidence scores. 

Phase 3: Activation & Behavior-Driven Interactions 

Objective: Implement a dynamic, behavior-driven activation layer where interactions 
are inferred from and driven by the Content Types of the participating resources. 

3.1. The Activation Service: A JAF-Inspired Semantic Engine 

The Activation Service operates like a distributed, semantic JavaBeans Activation 
Framework (JAF). 



●​ ContentTypeDataHandler: For each Content-Type (e.g., buy-able), a 
corresponding Spring bean implementing this interface is registered. This handler 
defines the available Verbs (commands like BUY, ADD_TO_CART) and the 
Dataflow (sequence of Transforms) for each verb. 

●​ Context Inference from Content Types: The availability of use cases (Contexts) 
is inferred dynamically. If the system finds a set of Actors whose ContentTypes 
match the required Roles for a Context, that Context becomes available for 
instantiation. 

●​ JCA for Transactional Write-Back: When an Interaction's Dataflow completes, 
its final Transform (e.g., FinalizePurchase) is processed by the relevant 
ContentTypeDataHandler. This handler obtains a JCA Connection from the 
Datasource Service and invokes the outbound transaction on the backend ERP, 
guaranteeing data consistency. 

3.2. The Activation Model: DCI, DOM, and Stateful Dataflows 

●​ Core Patterns: The runtime logic is a direct implementation of DCI (Data, 
Context, and Interaction). An Interaction (Context) "casts" plain data Instances 
into Actors by dynamically injecting Roles (behavior). This is built on a Dynamic 
Object Model (DOM) where an object's capabilities can change at runtime. 

●​ Stateful Dataflow: An Actor's state is its position in the use case flow, modeled 
as a set of available Transforms (previous, current, next). The entire dataflow is 
driven by a reactive stream of declarative Transform messages, which instruct 
Actors on how to mutate their internal state, creating a scalable and auditable 
distributed state machine. 

Phase 3: Activation & Use Case Enablement (Months 8-10) 

Objective: Infer and enable the execution of business processes by implementing a 
dynamic, message-driven model based on DCI, DDD, and Dynamic Object Model 
principles. 

3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM) 

The Activation Service consumes the semantically rich Graph Model and produces 
the Activation Model. This is not a static data structure but a Dynamic Object Model 
(DOM), where an object's capabilities can change at runtime. This is a direct 
implementation of the ideas found in works like "Dynamic Object Model" and the 
Actor Role pattern. Its core entities are Class, Instance, Actor, Role, Context, 
Interaction, Transform, and Dataflow. 

3.2. Patterns in Practice: DDD, DCI, and the Actor-Role Model 



●​ DDD (Domain-Driven Design): The entire Activation Service is a single Bounded 
Context. Its Ubiquitous Language consists of the entities above (Context, Role, 
etc.). 

●​ DCI (Data, Context, and Interaction): The pattern is the blueprint for the 
runtime logic. An Interaction (Context) "casts" plain data Instances into Actors by 
dynamically injecting Roles (behavior) for the duration of the use case. This 
avoids bloating data objects with all possible behaviors, a core tenet of DCI as 
described by James Coplien and Trygve Reenskaug. 

3.3. Deep Dive: Actor State and Dataflow via Transforms 

An Actor's state is its position in the use case flow, modeled as a set of available 
Transforms (previous, current, next). The dataflow is driven by a reactive stream of 
declarative Transform messages, which instruct Actors on how to mutate their internal 
state. This creates a scalable, auditable, and distributed state machine. 

Phase 3.5: LLM Integration & Agentic Architecture (MCP, DIDs, COST) 

This phase runs in parallel with the latter part of Phase 3 and the start of Phase 4. It 
elevates the Activation Service from a simple orchestrator to an intelligent, agentic 
system capable of communicating with LLMs and other ApplicationService instances 
using standardized protocols. 

3.4. Deep Dive: The ApplicationService as a Model Context Protocol (MCP) Server 

The ApplicationService will expose an MCP Server endpoint, allowing external clients 
(like LLM-based agents or other ApplicationService instances) to interact with its 
capabilities in a standardized way. We will use Spring AI as the primary tool to bridge 
our internal services with the LLM world. 

●​ MCP Endpoint Implementation (Spring WebFlux): A single REST endpoint 
(/mcp) will handle all MCP requests. The request body will specify the desired 
capability (resource, tool, or prompt_template). 

●​ Exposing Capabilities via MCP & Spring AI: 
1.​ Resources (Aggregation/Index): An MCP client can ask for resources. "Find 

me resources similar to 'a senior Java developer'." 
■​ Implementation: The MCP endpoint routes this to the Index Service. The 

text query is fed into Spring AI's ReactiveEmbeddingClient to get a vector. 
This vector is used to perform a similarity search in the vector DB. The 
results (a Flux of resource IDs) are returned. 

2.​ Tools (Activation/Registry): An MCP client can request to use a tool. 
"Execute the 'OnboardNewEmployee' tool for resource 'user:JohnDoe'." 
■​ Implementation: This is the core of the agentic behavior. The MCP 



endpoint maps the tool name "OnboardNewEmployee" to an Activation 
Context. It then instantiates an Interaction for that Context and assigns 
user:JohnDoe as an Actor. The Interaction's dataflow is executed. The 
LLM decides what to do; our framework provides the verifiable, stateful 
Tool to do it. 

3.​ Prompt Templates (Alignment/Naming): An MCP client can request a 
template for complex reasoning. "Give me the 'ConceptAlignment' prompt 
template to compare 'Customer' and 'Client'." 
■​ Implementation: The endpoint fetches a pre-defined prompt string from 

the Naming Service. This template has placeholders for context (e.g., 
attributes of 'Customer' and 'Client'). The MCP client populates these and 
sends the completed prompt to an LLM using Spring AI's 
ReactiveChatClient. The LLM's response (e.g., a mapping of equivalent 
attributes) can then be fed back into the system to augment the Graph 
Model. 

3.5. Deep Dive: COST (COnversational State Transfer) & The HAL Protocol 

The communication between the Producer Service (the client) and the Activation 
Service (the server) will be implemented as COST, a stateful, conversational protocol 
built on the principles of HATEOAS using the Hypertext Application Language 
(HAL) specification. 

●​ Principle: Every API response not only contains the state of a resource but also 
the links (_links) to all possible actions (the next Transforms) that can be taken 
from that state. The client does not need to hardcode application logic; it just 
needs to know how to follow links. 

●​ Example HAL Response for an Actor:​
{​
  "actorId": "user:Alice",​
  "role": "Buyer",​
  "state": "AwaitingPurchaseConfirmation",​
  "instanceData": {​
    "shippingAddress": "123 Main St",​
    "paymentMethod": "**** **** **** 1234"​
  },​
  "_links": {​
    "self": { "href": "/interactions/123/actors/user:Alice" },​
    "interaction": { "href": "/interactions/123" },​
    "next": [​
      {​



        "href": "/interactions/123/transform",​
        "method": "POST",​
        "name": "ConfirmPurchase",​
        "title": "Confirm and Finalize Purchase"​
      },​
      {​
        "href": "/interactions/123/transform",​
        "method": "POST",​
        "name": "ChangeShippingAddress",​
        "title": "Edit Shipping Address"​
      }​
    ],​
    "previous": {​
        "href": "/interactions/123/revert",​
        "method": "POST",​
        "name": "RevertPaymentSelection"​
    }​
  }​
}​
​
The UI simply renders a button for each object in the _links.next array. This makes 
the frontend incredibly dynamic and resilient to changes in the backend workflow. 

3.6. Deep Dive: W3C DIDs for Decentralized & Verifiable Identity 

To ensure security, provenance, and interoperability, all canonical resource IDs will be 
W3C Decentralized Identifiers (DIDs). 

●​ Implementation: 
1.​ Creation: In the Aggregation Service, when a new resource is first 

encountered, we will use a library like did-common-java to generate a did:ion 
or did:key. The ID's primeID can even be part of the DID string for 
deterministic generation. 

2.​ DID Document: The generated DID Document (containing cryptographic keys 
and service endpoints like the resource's MCP endpoint) is stored in the 
Registry Service's property graph, linked to the resource node. 

3.​ Usage: The resource's canonical identifier throughout the system becomes 
its DID (e.g., did:ion:Ei...). 

●​ Enabled Features: 
○​ Verifiable Provenance: Any Statement created by an ApplicationService can 

be cryptographically signed using the private key associated with the 



service's own DID. Downstream consumers can verify this signature, 
guaranteeing data integrity and non-repudiation. 

○​ Secure Interoperability: When one ApplicationService acts as an MCP Client 
to another, it can use DID-Auth to authenticate. This eliminates the need for 
API keys or pre-shared secrets, enabling a zero-trust, federated network. 

○​ Decentralized Discovery: The serviceEndpoint in a resource's DID Document 
can point directly to its MCP API, allowing different instances to dynamically 
discover how to interact with each other. 

3.7. The ApplicationService as an MCP Client 

The framework's true power is realized when an ApplicationService instance can act 
as a client to others. 

●​ Scenario: A local Interaction for "HireEmployee" requires a 
"PerformBackgroundCheck" tool, which is provided by a trusted, external HR 
ApplicationService. 

●​ Implementation: 
1.​ The local Activation Service determines the need for the external tool. 
2.​ It looks up the HR service's DID in its Registry. 
3.​ It resolves the DID to find the HR service's MCP endpoint from its DID 

Document. 
4.​ It authenticates using DID-Auth. 
5.​ It sends an MCP request: { "capability": "tool", "name": 

"PerformBackgroundCheck", "params": { ... } }. 
6.​ The remote service executes the tool and returns the result. 
7.​ The local Activation Service receives the result and integrates it into its own 

Interaction dataflow, advancing the "HireEmployee" process. 

Phase 3: Activation & Use Case Enablement (Months 8-10) 

Objective: Infer and enable the execution of business processes by implementing a 
dynamic, message-driven model based on DCI, DDD, and Dynamic Object Model 
principles. 

3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM) 

The Activation Service consumes the semantically rich Graph Model and produces 
the Activation Model. This is not a static data structure but a Dynamic Object Model 
(DOM), where an object's capabilities can change at runtime. This is a direct 
implementation of the ideas found in works like "Dynamic Object Model" and the 
Actor Role pattern. 

Alignment consumes from / augments Aggregation Model​



Activation consumes from /augments Alignment Model which in turn augments 
Aggregation Model. 

Activation: Resource Content Type Capabilities. 

◦ Buy-able (Transaction, Product) 

◦ Identify-able (Features, Image) 

◦ Locatable (Space, Position) 

●​ Core Entities: 
○​ Class: The schema for an object. It defines the fields (attributes) an object 

can have. This is analogous to a Java Class definition but is itself a data object 
that can be created or modified at runtime. 

○​ Instance: An instantiation of a Class. It holds the actual data in its attributes 
map. This is the "Data" part of DCI. 

○​ Actor: An Instance that is actively participating in a use case. It is stateful. 
○​ Role: A behavioral contract. It defines the capabilities and dataflows an Actor 

can have within a specific Context. This is the "Interaction" part of DCI. 
○​ Context: The schema for a use case. It defines the Roles that must be filled 

for the use case to proceed. This is the "Context" part of DCI. 
○​ Interaction: A running instance of a Context. It's the stateful orchestrator that 

binds Actors to Roles. 
○​ Transform: A message representing a single, atomic state change operation 

to be performed by an Actor. 
○​ Dataflow: A rule within a Context that defines the sequence of Transforms for 

a given Role. 
●​ Parallel Statement Types: 

○​ Schema Statements: Statement<Context, Role, Dataflow>. These define the 
"rules of the game." For example: "In the Purchase Context, the Buyer Role 
follows a Dataflow that involves creating a payment." 

○​ Data Statements: Statement<Interaction, Actor, Transform>. These represent 
the actual "moves in the game." For example: "In Interaction #123, Actor 
user:Alice executes the Transform to set her payment method." 

3.2. Patterns in Practice: DDD, DCI, and the Actor-Role Model 

●​ DDD (Domain-Driven Design): The entire Activation Service is a single Bounded 
Context. Its Ubiquitous Language consists of the entities above (Context, Role, 
Interaction, etc.). It listens for Domain Events from the Alignment service (e.g., 
NewProductKindDiscovered) and uses them to infer and create new Context 
schemas. 



●​ DCI (Data, Context, and Interaction): This pattern is the blueprint for the 
service's runtime logic. 
1.​ Data: The Instances (e.g., a specific user, a specific product) are the plain 

data objects. They have state but no intrinsic business logic. 
2.​ Context: An Interaction is created (e.g., a user clicks "Buy"). This Interaction 

is the Context. 
3.​ Interaction (The "Casting"): The Interaction "casts" Instances into Actors by 

assigning them Roles. The user:Alice Instance is now the Buyer Actor. The 
product:Laptop Instance is now the ItemForSale Actor. The Role (Buyer), 
which contains the business logic, is dynamically injected into the Actor for 
the duration of this Interaction. This avoids bloating data objects with all 
possible behaviors, a core tenet of DCI as described by James Coplien and 
Trygve Reenskaug. 

3.3. Deep Dive: Actor State and Dataflow via Transforms 

The core of the model's dynamism lies in how Actors manage state and interact via 
Transform messages. 

●​ Actor State (previous, current, next): 
○​ An Actor's state is not just its data; it's its position in the use case flow. This is 

explicitly modeled as a set of available Transforms. 
○​ current: Map<Context, Transform>: The Transform that led the Actor to its 

current state. 
○​ next: Map<Context, Transform[]>: A map of the available Transforms the 

Actor can execute next within a given Context. This is the system's "API" at 
runtime. The Producer service reads this map to render the available buttons 
or actions to the user. 

○​ previous: Map<Context, Transform>: The Transform that can be used to 
revert the current state (for undo functionality). 

●​ Implementing Dataflow with Transform Messages: 
○​ A Dataflow is a sequence of Transforms. A Transform is a declarative 

message, not imperative code. It's a data object that instructs an Actor on 
how to mutate its internal Instance data (its DOM). 

○​ Transform Message Structure:​
{​
  "transformId": "txf_987",​
  "targetActorId": "user:Alice",​
  "operation": "SET_FIELD", // or GET_FIELD, ADD_TO_LIST, MUTATE_FIELD​
  "payload": {​
    "fieldName": "shippingAddress",​



    "value": { "street": "123 Main St", "city": "Anytown" }​
  }​
}​
 

○​ Message-Driven Implementation: 
1.​ The Interaction orchestrator (or another Actor) publishes a 

Statement<Interaction, Actor, Transform> message to a Kafka topic. 
2.​ The target Actor (a stateful microservice instance or an object managed 

by the Activation Service) consumes this message. 
3.​ The Actor inspects the Transform's operation and payload. 
4.​ It applies the change to its internal Instance object's attributes map. For 

example, for SET_FIELD, it executes this.instance.attributes.put(fieldName, 
value). 

5.​ After successfully applying the Transform, the Actor updates its own 
previous, current, and next state maps based on the Dataflow rules 
defined in its Role. 

6.​ It then emits an ActorStateUpdated event, potentially triggering the next 
Transform in the sequence. 

●​ Example: "Purchase" Interaction Dataflow 
1.​ Initial State: Buyer Actor's next transforms include [SelectPaymentMethod]. 

Seller Actor's next is [WaitForPaymentSelection]. 
2.​ User selects a credit card. The Producer sends a message that the Interaction 

translates into a Transform statement: (interaction:123, actor:Buyer, 
transform:SetPaymentMethod). 

3.​ The Buyer Actor consumes this. It updates its internal Instance data with the 
payment info. Its state changes: 
■​ current becomes SetPaymentMethod. 
■​ next is now [ConfirmPurchase]. 

4.​ The Buyer emits BuyerPaymentMethodSet. 
5.​ The Interaction orchestrator hears this and sends a Transform to the Seller: 

(interaction:123, actor:Seller, transform:ReceivePaymentNotification). 
6.​ The Seller Actor consumes this. Its state changes: 

■​ current becomes ReceivePaymentNotification. 
■​ next is now [ShipItem]. 

7.​ This message-based flow of declarative Transforms continues until the 
Interaction is complete. This approach is highly scalable, auditable, and allows 
for complex, long-running, and distributed use cases. 

3.1. The Activation Service: The Semantic JAF Engine 



The Activation Service is refactored to operate as a distributed, semantic JavaBeans 
Activation Framework (JAF). Its job is to orchestrate, but the "how-to" for any given 
action is delegated to a specialized handler. 

●​ ContentTypeDataHandler: The Pluggable Behavior Module 
○​ Implementation: For each Content-Type (e.g., buy-able), a corresponding 

Spring bean implementing the ContentTypeDataHandler interface is 
registered. 

○​ Interface Definition:​
public interface ContentTypeDataHandler {​
    String getContentType(); // Returns "buy-able"​
    // Determines which verbs are valid given the Actor's CURRENT state​
    Set<Verb> getAvailableVerbs(Actor actor);​
    // Provides the declarative sequence of Transforms for a given verb​
    Dataflow defineDataflowForVerb(Verb verb, Actor actor);​
}​
 

●​ Dynamic Verb Availability: The power of this pattern is that getAvailableVerbs is 
state-dependent. For a buy-able product, the BUY verb is only returned by the 
handler if the Actor's state is ForSale. If the state is SoldOut, the handler might 
return an empty set, or perhaps a SUBSCRIBE_FOR_RESTOCK verb. This makes 
the system's available actions dynamically adapt to the resource's real-time state. 

●​ Context Inference from Content Types: The inference of available Contexts is 
now driven by behavior. 
○​ Rule: The Activation Service scans for Actors whose ContentTypes match the 

Role requirements for a Context. A Trade Context might require two roles, 
both needing the transferable Content-Type. The service finds an Actor that is 
buy-able (a sub-type of transferable) and another that is sell-able (also a 
sub-type), and thus makes the Trade Context available for instantiation 
between them. 

●​ JCA for Transactional Write-Back: The loop is closed by the 
ContentTypeDataHandler. 
1.​ When an Interaction's Dataflow requires a write-back (e.g., the 

FinalizePurchase Transform), it is dispatched to the handler for the buy-able 
Content Type. 

2.​ The handler retrieves the resource's JCA provenance from the Registry. 
3.​ It obtains a JCA Connection from the Datasource Service. 
4.​ It invokes the outbound JCA Interaction (e.g., createOrder), executing the 

transaction in the backend ERP and guaranteeing data consistency. 



Phase 4: The Behavior-Driven API & UI 

Objective: Expose the framework's dynamic capabilities through a standardized 
agentic protocol and a user interface that is entirely driven by the available behaviors 
of its resources. 

4.1. The COST/HAL Protocol: An API of Verbs 

The conversational protocol is refactored to be fully behavior-driven, following the 
JAF/REST approach. 

●​ Verbs in HAL Links: The _links section of a HAL response now contains a verbs 
array. This array is dynamically populated by calling the getAvailableVerbs(actor) 
method on the resource's active ContentTypeDataHandler. The name of the link is 
the verb.​
// HAL Response for a resource with Content-Type: 'buy-able' in a 'ForSale' state​
"_links": {​
  "self": { "href": "/products/did:..." },​
  "verbs": [​
    {​
      "href": "/products/did:.../invoke",​
      "method": "POST",​
      "name": "BUY", // The command from the DataHandler​
      "title": "Purchase this item now"​
      // "schema" for placeholders remains as before​
    },​
    {​
      "href": "/products/did:.../invoke",​
      "method": "POST",​
      "name": "ADD_TO_CART",​
      "title": "Add this item to your shopping cart"​
    }​
  ]​
} 

Phase 3: Activation & Use Case Enablement (Months 8-10) 

Objective: Infer and enable the execution of business processes and use cases from 
the knowledge graph. 

3.1. Components & Implementation Details: 

●​ Activation Service (Java, Spring Boot): 



○​ Core Logic: Consumes from the alignment-graph-model-v1 topic. 
○​ DCI (Data, Context, Interaction): Implement the DCI pattern. 

■​ Context Inference: Use graph traversal algorithms (e.g., Depth First 
Search) or Cypher queries on the Registry to find recurring patterns that 
represent potential use cases. For example, a pattern of 
(Order)-[contains]->(Product)<-[trackedIn]-(Inventory) infers a 
ReplenishStock Context. 

■​ Role & Actor: Roles are the types of nodes in the pattern (e.g., Product, 
Inventory). Actors are specific instances (e.g., product:123). 

■​ Interaction: An Interaction is an instantiated Context. It's a stateful object 
that tracks the assigned Actors and the progress of the use case. 

○​ Dataflow & Rules: Use a rules engine like Drools to define the business logic. 
A rule might be: WHEN Inventory.level < Inventory.threshold THEN CREATE 
ReplenishStock.Interaction. The actual data transformations between actors 
can be defined using XSLT or implemented as simple Java methods. 

○​ Output: Produces Statement<Context, Interaction, Role, Actor> to the 
activation-dci-model-v1 topic. 

●​ Index Service (Helper Service - Python, Vector DB): 
○​ Core Logic: A service for similarity-based retrieval. 
○​ Database: Use a dedicated vector database like Milvus or Pinecone. 
○​ API: 

■​ POST /v1/index/resources: Adds a resource's embedding to the index. 
■​ POST /v1/search/similar: Takes a vector and context filters (e.g., "find 

products similar to this one") and returns a list of matching resource URIs. 
This is used to find suitable Actors for a Role. 

Phase 4: Agentic Architecture, API, and UI 

Objective: Expose the framework's capabilities through a standardized agentic 
protocol and a dynamic, conversational user interface. 

4.1. The Model Context Protocol (MCP) Server 

The ApplicationService exposes an MCP Server endpoint, allowing external clients 
(LLM agents, other AppService instances) to interact with its capabilities. 

●​ Exposed Capabilities: 
1.​ Resources (Aggregation/Index): Provides access to find and retrieve 

resources, using Spring AI's ReactiveEmbeddingClient for similarity searches. 
2.​ Tools (Activation/Registry): Allows an agent to execute a named Tool, which 

maps directly to an Activation Context, providing a verifiable, stateful way to 
perform actions. 



3.​ Prompt Templates (Alignment/Naming): Provides structured prompts for 
complex reasoning, which can be populated by the agent and sent to an LLM 
via Spring AI's ReactiveChatClient. 

4.2. W3C DIDs for Decentralized & Verifiable Identity 

All canonical resource IDs are W3C Decentralized Identifiers (DIDs), generated 
using libraries like did-common-java. This enables: 

●​ Verifiable Provenance: Statements can be cryptographically signed. 
●​ Secure Interoperability: Services can authenticate with each other using 

DID-Auth, eliminating API keys. 
●​ Decentralized Discovery: Service endpoints are discoverable via DID 

Documents. 

4.3. The COST/HAL Protocol with JAF/REST Semantics 

The communication between the Producer Service (client) and the Activation Service 
is implemented as COST (COnversational State Transfer), a stateful protocol built 
on HATEOAS using the HAL specification. 

●​ Semantic Verbs: The _links section of a HAL response contains a verbs array, 
populated by the resource's ContentTypeDataHandler. The name of each link is 
the command (e.g., BUY, ADD_TO_CART). 

●​ Conversational Placeholders: Link schemas can contain placeholders for user 
input, including a possibleValues link that the client can follow to fetch a list of 
valid options. This enables a rich, back-and-forth conversational flow where the 
client UI is dynamically generated from the server's responses. 

Phase 4: API & User Interface (Months 11-12) 

Objective: Expose the framework's capabilities through a developer-friendly API and 
an intuitive user interface. 

4.1. Components & Implementation Details: 

●​ Producer Service (API/Frontend - Java/Spring Boot, React): 
○​ Backend API: A Spring Boot application that provides the public-facing 

interface. 
○​ REST API: 

■​ GET /v1/contexts: Lists available use cases. 
■​ POST /v1/interactions: Creates a new instance of a use case. 
■​ GET /v1/interactions/{id}: Retrieves the state of a specific transaction. 
■​ POST /v1/interactions/{id}/roles/{roleName}/assign: Assigns an actor to a 

role. 



○​ Hypermedia (HATEOAS): Use spring-boot-starter-hateoas. Each response 
will contain _links that guide the client. An Interaction response will have links 
like assign-actor or complete-step. 

○​ Frontend (React): 
■​ A Single-Page Application (SPA) built with React and TypeScript. 
■​ Use a component library like Material-UI or Ant Design for a consistent 

look and feel. 
■​ Implement a generic form renderer that builds input forms dynamically 

based on the JSON schema of the Roles provided by the API. 
■​ Use WebSockets to connect to the Augmentation Service (through an API 

Gateway) to receive real-time updates on the status of Interactions. 
○​ Authentication: Implement OAuth 2.0 with an identity provider like Keycloak 

or Auth0. The API Gateway will enforce authentication and authorization 
policies. 

1.1. Components & Reactive Implementation Details: 

●​ Datasource Service (Java, Spring WebFlux): 
○​ Reactive Core: The service will be built entirely on a non-blocking stack. 

Instead of traditional controllers, it will use Spring's functional handler 
functions. 

○​ Reactive Ingestion: 
■​ RestApiAdapter: Will use WebClient to consume external APIs. The 

WebClient natively returns a Flux<T>, allowing the service to stream 
paginated results without holding a thread, processing each item as it 
arrives. 
■​ Example: 

webClient.get().uri("/items?page=0").retrieve().bodyToFlux(Item.class)
.expand(lastItem -> fetchNextPage(lastItem))... 

■​ R2DBCAdapter: For supported SQL databases, it will use R2DBC 
(spring-boot-starter-data-r2dbc) to perform non-blocking database 
queries, returning a Flux<Row>. 

○​ Functional Transformation: The transformation from source format to SPO 
triples will be a pure function within a reactive pipeline. 
■​ Example (Project Reactor):​

Flux<SourceData> sourceStream = adapter.fetchData();​
Flux<Statement<String,String,String,String>> tripleStream = sourceStream​
    .flatMap(data -> Flux.fromIterable(transformer.toTriples(data))); // 
1-to-many transform​
 



This approach aligns with functional principles described in resources like 
"Functional Programming in JavaScript" by treating data transformation as a 
series of composable, stateless operations on a stream. 

●​ Augmentation Service (Java, Spring Cloud Stream): 
○​ Reactive Dataflow: This service is the reactive backbone. It will be 

implemented using Spring Cloud Stream's functional programming model. 
Instead of @StreamListener, we define beans of type 
java.util.function.Function<Flux<T>, Flux<R>>. The framework automatically 
binds these to Kafka topics. 
■​ Example: A function that routes raw triples to the aggregation service.​

@Bean​
public Function<Flux<RawStatement>, Flux<AggregatableStatement>> 
processRawTriples() {​
    return flux -> flux​
        .map(this::enrichWithMetadata)​
        .log(); // Log each event in the stream​
}​
 

This embodies the principles of event-driven microservices discussed in the 
"Simple Event-Driven Microservices with Spring Cloud Stream" reference. 

○​ Saga Pattern (Reactive): The Saga orchestrator will be implemented using 
Flux.usingWhen to manage transactional boundaries across services, 
ensuring that compensating actions are triggered reactively on error signals. 

●​ Registry Service (Helper Service - Java, Spring WebFlux, Neo4j): 
○​ Reactive API: The REST API will be built with Spring WebFlux functional 

endpoints. Endpoints will return Mono<ServerResponse> for writes and 
Flux<Statement> for reads. 

○​ Database Interaction: While the official Neo4j Java driver is blocking, we can 
make it non-blocking from the perspective of the event loop by offloading the 
work to a dedicated scheduler. 
■​ Example:​

public Mono<Void> saveStatement(Statement stmt) {​
    return Mono.fromRunnable(() -> {​
        // Blocking driver call​
        session.run("MERGE (s:Resource {uri: $s_uri})", parameters("s_uri", 
stmt.getSubject()));​
    }).subscribeOn(Schedulers.boundedElastic()).then();​
}​



 

This prevents the blocking call from consuming a precious event-loop thread, a core 
tenet of reactive programming. 
Phase 2: Semantic Core & Knowledge Representation (Months 4-7) 

Objective: Transform raw data into an interconnected, semantically rich knowledge 
graph using reactive streams and AI/ML models. 

2.1. Components & Reactive Implementation Details: 

●​ Aggregation Service (Java, Spring AI, Python): 
○​ Functional Aggregation Pipeline: The core of this service is a multi-stage 

reactive pipeline. 
■​ Example:​

// 1. Consume raw triples​
Flux<RawStatement> rawStream = ...;​
// 2. Group by subject to collect all predicates​
Flux<GroupedFlux<String, RawStatement>> groupedBySubject = 
rawStream.groupBy(RawStatement::getSubject);​
// 3. Process each group to infer type​
Flux<InferredTypeStatement> typeStream = groupedBySubject​
    .flatMap(group -> group​
        .map(RawStatement::getPredicate)​
        .collect(Collectors.toSet())​
        .flatMap(this::inferTypeFromPredicates) // Calls FCA logic​
    );​
 

○​ FCA (Formal Concept Analysis): The inferTypeFromPredicates method will 
use fcalib (as cited in the references). The set of predicates for a group of 
subjects is used to build a FormalContext. The resulting ConceptLattice 
provides the type hierarchy, which is then flattened back into a Flux of type 
assertion statements. This aligns with the use of FCA for knowledge discovery 
outlined in papers like "Formal Concept Analysis for Knowledge Discovery and 
Data Mining". 

○​ Spring AI (Reactive Embeddings): Embeddings will be generated within the 
reactive stream using Spring AI's ReactiveEmbeddingClient. 
■​ Example:​

// Inside the flatMap pipeline​
.flatMap(statement -> 
reactiveEmbeddingClient.embed(statement.getObject())​



    .map(embedding -> statement.withEmbedding(embedding))​
)​
 

This ensures that the network call to an embedding model (like one from Hugging 
Face or a local Ollama instance) is non-blocking. 

●​ Alignment Service (Java, RDF4J): 
○​ Reactive Ontology Matching: This service consumes the Reference Model 

stream. For each statement, it performs a lookup against the upper 
ontologies. 

○​ RDF4J Integration: SPARQL queries via RDF4J will be wrapped in 
Mono.fromCallable and executed on a dedicated scheduler to avoid blocking. 
■​ Example:​

public Flux<Statement> align(Flux<Statement> statements) {​
    return statements.flatMap(stmt ->​
        Mono.fromCallable(() -> executeSparqlAlignment(stmt)) // Blocking 
call​
            .subscribeOn(Schedulers.boundedElastic())​
            .flatMapMany(Flux::fromIterable) // Flatten results into the stream​
    );​
}​
 

This approach leverages the power of semantic frameworks like RDF4J within a 
fully reactive architecture, as envisioned by concepts in 
"SPARQL-Micro-Services". 

●​ Naming Service (Helper Service - Java, Apache Jena): 
○​ Reactive SPARQL Endpoint: While Jena Fuseki is typically servlet-based, it 

can be proxied by a Spring WebFlux application to provide a fully reactive 
interface to the rest of the system, ensuring end-to-end non-blocking I/O. 

Phase 3: Activation & Use Case Enablement (Months 8-10) 

Objective: Infer and enable the execution of business processes using the DCI and 
DDD patterns within a reactive model. 

3.1. Components & Reactive Implementation Details: 

●​ Activation Service (Java, Spring Boot): 
○​ DDD (Domain-Driven Design): This service is a classic DDD Bounded 

Context. The Activation Model is its Ubiquitous Language. It consumes 
AlignmentModelChanged domain events from Kafka and produces 



InteractionStateChanged events. This follows the principles from Eric Evans' 
"Domain-Driven Design: Tackling Complexity in the Heart of Software". 

○​ DCI (Data, Context, and Interaction): This pattern is implemented reactively. 
■​ Context: A Context is a class that defines a use case. It contains the logic 

to find the required Roles. This logic can be a reactive graph query. 
■​ Role: A Role is a java.util.function.Function<Flux<ActorState>, 

Flux<TransformedState>>. It's a functional interface that defines the 
behavior an Actor will perform. 

■​ Interaction: An Interaction is a stateful, but non-blocking, orchestrator. 
When instantiated, it subscribes to the Flux streams representing the state 
of its assigned Actors. It then applies the Role functions to these streams 
to drive the use case forward. This dynamic composition of behavior is a 
core idea from the DCI papers by Trygve Reenskaug and James Coplien. 

■​ Example:​
// An Interaction orchestrating a 'Buy' use case​
Flux<BuyerState> buyerStream = 
actorRepository.find(buyerId).getStateStream();​
Flux<SellerState> sellerStream = 
actorRepository.find(sellerId).getStateStream();​
// Apply the Role functions​
Flux<Payment> paymentStream = buyerRole.process(buyerStream);​
Flux<Shipment> shipmentStream = sellerRole.process(sellerStream);​
// Combine the results​
Flux.zip(paymentStream, 
shipmentStream).subscribe(this::handleCompletedTransaction);​
 

●​ Index Service (Helper Service - Python, Vector DB): 
○​ Reactive Indexing: It will subscribe to a Kafka topic of ResourceUpdated 

events. Using a reactive Kafka consumer (like aiokafka in Python), it will 
update the vector database (e.g., Milvus) as soon as a resource's embedding 
changes. 

Phase 4: API & User Interface (Months 11-12) 

Objective: Expose the framework's capabilities through a fully reactive API and a 
real-time user interface. 

4.1. Components & Reactive Implementation Details: 

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): 
○​ Fully Reactive API: The entire API will be built with Spring WebFlux. 



○​ Server-Sent Events (SSE): For real-time updates on long-running 
Interactions, the API will use SSE. A client can subscribe to an endpoint like 
GET /v1/interactions/{id}/stream, which returns a Flux<InteractionState> with 
the Content-Type of text/event-stream. 
■​ Example:​

@GetMapping(value = "/interactions/{id}/stream", produces = 
MediaType.TEXT_EVENT_STREAM_VALUE)​
public Flux<InteractionState> streamInteractionUpdates(@PathVariable 
String id) {​
    return 
interactionRepository.findById(id).flatMapMany(Interaction::getStateStrea
m);​
}​
 

This provides a much more efficient and standard-based alternative to 
WebSockets for server-to-client data pushes, as advocated in many reactive 
programming tutorials (e.g., "Building Reactive Microservices with Spring 
WebFlux"). 

○​ Frontend (React with RxJS): The React frontend will use a library like RxJS 
to manage the SSE streams from the backend. The state of a component can 
be directly bound to an Observable derived from the event stream, causing 
the UI to update automatically and efficiently as new data arrives. This aligns 
with the "Thinking in React" and "Thinking in RxJava" mental models. 

1.1. Components & Reactive Implementation Details: 

●​ Datasource Service (Java, Spring WebFlux): 
○​ Reactive Core: The service will be built entirely on a non-blocking stack using 

Spring WebFlux's functional handler functions instead of traditional 
controllers. 

○​ Reactive Ingestion: 
■​ RestApiAdapter: Will use WebClient to consume external APIs. It natively 

returns a Flux<T>, allowing the service to stream paginated results without 
holding a thread, processing each item as it arrives. 
■​ Example: 

webClient.get().uri("/items?page=0").retrieve().bodyToFlux(Item.class)
.expand(lastItem -> fetchNextPage(lastItem))... 

■​ R2DBCAdapter: For supported SQL databases, it will use R2DBC 
(spring-boot-starter-data-r2dbc) to perform non-blocking database 
queries, returning a Flux<Row>. 



○​ Functional Transformation: The transformation from source format to SPO 
triples will be a pure function within a reactive pipeline. This aligns with 
functional principles described in resources like "Functional Programming in 
JavaScript" by treating data transformation as a series of composable, 
stateless operations on a stream. 
■​ Example (Project Reactor):​

Flux<SourceData> sourceStream = adapter.fetchData();​
Flux<Statement<String,String,String,String>> tripleStream = sourceStream​
    .flatMap(data -> Flux.fromIterable(transformer.toTriples(data))); // 
1-to-many transform​
 

●​ Augmentation Service (Java, Spring Cloud Stream): 
○​ Reactive Dataflow: This service is the reactive backbone, implemented using 

Spring Cloud Stream's functional programming model. We define beans of 
type java.util.function.Function<Flux<T>, Flux<R>>, which the framework 
automatically binds to Kafka topics. This embodies the principles of 
event-driven microservices discussed in the "Simple Event-Driven 
Microservices with Spring Cloud Stream" reference. 

○​ Saga Pattern (Reactive): The Saga orchestrator will be implemented using 
Flux.usingWhen to manage transactional boundaries across services, 
ensuring that compensating actions are triggered reactively on error signals. 

●​ Registry Service (Helper Service - Java, Spring WebFlux, Neo4j): 
○​ Reactive API: The REST API will be built with Spring WebFlux functional 

endpoints, returning Mono<ServerResponse> for writes and Flux<Statement> 
for reads. 

○​ Database Interaction: To keep the event loop non-blocking, the blocking 
Neo4j Java driver calls will be offloaded to a dedicated scheduler. 
■​ Example:​

public Mono<Void> saveStatement(Statement stmt) {​
    return Mono.fromRunnable(() -> {​
        // Blocking driver call​
        session.run("MERGE (s:Resource {uri: $s_uri})", parameters("s_uri", 
stmt.getSubject()));​
    }).subscribeOn(Schedulers.boundedElastic()).then();​
}​
 

Phase 2: Semantic Core & Knowledge Representation (Months 4-7) 

Objective: Transform raw data into an interconnected, semantically rich knowledge 



graph using reactive streams, Formal Concept Analysis, and a set-oriented model. 

2.1. Deep Dive: The Reference Model and Prime Number Semantics 

The Reference Model, produced by the Aggregation Service, moves from 
string-based URIs to a formal, mathematically grounded identification system. 

●​ ID & IDOccurrence: An ID is the canonical concept of an entity, identified by a 
unique primeID. An IDOccurrence is an ID appearing in a specific role within a 
specific context (e.g., as the subject of a statement). 

●​ Prime Number Semantics: We leverage the Fundamental Theorem of 
Arithmetic. An IDOccurrence's "embedding" is a set of prime IDs defining its full 
context. Similarity is a deterministic Jaccard Index on these sets. 

●​ FCA with Prime IDs: In Formal Concept Analysis, we use primeIDs for objects 
and attributes. A concept's "intent" (its set of shared attributes) can be uniquely 
identified by the product of its attribute primeIDs. This allows for 
hyper-efficient subsumption checking: a concept C1 is a sub-concept of C2 if 
C1's intent-product is cleanly divisible by C2's intent-product. This 
transforms expensive set logic into simple integer arithmetic, a technique vital for 
large-scale inference as explored in works like "Formal Concept Analysis for 
Knowledge Discovery and Data Mining". 

2.1. Deep Dive: The Reference Model and Prime Number Semantics 

The Reference Model is the first layer of abstraction over raw data, produced by the 
Aggregation Service. Its purpose is to move from string-based URIs to a formal, 
mathematically grounded identification system that facilitates powerful inferences. It 
revolves around two key entities: ID and IDOccurrence. 

●​ ID Entity: 
○​ Definition: An ID represents the canonical, context-free identity of a 

resource. It is the "idea" of an entity. For example, the URI 
http://example.com/users/alice and the database row (users, PK=123) both 
resolve to the same single ID for the concept of "Alice". 

○​ primeID: long: The core of the ID. Upon first encountering any new resource 
URI, the Aggregation Service assigns it a unique prime number. This is its 
immutable identifier. 

○​ Implementation: A centralized, atomic "Prime Number Service" (e.g., using a 
Redis INCR command against a pre-computed list of primes) will be used to 
dispense unique primes, guaranteeing no collisions across the distributed 
system. 

●​ IDOccurrence Entity: 



○​ Definition: An IDOccurrence represents an ID appearing in a specific role 
within a specific context. It is the "instance" of an idea in action. For example, 
in the statement (Alice, worksFor, Google), "Alice" is not just her canonical ID; 
she is an IDOccurrence playing the subject role. 

○​ Structure: It contains the ID of the entity itself (occurringId), and a reference 
to the context in which it appears (context, which is itself an IDOccurrence 
representing the statement). 

●​ Prime Number Embeddings & Similarity:​
The document mentions "embeddings," but in this model, it refers to a set of 
prime numbers, not a dense vector from an LLM. This leverages the Fundamental 
Theorem of Arithmetic, as alluded to in John Sowa's work referenced in the 
source document. 
○​ Composition: An IDOccurrence's embedding is a set of primeIDs that define 

its complete context: {primeID_of_self, primeID_of_predicate, 
primeID_of_object, primeID_of_statement_context}. 

○​ Similarity Calculation: Similarity between two IDOccurrences is calculated 
using a Jaccard Index on their prime embedding sets. A high score signifies 
a high degree of shared context, implying semantic similarity. This is 
computationally cheaper and more deterministic than vector cosine similarity. 

●​ Model Statements: 
○​ Data Statements: A raw triple (Subject, Predicate, Object) is transformed into 

Statement<IDOccurrence, ID, IDOccurrence>. This captures that the subject 
and object are specific occurrences, while the predicate is the canonical 
relationship ID. 

○​ Schema Statements: A schema statement like (Person, hasName, String) is 
represented as Statement<ID, ID, ID>, as it describes relationships between 
canonical concepts, not specific instances. 

2.1. Deep Dive: Formal Concept Analysis (FCA) in the Aggregation Service 

FCA is a mathematical method used to find conceptual structures in data. It is a 
cornerstone of the Aggregation Service for inferring types, hierarchies, and hidden 
relationships. We will use the fcalib library (as cited in the references) within our 
reactive pipeline. The service will construct three different kinds of formal contexts 
from the incoming stream of Statement<ID, ID, ID, ID>. 

A formal context is a triplet (G, M, I) where G is a set of objects, M is a set of 
attributes, and I is a binary relation I ⊆ G × M. 

1.​ Predicate-as-Context Analysis: 
○​ Context: For a given predicate P (e.g., worksFor), the formal context is 



(Subjects, Objects, I), where I contains a pair (s, o) if the statement (s, P, o) 
exists. 

○​ Example: Given statements (Alice, worksFor, Google), (Bob, worksFor, 
Google), (Alice, worksFor, StartupX). 
■​ G (Objects/Subjects): {Alice, Bob} 
■​ M (Attributes/Objects): {Google, StartupX} 
■​ I (Relation): {(Alice, Google), (Bob, Google), (Alice, StartupX)} 

○​ Inference: The resulting concept lattice will group employees by their 
employers. It allows for attribute implication. For example, the lattice might 
reveal that "every person who worksFor both Google and StartupX also has 
the attribute isSeniorDeveloper". This discovers implicit rules in the data. This 
aligns with FCA's use in ontology alignment as described in "Aligning 
Ontologies through Formal Concept Analysis". 

2.​ Subject-as-Context Analysis: 
○​ Context: For a given subject S, the formal context is (Predicates, Objects, I). 
○​ Example: Given (Alice, title, "Engineer"), (Alice, uses, Java). 

■​ G (Objects/Predicates): {title, uses} 
■​ M (Attributes/Objects): {"Engineer", Java} 
■​ I (Relation): {(title, "Engineer"), (uses, Java)} 

○​ Inference: This helps define what a subject is. By comparing the concept 
lattices of different subjects (e.g., Alice vs. Bob), we can find similarities in 
their attributes and thus establish a "type" hierarchy. Subjects with similar 
lattices belong to the same inferred type. 

3.​ Object-as-Context Analysis: 
○​ Context: For a given object O, the formal context is (Subjects, Predicates, I). 
○​ Example: Given (Alice, uses, Java), (ProjectX, builtWith, Java). 

■​ G (Objects/Subjects): {Alice, ProjectX} 
■​ M (Attributes/Predicates): {uses, builtWith} 
■​ I (Relation): {(Alice, uses), (ProjectX, builtWith)} 

○​ Inference: This helps understand the different roles an entity plays. The 
lattice for "Java" reveals all the subjects that interact with it and the ways 
(predicates) they do so, defining its role in the ecosystem. 

2.2. Deep Dive: The Graph Model (CSPO) in the Alignment Service 

The Alignment Service elevates the Reference Model to the Graph Model, which 
reifies statements into higher-order concepts called Kinds. This is where the system's 
understanding of the domain truly takes shape. 

●​ CSPO Entities (Context, Subject, Predicate, Object): 
○​ These are not mere identifiers; they are rich, first-class objects in the model. 



In a Java implementation, they would be records or classes. 
○​ Data vs. Schema Statements: The model supports two parallel universes: 

1.​ Data (Instance) Statements: Statement<Context, Subject, Predicate, 
Object>. Here, each element is an instance. Context is a specific 
transaction ID (e.g., tx:9987), Subject is user:123, Predicate is the specific 
purchase event, and Object is product:456. 

2.​ Schema (Type) Statements: Statement<ContextKind, SubjectKind, 
PredicateKind, ObjectKind>. Here, each element is a type. ContextKind is 
PurchaseEvent, SubjectKind is Customer, PredicateKind is Purchases, and 
ObjectKind is Product. 

●​ Domains Modeling & Traversal: 
○​ A domain (e.g., "E-commerce," "Human Resources") is modeled as a 

collection of related Kinds. The schema statements form a "type graph" that 
defines the rules of the domain. 

○​ Traversal becomes type-based. Instead of just "find connected nodes," we 
can ask, "Find all ContextKinds that the Customer SubjectKind can participate 
in." This is a query on the schema graph, providing powerful domain discovery 
capabilities. 

○​ Implementation: This is best implemented in a property graph database like 
Neo4j. We would use a dual-schema approach: 
■​ Instance nodes: (u:Instance:User {id: 'user:123'}) 
■​ Type nodes: (c:Kind:Customer {name: 'Customer'}) 
■​ Connection: (u)-[:INSTANCE_OF]->(c)​

This allows a single Cypher query to traverse both instance and type 
information seamlessly. 

●​ Functional Operations & Inference: 
○​ The model enables powerful, type-safe functional operations on reactive 

streams. 
■​ Function<Subject, Flux<Context>>: "Given a specific user instance, stream 

all transaction contexts they participated in." 
■​ Function<SubjectKind, Flux<PredicateKind>>: "Given the Customer type, 

stream all possible action types they can perform." 
○​ Inference: The primary inference is validation. "Can user:123 (who is a 

Customer) perform a deleteAccount action?" The system validates this by 
querying the schema graph: MATCH 
(:Customer)-[:CAN_PERFORM]->(:AccountDeletionAction). If a path exists, the 
operation is valid according to the learned domain rules. 

2.3. Deep Dive: Dimensional Features & Order Inference 



The Alignment Service is also responsible for inferring order, which is crucial for 
understanding processes, trends, and state transitions. Order is not explicit; it's 
inferred from hierarchies in type and state. 

●​ The Dimensional Model: Order is understood along specific Dimensions (e.g., 
Time, Price, Complexity). A measurement is a tuple: (Dimension, Unit, Value). 
Multidimensional features (OLAP like):​
Dimensions: Time, Product, Region.​
Units: Month / Year, Category / Item, State / City.​
Context : (Context, Attribute, Value). 

Examples:​
(soldDate, aProduct, aDate)​
((soldDate, aProduct, aDate), Product, aProduct)​
(((soldDate, aProduct, aDate), Product, aProduct), Region, aRegion) 

TODO: Materialize / Query Cubes Context Statements into graph models. 

●​ Order from Type/Schema Hierarchies: 
○​ Principle: Generality defines order. More general concepts come "before" 

more specific ones. 
○​ Mechanism: The type hierarchy is derived from the FCA lattice. A type with 

more attributes (a more specific concept) is considered "after" a type with 
fewer attributes. 

○​ Example: 
■​ Person Type: Attributes {hasName, hasAge}. 
■​ Employee Type: Attributes {hasName, hasAge, hasEmployeeID, hasSalary}. 
■​ Inference: The attribute set of Employee is a superset of Person's. The 

system establishes a conceptual ordering: Person < Employee. This means 
Person is a prerequisite concept to Employee. 

●​ Order from State/Data Hierarchies: 
○​ Principle: States in a process follow a defined sequence. 
○​ Mechanism: For certain attributes (e.g., "OrderStatus"), a state transition 

graph can be defined or learned. 
○​ Example: A Flux<OrderEvent> stream is processed. The system sees an order 

transition through states: Placed -> Paid -> Shipped -> Delivered. This 
sequence is materialized as an ordered relationship in the graph, allowing the 
system to infer that Paid comes "after" Placed. 

2.4. Deep Dive: Property Graphs as a Unifying Implementation 

While the Reference, Graph, and Activation models are conceptually distinct layers of 
abstraction, they can be elegantly implemented on a single underlying property 



graph database (Neo4j). This avoids data duplication and enables powerful, 
cross-layer queries. 

●​ Unified Node Strategy: A single node in the graph can represent an entity 
across all models, distinguished by labels and properties. 
○​ Example Node (n): 

■​ id: 'user:123' 
■​ labels: ['Resource', 'Instance', 'User', 'Actor'] 
■​ Reference Model Properties: primeId: 8675309, uri: 'db://users/123' 
■​ Graph Model Relationships: (n)-[:INSTANCE_OF]->(:Kind:Customer) 
■​ Activation Model Relationships: (interaction:Interaction)-[:PLAYS_ROLE 

{roleName: "Buyer"}]->(n) 
●​ Benefits for Traversal, Inference, and Functional Operations: 

○​ Traversal: This unified graph allows for seamless traversal across abstraction 
layers in a single, powerful Cypher query. 
■​ Example Query: "Find all Interactions of type HighValuePurchase where 

the Buyer Role was played by an Actor of Kind PremiumCustomer, and 
then find other Actors of the same Kind who have a high Reference Model 
prime-set similarity to the original buyer." 

○​ Inference: Inferences become multi-layered and incredibly rich. The system 
can reason about an Activation Interaction based on the Graph Kind of its 
actors and their Reference primeID similarity to other entities. 

○​ Functional Operations: The unified graph enables powerful functional 
compositions. 
■​ Function<Interaction, Flux<ReferenceModelSimilarityScore>>: "Given a 

specific transaction instance, calculate the Reference Model similarity 
scores for all its participating actors." This function would trigger a Cypher 
query that traverses from the :Interaction node to its :Actor nodes and 
then computes the Jaccard index on their primeId context sets. 

2.4. Deep Dive: Dimensional Features & The Alignment Service 

The Alignment Service is not only responsible for semantic matching but also for 
creating a unified understanding of order and measurement across all integrated 
applications. This is achieved through the Dimensional Features model, which is 
managed by a dedicated Dimensional Service (a helper service) and leveraged by 
the Alignment Service. 

●​ The Dimensional Service: A Helper for Measurement 
○​ Purpose: This service acts as the central repository and processor for all 

dimensional information. It understands dimensions, units, and conversions. 



○​ Implementation: A Spring Boot service with a dedicated API for dimensional 
operations. It will maintain a knowledge base of conversion factors and 
dimensional relationships (e.g., Speed = Distance / Time). 

●​ Storage and Functional Retrieval of Dimensional Data: 
○​ Modeling in the Property Graph (Neo4j): Dimensional data is not stored as 

simple literal properties. It's modeled as a rich structure to preserve context. 
■​ An attribute like a product's price is not price: 99.99. Instead, the Product 

node is linked to a Measure node. 
■​ (:Product {id: 'prod:123'})-[:HAS_MEASURE]->(m:Measure {value: 99.99}) 
■​ (m)-[:HAS_UNIT]->(:Unit {name: 'USD'}) 
■​ (m)-[:OF_DIMENSION]->(:Dimension {name: 'Currency'}) 

○​ Functional Retrieval: This structure enables powerful, context-aware 
functional queries via the Dimensional Service's API. 
■​ Function<Measure, Flux<ConvertedMeasure>>: A core function that takes 

a Measure and a target Unit and returns a stream of equivalent measures. 
For example, converting a Measure of (1, 'Hour', Time) to (3600, 'Second', 
Time). 

■​ Function<Set<Measure>, Flux<DerivedMeasure>>: A function for deriving 
new measures. Given (120, 'Kilometers', Distance) and (1, 'Hour', Time), it 
can derive (120, 'Kilometers per hour', Speed). 

●​ Alignment Features & Their Materialization:​
The Alignment Service consumes raw data and uses the Dimensional Service to 
produce and materialize alignments back into the property graph. This enriches 
the model at all layers. 
1.​ Ontology Matching/Linking: 

■​ Process: The service identifies that sourceA.user.creation_date and 
sourceB.client.signup_timestamp are semantically equivalent. It uses the 
Naming Service (and potentially an LLM via Spring AI) to match these 
concepts. 

■​ Materialization: It writes a new relationship into the Graph Model: 
(:Attribute:creation_date)-[:OWL_SAME_AS]->(:Attribute:signup_timestam
p). This permanently links the two concepts. 

2.​ Order Alignment (from Type/State Hierarchies): 
■​ Process: As described previously, the system infers order from type 

hierarchies (Person < Employee) and state transitions (Placed < Paid < 
Shipped). 

■​ Materialization: It creates explicit ordering relationships in the Graph 
Model's schema. (:Type:Employee)-[:PRECEDED_BY]->(:Type:Person). 
This allows for path-based queries to determine process prerequisites. 



3.​ Dimensional Alignment: 
■​ Process: This is the most critical feature. The service finds two measures, 

price_eur: 100 and price_usd: 118, linked to the same product. It uses the 
Dimensional Service to confirm they are comparable along the Currency 
dimension. 

■​ Materialization: The alignment is materialized in the Reference Model 
and reflected up to the Activation Model. The Product node in the graph 
now has two HAS_MEASURE relationships, but both are linked to the same 
canonical :Dimension:Currency node. This allows an Activation Role like 
PriceAuditor to instantly find all price measures for a product, regardless 
of their original source or unit. 

●​ Concrete Upper Ontology Example: owl:time 
○​ Problem: Source A stores dates as MM/DD/YYYY. Source B uses ISO 8601 

timestamps. Source C uses Unix epoch seconds. 
○​ Alignment using a Time Upper Ontology: The Dimensional Service is 

configured with a Time upper ontology based on W3C's owl:time. This 
ontology defines concepts like Instant, Interval, Duration, and properties like 
hasBeginning, inXSDDateTimeStamp. 

○​ Process: 
1.​ When the Alignment Service encounters a date value, it sends it to the 

Dimensional Service. 
2.​ The Dimensional Service parses the value and maps it to a canonical 

representation defined by the ontology. All three date formats are 
converted into a single, standard XSDDateTimeStamp. 

3.​ Materialization: The original literal value is kept for provenance, but a 
new relationship is created from the instance node to a canonical 
TimeInstant node in the graph: 
(:Order:order_456)-[:OCCURRED_AT]->(:TimeInstant {xsdDateTime: 
'2025-07-26T22:04:00-03:00'}). 

○​ Result: All temporal data across all integrated systems is now aligned to a 
single, queryable timeline, enabling powerful temporal analysis in the BI layer. 

2.2. Deep Dive: Formal Concept Analysis (FCA) with Prime IDs 

FCA is a cornerstone of the Aggregation Service for inferring types and hierarchies. 
Using primeIDs as the identifiers for objects and attributes in the FCA context 
provides unique mathematical properties for inference. 

●​ Context Construction with Primes: The formal context (G, M, I) is built as 
follows: 
○​ G (Objects): A set of primeIDs representing the subjects of a set of 



statements. 
○​ M (Attributes): A set of primeIDs representing the objects of those statements. 
○​ I (Relation): A binary relation connecting a subject's primeID to an object's 

primeID. 
●​ Inference via Prime Products: This is the model's key innovation. A "formal 

concept" in the resulting lattice is a pair (A, B), where A is a set of subject 
primeIDs (the extent) and B is a set of object primeIDs they all share (the intent). 
1.​ Concept Intent Identifier: For each concept, we can compute a unique 

identifier for its intent B by multiplying all the prime IDs in B. Let's call this 
the IntentProduct. Due to the Fundamental Theorem of Arithmetic, this 
product is unique to that specific set of attributes. 

2.​ Subsumption Inference via Division: This allows for incredibly efficient 
hierarchy checking. If we have two concepts, C1 with IntentProduct1 and C2 
with IntentProduct2, we can determine if C1 is a sub-concept of C2 (i.e., if all 
objects in C1's extent are also in C2's) by a simple integer division check. If 
IntentProduct1 is cleanly divisible by IntentProduct2, then C2 is a more 
general concept than C1. 

○​ Example: 
■​ Concept Vehicle: Intent {hasWheels, canMove} -> Primes {5, 7} -> 

IntentProduct = 35. 
■​ Concept Car: Intent {hasWheels, canMove, hasEngine} -> Primes {5, 7, 11} 

-> IntentProduct = 385. 
■​ Inference: 385 % 35 == 0. The divisibility mathematically proves that Car 

is a sub-concept of Vehicle without performing any expensive set 
operations. This technique, referenced in papers like "Formal Concept 
Analysis for Knowledge Discovery and Data Mining," makes large-scale 
hierarchy inference computationally feasible. 

2.3. Deep Dive: The Graph Model & Set-Oriented Kinds 

The Alignment Service elevates the Reference Model to a Graph Model based on set 
theory, reifying statements into higher-order concepts called Kinds. 

●​ Visualizing the Model: 

​



 

●​ Reification & Inference:​
This model enables powerful, type-safe inferences using functional interfaces. 
○​ Inference: Can a Customer (SubjectKind) perform a Return (PredicateKind) 

on a Service (ObjectKind)? We check if a ContextKind exists at the 
intersection of these three sets. This validates interactions based on the 
system's learned knowledge. 

○​ Functional Interface: The logic can be expressed functionally: 
■​ Function<SubjectKind, Set<PredicateKind>>: "Given a type of subject, 

what are all the types of actions it can perform?" 
■​ Function<PredicateKind, Tuple<Set<SubjectKind>, Set<ObjectKind>>>: 

"Given a type of action, what are the valid types of subjects and objects 
for it?" 

2.2. Deep Dive: The Graph Model & Set-Oriented Kinds in the Alignment Service 

The Alignment Service consumes the Reference Model and elevates it to a Graph 
Model based on set theory, as depicted in the source document. This reifies the raw 
statements into higher-order concepts called Kinds. 

●​ Visualizing the Model:​



    

 
●​ Reification Process:​

The service consumes a Flux<Statement<ID, ID, ID, ID>> and groups statements to 
build these Kind sets. 
1.​ SubjectKind: A SubjectKind is formed by grouping all Subjects that interact 

with a similar set of Predicates and Objects. It represents a "type" of subject. 
For example, all subjects that interact with Predicates like hasOrder and 
Objects like Product would be reified into the Customer SubjectKind. 

2.​ PredicateKind: A PredicateKind groups Predicates that connect similar 
SubjectKinds and ObjectKinds. It represents a "type" of relationship, like 
Transaction. 

3.​ ObjectKind: An ObjectKind groups Objects that are acted upon by similar 
SubjectKinds via similar PredicateKinds. It represents a "type" of object, like 
PurchasableItem. 

4.​ ContextKind: This is the intersection of all three, representing a complete, 
reified event or use case type, like PurchaseEvent. 

●​ Set-Based Inferences and Functional Interfaces:​
This model enables powerful, type-safe inferences using functional interfaces. 



○​ Inference: We can check for valid interactions. Can a Customer (SubjectKind) 
perform a Return (PredicateKind) on a Service (ObjectKind)? By checking the 
set intersections, the system can determine if this is a valid operation. 
IsInteractionValid(s: SubjectKind, p: PredicateKind, o: ObjectKind): boolean. 

○​ Functional Interface: The core of the alignment logic can be expressed 
functionally: 
■​ Function<SubjectKind, Set<PredicateKind>>: "Given a type of subject, 

what are all the types of actions it can perform?" 
■​ Function<PredicateKind, Tuple<Set<SubjectKind>, Set<ObjectKind>>>: 

"Given a type of action, what are the valid types of subjects and objects 
for it?" 

2.3. Other Components & Reactive Implementation Details: 

●​ Aggregation Service (Continued): 
○​ Functional Interface: Function<Flux<Statement>, Flux<ConceptLattice>>. 
○​ Spring AI (Reactive Embeddings): Embeddings are generated within the 

reactive stream using Spring AI's ReactiveEmbeddingClient, ensuring network 
calls to models (e.g., from Hugging Face or a local Ollama instance) are 
non-blocking. 

●​ Alignment Service (Continued): 
○​ Functional Interface: Function<Flux<ReferenceStatement>, 

Flux<GraphStatement>>. 
○​ RDF4J Integration: SPARQL queries via RDF4J will be wrapped in 

Mono.fromCallable and executed on a dedicated scheduler to avoid blocking, 
as envisioned by concepts in "SPARQL-Micro-Services". 

●​ Naming Service (Helper Service - Java, Apache Jena): 
○​ Provides a reactive SPARQL endpoint by proxying Jena Fuseki with Spring 

WebFlux, ensuring end-to-end non-blocking I/O. 

Phase 3 & 4: Activation, API, and UI 

These phases build upon the rich, interconnected knowledge graph established in 
Phase 2. 

●​ Activation Service (Java, Spring Boot): Implements DDD and DCI patterns. A 
Role is a reactive Function<Flux<ActorState>, Flux<TransformedState>>, allowing 
for the dynamic composition of behavior onto data objects (Actors). The key 
inference is Function<DesiredOutcome, Flux<InteractionPlan>>, which uses 
reactive graph traversal to find a sequence of Role functions to achieve a goal. 

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): Exposes the 
framework's capabilities via a fully reactive API using Server-Sent Events (SSE) 



for real-time updates. The React frontend uses RxJS to create a responsive UI 
that is directly bound to these event streams. 

Phase 3: Activation & Use Case Enablement (Months 8-10) 

Objective: Infer and enable the execution of business processes using the DCI and 
DDD patterns within a reactive model. 

3.1. Components & Reactive Implementation Details: 

●​ Activation Service (Java, Spring Boot): 
○​ DDD (Domain-Driven Design): This service is a classic DDD Bounded 

Context. The Activation Model is its Ubiquitous Language. It consumes 
AlignmentModelChanged domain events from Kafka and produces 
InteractionStateChanged events, following principles from Eric Evans' 
"Domain-Driven Design". 

○​ DCI (Data, Context, and Interaction): This pattern is implemented reactively. 
■​ Role (Functional Interface): A Role is a Function<Flux<ActorState>, 

Flux<TransformedState>>. It's a functional interface defining the behavior 
an Actor will perform, a direct implementation of the DCI pattern where 
Roles are injected into Data objects at runtime, as described in the papers 
by Trygve Reenskaug and James Coplien. 

■​ Interaction: A stateful, non-blocking orchestrator that subscribes to 
Actor state streams and applies Role functions to drive the use case 
forward. 

○​ Activation Model Inferences: Inferences here are pragmatic. The key 
functional interface is: Function<DesiredOutcome, Flux<InteractionPlan>>. 
"Given a desired outcome, what sequence of Role functions must be applied 
to which Actors?" 

●​ Index Service (Helper Service - Python, Vector DB): 
○​ Reactive Indexing: Subscribes to a Kafka topic of ResourceUpdated events 

and updates a vector database (e.g., Milvus) as embeddings change. 

3.1. Components & Reactive Implementation Details: 

●​ Activation Service (Java, Spring Boot): 
○​ DDD (Domain-Driven Design): This service is a classic DDD Bounded 

Context. The Activation Model is its Ubiquitous Language. It consumes 
AlignmentModelChanged domain events from Kafka and produces 
InteractionStateChanged events. This follows the principles from Eric Evans' 
"Domain-Driven Design: Tackling Complexity in the Heart of Software". 

○​ DCI (Data, Context, and Interaction): This pattern is implemented reactively. 



■​ Context: A Context class defines a use case. It contains logic to find 
required Roles, often via a reactive graph query. 

■​ Role (Functional Interface): A Role is a Function<Flux<ActorState>, 
Flux<TransformedState>>. It's a functional interface defining the behavior 
an Actor will perform. This is a direct implementation of the DCI pattern 
where Roles are injected into Data objects at runtime. 

■​ Interaction: An Interaction is a stateful, non-blocking orchestrator. It 
subscribes to the Flux streams representing its Actors' states and applies 
the Role functions to drive the use case forward. This dynamic 
composition is a core idea from the DCI papers by Trygve Reenskaug and 
James Coplien. 

○​ Activation Model Inferences: Inferences here are pragmatic and 
goal-oriented. The key functional interface is: Function<DesiredOutcome, 
Flux<InteractionPlan>>. "Given a desired outcome, what sequence of Role 
functions must be applied to which Actors?" This is solved using reactive 
graph traversal and constraint satisfaction. 

●​ Index Service (Helper Service - Python, Vector DB): 
○​ Reactive Indexing: It will subscribe to a Kafka topic of ResourceUpdated 

events. Using a reactive Kafka consumer (aiokafka in Python), it will update 
the vector database (e.g., Milvus) as soon as a resource's embedding 
changes. 

Phase 4: API & User Interface (Months 11-12) 

Objective: Expose the framework's capabilities through a fully reactive API and a 
real-time user interface. 

4.1. Components & Reactive Implementation Details: 

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): 
○​ Fully Reactive API: Built with Spring WebFlux. 
○​ Server-Sent Events (SSE): For real-time updates on Interactions, the API will 

use SSE. A client subscribes to an endpoint like GET 
/v1/interactions/{id}/stream, which returns a Flux<InteractionState>. This is 
more efficient than WebSockets for server-to-client data pushes, as 
advocated in "Building Reactive Microservices with Spring WebFlux". 

○​ Frontend (React with RxJS): The React frontend will use RxJS to manage 
the SSE streams, binding component state directly to an Observable so the UI 
updates automatically. This aligns with the "Thinking in React" and "Thinking 
in RxJava" mental models. 



4.1. Components & Reactive Implementation Details: 

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): 
○​ Fully Reactive API: The entire API will be built with Spring WebFlux. 
○​ Server-Sent Events (SSE): For real-time updates on long-running 

Interactions, the API will use SSE. A client subscribes to an endpoint like GET 
/v1/interactions/{id}/stream, which returns a Flux<InteractionState> with the 
Content-Type of text/event-stream. This is more efficient than WebSockets for 
server-to-client data pushes, as advocated in "Building Reactive 
Microservices with Spring WebFlux". 

○​ Frontend (React with RxJS): The React frontend will use a library like RxJS 
to manage the SSE streams. The state of a component can be directly bound 
to an Observable derived from the event stream, causing the UI to update 
automatically as new data arrives. This aligns with the "Thinking in React" and 
"Thinking in RxJava" mental models. 

Phase 4: API & User Interface 

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): The 
Producer's role is to render the Actor's next set of Transforms as UI elements 
(e.g., buttons, forms). When a user interacts, the Producer constructs the 
appropriate Transform message and sends it to the Interaction to drive the state 
machine forward. It uses Server-Sent Events (SSE) to reactively listen for 
ActorStateUpdated events and update the UI in real-time. 

Phase 4: API & User Interface 

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): The 
Producer's role is to be a fully compliant COST/HAL client. It renders the UI 
based entirely on the _links section of the responses from the Activation Service. 
When a user interacts, the Producer constructs the appropriate request based on 
the link's href, method, and name, driving the state machine forward. It uses 
Server-Sent Events (SSE) to reactively listen for state change notifications and 
trigger a re-fetch of the resource to get the new state and available actions. 

Appendix 1: Models Architecture 

The idea is to enable model representations being equivalent (containing the same 
data) in various layers to be switched back an forth between each layer 
representation to be used in the most appropriate task for a given representation. 

Reification: Statements could be about any type of URI (URIOcurrence(s)) in which 
Statements subjects, predicates and objects occurrences plays determinate role 
(Kind: Type / State) regarding this Statement occurrence context. Statements 



themselves are URIOccurrence(s) with their URIOccurrence uri being their subject URI, 
their statement being the statement itself (this) and their URIOccurrence Kind uri 
being their subject uri, their Kind type its predicate Kind Type and its Kind state being 
its object Kind State. 

Those entities are to be able to be retrieved and their representations should enable 
functional programming techniques to be applied to streams of their representations 
to perform Aggregation, Alignment and Activation. 

The nodes and arcs of the graph triples are URIs and should have a "retrievable" 
internal representation with metadata that each service / layer populates through the 
"helper" services: Registry, Naming (NLP) and Index service shared by each layer. 
Describe core model classes serialization in JSON. 

Materialize. Reification of RDFS / OWL. Ontology Schema Statements. Same as. 
Schema (alignment) statements materialization. 

Reference Model 

(Aggregation / Grammar) 

ID​
- primeID : long​
- urn : string​
- occurrences : IDOccurrence[]​
- embedding : double[] 

IDOccurrence : ID​
- occurringId : ID​
- context : IDOccurrence​
- embedding : double[] 

Statement : IDOcurrence (Property Graphs)​
- context : ID​
- subject : ID​
- predicate : ID​
- object : ID 
 
Statements:​
Data: (IDOccurrence(ID), IDOccurrence(ID), IDOccurrence(ID))​
Schema: (ID(IDOccurrence), ID(IDOccurrence), ID(IDOccurrence) 

Graph Model 

(Alignment, Semantics, Sets / Kinds) 



Context : IDOccurrence (Set) 

Subject : IDOccurrence (Set) 

Predicate : IDOccurrence (Set) 

Object : IDOccurrence (Set) 

Interface Kind<AttributeType, ValueType>​
- superKind : Kind​
- attributeValues : Tuple<AttributeType, ValueType>[] 

Reification: Kind implementations extends / plays Subject, Predicate and Object roles 
in statement. 

SubjectKind : extends Subject, implements Kind<Predicate, Object> (Predicates 
intersection Objects)​
- occurrences : Subject[] 

PredicateKind : extends Predicate, implements Kind<Subject, Object> (Subjects 
intersection Objects)​
- occurrences : Predicate[] 

ObjectKind : extends Object, implements Kind<Predicate, Subject> (Predicates 
intersection Subjects)​
- occurrences : Object[] 

The underlying model Statements can be represented as sets being Subjects, 
Predicates and Objects three sets where the intersection of Predicates and Objects 
sets conforms the “Subject Kinds” set, the intersection of the Subjects and Objects 
sets conforms the “Predicate Kinds” set, the intersection of the Subjects and 
Predicates sets conforms the “Object Kinds” set and the intersection of the three sets 
conforms the “Statements” set. 

Sets based inference and functional algorithms should leverage this form of 
representation of the model graph. 

Statements: 
Data: Context(Subject, Predicate, Object) 
Schema: Context(SubjectKind, PredicateKind, ObjectKind) 

Activation Model 

(Activation, DOM / DCI / Actor, Role. Pragmatics) 

DOM (Dynamic Object Model): 



Instance : IDOccurrence​
- id : ID​
- label : string​
- class : Class​
- attributes : Map<string, Instance> 

Class : Instance​
- id : ID​
- label : string​
- fields : Map<string, Class> 

DCI (Data, Context, Interaction): 

Context​
- roles : Role[] 

Role : Class​
- previous : Map<Context, Dataflow>​
- current : Map<Context, Dataflow>​
- next : Map<Context, Dataflow> 

Dataflow : Context​
- role : Role​
- rule : Rule (TODO) 

Interaction​
- actors : Actor[] 

Actor / Role Pattern: 

Actor : Instance​
- previous : Map<Context, Transform>​
- current : Map<Context, Transform>​
- next : Map<Context, Transform> 

Transform​
- actor : Actor​
- production : Production (TODO) 
 
Statements:​
Data: (Interaction, Actor, Transform)​
Schema: (Context, Role, Dataflow) 
 
Appendix A: Business Intelligence & Analytics Layer 



 

The true value of unifying and aligning data from disparate systems is realized when it 
can be leveraged for analytics and business intelligence. Each organization's 
ApplicationService instance becomes a goldmine of clean, contextualized data ready 
for analysis. 

BI Architecture: The Dimensional Data Mart 

While the property graph is excellent for operational queries and traversals, traditional 
BI tools work best with star schemas and OLAP cubes. A BI layer can be implemented 
on top of the ApplicationService as follows: 

1.​ ETL Process: A periodic (e.g., nightly) batch process is run. This process 
executes a series of Cypher queries against the Neo4j graph to extract and 
flatten the aligned data. 

2.​ Data Warehouse: The extracted data populates a classic dimensional data 
warehouse (e.g., in PostgreSQL, BigQuery, or Snowflake). 
○​ Fact Tables: These are created from Interaction or Measure nodes. A 

SalesFact table would have columns for product_key, customer_key, time_key, 
quantity, and total_value_usd. 

○​ Dimension Tables: These are created from the Kind and canonical instance 
nodes. The CustomerDimension table would contain all the aligned attributes 
of customers (name, region, signup_date, etc.). 

3.​ OLAP Cube: An OLAP cube (using technology like Apache Druid, Kylin, or 
SSAS) is built on top of the data warehouse. This pre-aggregates the data across 
all dimensions, allowing for near-instantaneous slicing and dicing. 

Leveraging the Data: Reports and Indicators 

With the OLAP cube in place, business users can connect standard BI tools (like 
Tableau, Power BI, or Looker) to generate sophisticated reports and dashboards 
without needing to understand the underlying complexity of the source systems. 

●​ Example Reports: 
○​ "Quarterly Sales Performance by Product Category and Customer 

Region": This is a simple slice-and-dice operation on the cube. Because all 
sales data and customer data were aligned into common dimensions (Time, 
Currency, Geography), this report can be generated with a few clicks, even if 
the data originally came from three different CRM and ERP systems. 

○​ "Use Case Flow Analysis": By analyzing the materialized state transition 
graphs (Placed -> Paid -> Shipped), analysts can create reports on process 
bottlenecks, such as "Average Time between Payment and Shipment by 



Warehouse." 
●​ Example Indicators (KPIs): 

○​ "Average Customer Lifetime Value (LTV)": This requires combining 
purchasing data, marketing interaction data, and customer support data. 
Since the ApplicationService has unified all this data around a single, 
canonical Customer entity, calculating a true LTV becomes trivial. 

○​ "Product Concept Affinity": By analyzing the FCA-derived concept lattices, 
analysts can discover non-obvious relationships. An indicator could show the 
"affinity score" between ProductCategory:OutdoorGear and 
CustomerAttribute:OwnsDog, suggesting a new marketing campaign. 

This BI layer turns the ApplicationService from a powerful operational integration tool 
into a strategic asset for data-driven decision-making. 

Appendix B: The Semantic Engine & Conversational State Transfer (COST) 

This appendix provides a deep dive into the runtime core of the Activation Service: the 
Semantic Engine. This engine is responsible for interpreting the declarative 
Activation Model and executing stateful Interactions through the conversational, 
message-based COST protocol. 

1. The Semantic Engine Architecture 

The Semantic Engine is not a monolithic block but a collection of capabilities within 
the Activation Service that brings the DCI pattern to life. Its primary function is to 
manage the lifecycle of an Interaction, interpret the Dataflow rules associated with 
each Role, and dispatch Transform messages to the appropriate Actors. 

2. Encoding Behavior: Declarative Dataflow and Transforms 

To make the system truly dynamic and model-driven, the behavior of a use case is not 
hardcoded. It's declaratively defined in the Dataflow associated with a Role in a 
Context schema. A Dataflow is an ordered list of Transform definitions. 

●​ The Transform Definition: A Transform is a declarative data structure that 
specifies a single, atomic operation. It is the "verb" of the system. 
○​ Implementation: This can be a JSON/YAML schema or a Java record.​

record TransformDef(​
    String name,​
    OperationType operation, // e.g., ASSIGN, TRANSFER, COMPUTE, 
INVOKE_TOOL​
    Map<String, FieldDef> inputs, // Named inputs for the operation​
    Map<String, FieldDef> outputs // Named outputs produced​



) {}​
​
record FieldDef(String role, String field) {}​
 

●​ Example: ProductBuy Context Dataflow​
Let's model the user's example: Product.owner(aSeller -> aBuyer); aBuyer.owns = 
aProduct; aBuyer.accountBalance -= anAmount; aSeller.accountBalance += 
anAmount;​
This single business step would be encoded in the Dataflow of the Purchase Role 
as a sequence of four Transform definitions: 
1.​ TransferProductOwnership Transform Definition:​

{​
  "name": "TransferProductOwnership",​
  "operation": "TRANSFER",​
  "inputs": { "item": { "role": "Product", "field": "self" } },​
  "outputs": { "previousOwner": { "role": "Seller" }, "newOwner": { "role": 
"Buyer" } }​
}​
 

2.​ DebitBuyerAccount Transform Definition:​
{​
  "name": "DebitBuyerAccount",​
  "operation": "COMPUTE",​
  "inputs": {​
    "currentBalance": { "role": "Buyer", "field": "accountBalance" },​
    "debitAmount": { "role": "Amount", "field": "value" }​
  },​
  "outputs": { "newBalance": { "role": "Buyer", "field": "accountBalance" } }​
}​
 

3.​ (And similar definitions for CreditSellerAccount and AssignProductToBuyer) 

When the Purchase Interaction reaches this step, the Semantic Engine reads these 
definitions, populates them with the actual Actor IDs, and dispatches them as 
executable Transform messages. 

3. The COST/HAL Protocol with Placeholders 

The power of COST lies in its ability to guide the client through a conversation by 
providing not just data, but also the "how-to" for the next step. This is achieved by 



embedding placeholders within the HAL _links. 

●​ HAL Link with Placeholders: A link for a next action is no longer just a URL; it's a 
template for the next Transform message.​
// Part of a HAL response for an Interaction​
"_links": {​
  "next": [​
    {​
      "href": "/interactions/123/transform",​
      "method": "POST",​
      "name": "SelectProductForPurchase",​
      "title": "Select a Product to Buy",​
      "schema": { // The placeholder definition​
        "type": "object",​
        "properties": {​
          "selectedProduct": {​
            "type": "string",​
            "description": "The DID of the product to purchase.",​
            "_links": {​
              "possibleValues": { // Link to fetch the options​
                "href": "/interactions/123/roles/Product/possibleActors"​
              }​
            }​
          }​
        },​
        "required": ["selectedProduct"]​
      }​
    }​
  ]​
}​
 

4. The Conversational Dataflow in Action 

This enables a rich, back-and-forth conversational flow between the client (Producer) 
and the server (Semantic Engine). 

1.​ Server Initiates: The server starts a ProductBuy Interaction. It sends the initial 
HAL state. The _links.next array contains the SelectProductForPurchase action 
template shown above. 

2.​ Client Discovers Options (Client-Side Population): 



○​ The client UI sees the SelectProductForPurchase action and its schema. 
○​ It sees that the selectedProduct placeholder has a possibleValues link. 
○​ It performs a GET on /interactions/123/roles/Product/possibleActors. 
○​ The server responds with a list of available products (potential Actors for the 

Product Role). The UI renders this as a dropdown or a list. 
3.​ Client Responds with Data: 

○​ The user selects a product (e.g., did:ion:product_456). 
○​ The client constructs the Transform message body according to the schema: 

{ "transformName": "SelectProductForPurchase", "payload": { 
"selectedProduct": "did:ion:product_456" } }. 

○​ It POSTs this body to the href: /interactions/123/transform. 
4.​ Server Infers and Prompts for Confirmation (Server-Side Population): 

○​ The Semantic Engine receives the Transform and assigns the product to the 
Product Role. The next step in the Dataflow is AssignShippingPartner. 

○​ The engine's internal logic (potentially a Graph Neural Network trained on 
past shipments, as referenced in the GNN papers) infers that "FedEx" is the 
optimal shipping partner for this product and destination. 

○​ The engine populates this value itself. It sends a new HAL state back to the 
client. The new _links.next action is:​
{​
  "href": "/interactions/123/transform",​
  "method": "POST",​
  "name": "ConfirmShippingPartner",​
  "title": "Confirm Shipping Partner: FedEx",​
  "schema": {​
    "properties": {​
      "confirmedPartner": {​
        "type": "string",​
        "default": "did:ion:fedex", // The server's inferred choice​
        "readOnly": true // The client can't change it, only confirm​
      }​
    }​
  }​
}​
 

5.​ Client Confirms: The UI displays "Shipping with: FedEx" and a "Confirm" button. 
Clicking it sends the ConfirmShippingPartner Transform message, and the 
conversation continues. 



This conversational, placeholder-driven approach makes the interaction incredibly 
flexible. The client doesn't need to know the business logic for choosing a shipper; it 
only needs to know how to render forms from schemas and follow links. The server's 
logic can evolve independently without breaking the client, fulfilling the promise of a 
truly decoupled, model-driven architecture. 

Appendix C: End-to-End Integration Use Case: A Federated Supply Chain 

This appendix depicts a complete, multi-organization use case, demonstrating how 
three independent entities can form a seamless, automated, and intelligent supply 
chain using the ApplicationService framework. 

1. The Participants & Their Systems 

●​ Retailer: Sport and Fitness Stores (SFS) 
○​ Internal Systems: A legacy ERP for inventory management and a modern 

CRM for sales data. 
○​ AppService Instance: as-sfs.com 

●​ Manufacturer: SportProducts Manufacturing Inc. (SPM) 
○​ Internal Systems: A custom SCM (Supply Chain Management) system and an 

ERP for production planning. 
○​ AppService Instance: as-spm.com 

●​ Provider: Sports Goods Raw Materials LLC (SGRM) 
○​ Internal Systems: A simple database for tracking raw material stock and 

orders. 
○​ AppService Instance: as-sgrm.com 

Each organization has its own ApplicationService instance, which has ingested, 
aggregated, and aligned the data from its internal systems. The entities within these 
systems (products, materials, orders) have been assigned globally unique W3C DIDs. 

2. Use Case: Automated Inventory Replenishment 

Scenario: SFS's inventory of the "Pro-Lite Running Shoe" drops below the reorder 
threshold, triggering an automated chain of events that flows from the retailer to the 
manufacturer to the raw materials provider. 

Step 1: Low Inventory Trigger at the Retailer (SFS) 

●​ Services Layout & Roles: 
○​ SFS.Datasource: Continuously ingests inventory levels from SFS's ERP. 
○​ SFS.Alignment: Aligns the raw stock number into a canonical Measure 

(Dimension: "StockLevel", Unit: "Pairs"). It has also previously aligned the 



"Pro-Lite Running Shoe" from the ERP with SPM's official product definition, 
creating an owl:sameAs link between did:sfs:product_789 and 
did:spm:product_ProLite. 

○​ SFS.Activation: An internal Context named MonitorInventory is constantly 
running. 

●​ Messages & Dataflow: 
1.​ SFS.Datasource produces a raw statement: ("store_boston", "stock_PLRS", 

"49"). 
2.​ SFS.Aggregation/Alignment processes this into a Graph Model statement, 

linking it to the canonical product DID and a Measure node. 
3.​ The SFS.Activation engine's MonitorInventory Interaction evaluates a rule: IF 

StockLevel.Measure.value < ReorderThreshold.Measure.value THEN START 
ReplenishStock.Context. The condition is met. 

4.​ A new ReplenishStock Interaction begins. It determines that the supplier for 
did:spm:product_ProLite is SPM. It prepares to act as an MCP Client. 

Step 2: Retailer Places Purchase Order with Manufacturer (SFS -> SPM) 

●​ Services Layout & Roles: 
○​ SFS.Activation (as MCP Client): Initiates contact with SPM. 
○​ SPM.Activation (as MCP Server): Receives and processes the order 

request. 
●​ Messages & Protocol (MCP): 

1.​ SFS.Activation resolves SPM's DID (did:spm:corp) to find its MCP service 
endpoint (https://as-spm.com/mcp). 

2.​ It authenticates using DID-Auth. 
3.​ It sends an MCP request:​

{​
  "capability": "tool",​
  "name": "CreatePurchaseOrder",​
  "params": {​
    "productDid": "did:spm:product_ProLite",​
    "quantity": 500,​
    "deliverTo": "did:sfs:store_boston"​
  }​
}​
 

4.​ SPM.Activation receives this, starts a FulfillOrder Interaction, and begins a 
COST/HAL conversation back with the SFS agent to confirm pricing and 
delivery dates. Once confirmed, the Interaction is finalized and updates SPM's 



internal ERP via its Datasource service. 

Step 3: Manufacturer Checks Raw Materials (SPM) 

●​ Services Layout & Roles: 
○​ SPM.Activation: The FulfillOrder Interaction continues. 
○​ SPM.Datasource: Provides access to SPM's SCM system data. 

●​ Messages & Dataflow: 
1.​ The FulfillOrder Interaction's Dataflow includes a Transform to check internal 

stock for the required raw materials (did:sgrm:material_eva_foam, 
did:sgrm:material_syn_mesh). 

2.​ It queries its own Graph Model (which reflects the SCM data) and finds the 
stock of "EVA Foam" is insufficient. 

3.​ This triggers a new internal Interaction: ProcureMaterials. This Interaction 
identifies the supplier for did:sgrm:material_eva_foam as SGRM. SPM's 
AppService now prepares to act as an MCP Client. 

Step 4: Manufacturer Orders Raw Materials from Provider (SPM -> SGRM) 

●​ This step mirrors Step 2. SPM.Activation acts as an MCP client, sending a 
CreatePurchaseOrder tool request to SGRM.Activation, which acts as the MCP 
server. A new FulfillOrder Interaction is created on SGRM's side, and the raw 
material order is processed. 

3. Multidimensional Features & OLAP Encoding in Practice 

Throughout this process, each transaction generates dimensional data. Let's model a 
single final sale of one pair of shoes at the Boston SFS store. 

●​ The Event: A pair of "Pro-Lite Running Shoes" is sold in Boston on July 26, 2025, 
for $120. 

●​ Alignment & Encoding: The SFS.Alignment service creates a series of nested 
DimensionalContextStatements in its graph database. 
1.​ Base Fact Statement (The "What"): 

■​ s1 = (tx_999, sold_product, did:sfs:product_789) 
■​ (tx_999, sold_for_price, measure_120_usd) 

2.​ Time Dimension Slice (The "When"): 
■​ s2 = (s1, has_dimension, dim:Time) 
■​ (s2, has_value, time_2025_07_26) 

3.​ Product Dimension Slice (The "Which"): 
■​ s3 = (s2, has_dimension, dim:Product) 
■​ (s3, has_value, did:sfs:product_789) 

4.​ Region Dimension Slice (The "Where"): 



■​ s4 = (s3, has_dimension, dim:Region) 
■​ (s4, has_value, region_boston) 

●​ Storage & Querying: This nested structure creates explicit paths in the property 
graph: (s4)->(s3)->(s2)->(s1). An OLAP-style query like "Show me all sales for the 
Pro-Lite shoe in Boston" becomes a graph traversal query that finds all paths 
matching this pattern. 

4. Leveraging Business Intelligence 

●​ Internal BI: 
○​ SFS: Can analyze its sales data, sliced by store, product, and time, to optimize 

marketing and inventory. They can create a KPI for "Sell-Through Rate" for the 
Pro-Lite shoes. 

○​ SPM: Can analyze its production data. By correlating FulfillOrder Interaction 
times with the ProcureMaterials Interaction times, they can create an indicator 
for "Production Delay due to Material Shortage." 

○​ SGRM: Can track demand for its raw materials by manufacturer and region. 
●​ Federated BI (The Holy Grail):​

Because all entities are identified by DIDs and linked with owl:sameAs, a 
revolutionary new form of BI is possible. With the appropriate permissions 
(managed via DID-Auth), SPM can be allowed to run a federated query. 
○​ The Query: "Show me the end-consumer sell-through rate at SFS stores for 

products made with my materials, correlated with my raw material shipment 
times." 

○​ Execution: SPM's BI tool sends a query to its own ApplicationService. This 
service, in turn, acts as an MCP client, sending authorized sub-queries to the 
SFS and SGRM AppServices. The results are securely returned and 
aggregated, providing a complete, end-to-end view of the supply chain's 
performance that is impossible with siloed systems. This allows SPM to move 
from just-in-case manufacturing to data-driven, predictive supply chain 
optimization. 

Appendix D: Advanced Inference & The Dimensional Model 

This appendix provides a deep dive into the advanced reasoning capabilities of the 
framework, covering pragmatic inference in the Activation Service, logical entailment 
in the Alignment Service, and the architecture of the OLAP-like Dimensional Model. 

1. Activation Inference: From What You Have to What You Can Do 

The Activation Service performs pragmatic inference—reasoning about goals and 
capabilities. It moves beyond simple event orchestration to proactively suggest and 



facilitate actions. This is modeled on the "have/need" duality. 

●​ The Duality Pattern: 
○​ "Have -> Can" (Forward-Chaining): I have these ingredients, so I can 

prepare these dishes. In a business context: We have a validated UI 
component, a tested API endpoint, and available server capacity (Actors), 
therefore we can launch the "User Profile V2" Product Feature (Context). 

○​ "Want -> Need" (Backward-Chaining): I want to make a specific dish, so I 
need to gather these ingredients. In a business context: We want to launch 
the "Real-time Dashboard" Product Feature (Context), therefore we need to 
acquire a "Streaming Data Source" Actor and a "WebSocket API" Actor. 

●​ Implementation via Graph Queries: 
○​ Forward-Chaining (Possibility Inference): This is a graph pattern-matching 

query executed periodically or on events. The query searches for a subgraph 
of available Actors whose ContentTypes and states match the Role 
requirements for a known Context schema. When a match is found, a new 
Interaction is suggested or instantiated. 

○​ Backward-Chaining (Goal-Seeking Inference): When a user requests a 
Context for which the required Actors are not all available, this becomes a 
pathfinding query. The query looks for Dataflows that can create or transform 
existing Actors into the needed ones. This can drive complex workflows, like 
automatically provisioning infrastructure before deploying a feature. 

2. Alignment Inference: Discovering Hidden Knowledge (Entailment) 

The Alignment Service is responsible for logical inference, or entailment, where 
new facts are derived from existing ones. It enriches the graph by materializing these 
new relationships, making the model smarter and queries simpler. 

●​ Recap of Core Techniques: The service uses FCA for type hierarchies and 
owl:sameAs for entity linking. 

●​ Advanced Entailment Patterns: The service implements rules (via SPARQL 
CONSTRUCT or Cypher MERGE on patterns) to materialize new links based on 
logical properties of predicates. 
○​ Transitivity: (A)-[:LOCATED_IN]->(B) and (B)-[:LOCATED_IN]->(C) entails the 

materialization of a new link: (A)-[:LOCATED_IN]->(C). 
○​ Symmetry: (A)-[:SPOUSE_OF]->(B) entails (B)-[:SPOUSE_OF]->(A). 
○​ InverseOf: (A)-[:EMPLOYS]->(B) entails (B)-[:EMPLOYED_BY]->(A). 
○​ Attribute Closure (The "Language" Example): This is a custom, 

domain-specific rule. The pattern 
(:Developer)-[:WORKS_ON]->(:Project)-[:USES_LANGUAGE]->(:Language) is 



detected. The engine then executes a MERGE to create a new, inferred 
relationship: (:Developer)-[:KNOWS_LANGUAGE]->(:Language). This 
materialized link represents new knowledge—the developer's skill—that was 
not explicit in any source system. 

These materialized entailments dramatically accelerate the Activation Service's 
pragmatic inference and provide richer dimensions for the BI layer. 

3. The Dimensional Model: OLAP on the Graph 

To provide powerful, OLAP-style analytics directly on the live graph, the framework 
introduces a formal Dimensional Model. This model is populated in real-time by the 
Activation Service and queried via the Index Service. 

●​ Dimensional Model Architecture: 
○​ Core Entity (ContextMeasure): This is not just a statement but a node in the 

property graph (e.g., (:ContextMeasure)). It represents a specific 
measurement that occurred within the context of a specific Interaction. 

○​ Schema (Dimensions & Units): Canonical Dimension and Unit nodes exist in 
the graph (e.g., (:Dimension {name: 'Time'}), (:Unit {name: 'Day'})). 

○​ Data (Nested Statements): The model uses nested contextual statements to 
build dimensional slices, as described in the source document. This is 
implemented in the graph with relationships: 
■​ An Interaction node is linked to its base ContextMeasure nodes: 

(:Interaction)-[:PRODUCED_MEASURE]->(:ContextMeasure). 
■​ A ContextMeasure representing a slice is linked to the one it refines: 

(cm_slice_product)-[:IS_SLICE_OF]->(cm_slice_time). 
■​ Each ContextMeasure is linked to its Dimension and its Value (which can 

be a literal or a link to a canonical entity node like a specific Product). 
●​ Population & Synchronization: 

○​ The Activation Service is responsible for populating this model. 
○​ When an Interaction executes a Transform that involves a quantitative or 

categorical fact (e.g., a sale is completed), the Dataflow includes a step to 
create the corresponding ContextMeasure nodes and relationships. 

○​ This ensures the analytical model is a transactional, real-time reflection of the 
operational model's activities. 

●​ Index Service API: Functional Dimensional Traversal 
○​ The Index Service provides the query interface for the Dimensional Model. It 

indexes all ContextMeasure nodes and their dimensional paths for fast 
traversal. 

○​ API Endpoint: POST /v1/dimensional/query 



○​ Functional Request Body: The API takes a declarative, OLAP-style request.​
{​
  "measures": ["salesValueUSD", "unitsSold"],​
  "sliceBy": ["Time.Year", "Region.State", "Product.Brand"],​
  "filters": {​
    "Product.Category": ["Running Shoes", "Hiking Boots"]​
  }​
}​
 

○​ Implementation: The Index Service translates this request into a complex 
Cypher query. The query starts at the base ContextMeasure nodes matching 
the measures, then traverses the IS_SLICE_OF paths, filtering at each 
dimensional level based on the filters and sliceBy clauses. The final results are 
aggregated and returned, providing a powerful, functional, and real-time BI 
capability directly on the operational graph. 
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