
Implementation Roadmap: Application Service Framework

Version: 1.4
Date: 2025-07-25
Copyright 2025 Sebastián Samaruga

1. Introduction

This document provides a comprehensive, implementation-focused roadmap for the
Application Service framework. It breaks down each phase into specific technical
tasks, architectural decisions, and technology choices. This version provides a deep
dive into the reactive and functional programming paradigms central to the
architecture, ensuring a non-blocking, event-driven dataflow. It offers detailed
explanations and examples of the practical application of key patterns and
frameworks like DCI, DDD, Spring AI, and a significant focus on the Reference
Model, Formal Concept Analysis (FCA), the Set-Oriented Graph Model,
Dimensional Ordering, and the Activation Model and the agentic communication
layer enabled by the Model Context Protocol (MCP) and W3C Decentralized
Identifiers (DIDs)., with inline citations to the provided reference materials.

Phase 1: Core Infrastructure & Data Ingestion (Months 1-3)

Objective: Establish a robust, scalable, and fully reactive microservices foundation
and a versatile data ingestion pipeline.

1.1. Components & Implementation Details:

●​ Datasource Service (Java, Spring Boot):
○​ Core Logic: Implement a DataSourceAdapter interface with concrete

strategies for each data source type.
■​ JdbcAdapter: Use spring-boot-starter-data-jdbc and JdbcTemplate for

direct SQL execution. A configuration file will map tables and columns to
predicate names (e.g., users.name -> hasName). The adapter will
dynamically query table metadata to handle schema evolution.

■​ RestApiAdapter: Use spring-webflux's non-blocking WebClient. It will
support paginated APIs by following next links in response headers or
bodies.

■​ FileAdapter: Use the Jackson library for JSON/XML parsing. It will watch a
designated directory for new or updated files.

○​ Transformation: The core transformation logic will convert source entities
into SPO triples. For a database row (PK=123, table='Product', column='Name',
value='Laptop'), the output will be a message: ("product:123", "hasName",

"Laptop", "source:db1"). The subject URI is a composite of the entity type and
its primary key.

○​ Synchronization: Implement a polling mechanism using @Scheduled
annotations in Spring for sources without push notifications. For event-driven
sources, it will expose a webhook endpoint to receive update events.
Provenance is maintained by adding a context string (e.g., the source
application's name) to each triple.

○​ JCA Integration: The primary mechanism for interacting with enterprise
systems (ERPs, SCMs, etc.) is through the Java EE Connector Architecture
(JCA). We will implement custom JCA 1.7 compliant resource adapters for key
backends.
■​ JcaResourceAdapter: This cornerstone component implements

javax.resource.spi.ResourceAdapter.
■​ Inbound Communication: The adapter uses the JCA Message Inflow

contract (javax.resource.spi.endpoint.MessageEndpointFactory) to listen
for events from the backend system (e.g., an IDoc from SAP). When an
event occurs, the adapter creates a standard RawStatement message and
publishes it to the internal Kafka bus, preserving the full transaction
context.

■​ Outbound Communication (Write-Back): The adapter exposes a
javax.resource.cci.ConnectionFactory. Other services can obtain a
Connection and execute outbound operations (Interactions) against the
backend EIS, such as updating a record. This provides the crucial
mechanism for synchronizing state back to the source systems.

○​ Other Adapters (RestApiAdapter, JdbcAdapter): These remain for simpler,
non-JCA sources, primarily for read-only data ingestion.

●​ Augmentation Service (Java, Spring Cloud Stream):
○​ This service is the reactive backbone of the framework, built using Spring

Cloud Stream's functional programming model. It orchestrates the flow of
messages between all services, binding java.util.function.Function<Flux<T>,
Flux<R>> beans to Kafka topics for a fully event-driven dataflow. It also
implements the Saga pattern using Flux.usingWhen to manage long-running,
distributed transactions.

○​ Message Bus: Use Apache Kafka as the backbone. Define clear, versioned
Avro schemas for all message types to ensure compatibility.

○​ Topics:
■​ datasource-raw-triples-v1: For raw data from the Datasource Service.
■​ aggregation-reference-model-v1: For typed and identified data.
■​ alignment-graph-model-v1: For semantically enriched data.

■​ activation-dci-model-v1: For executable use cases.
○​ Orchestration & Saga Pattern: Implement the Saga pattern using a state

machine. For a multi-step process like "Ingest and Align," the service listens
for a RAW_TRIPLE_INGESTED event, triggers the Aggregation Service, then
listens for an AGGREGATION_COMPLETE event to trigger the Alignment
Service. State transitions and compensating actions (e.g., deleting partially
processed data on failure) are logged to a dedicated Kafka topic
(saga-log-v1).

○​ Resiliency: Use Spring Retry for transient failures and a dead-letter queue
(DLQ) pattern for messages that repeatedly fail processing.

●​ Registry Service (Helper Service - Java, Spring Boot, Neo4j):
○​ This is the central repository for the unified property graph, implemented on

Neo4j. It provides a reactive API for graph operations.
○​ Provenance: The graph model is updated to store detailed JCA provenance

for each resource. Each node will have properties like connectorId and
resourceAdapterId, enabling the Activation Service to know exactly which
adapter to use for write-back operations.

○​ Database: Use a Neo4j graph database.
○​ Schema: Nodes will have the label :Resource and a uri property (which is

indexed). Relationships will represent the predicates.
○​ API: A RESTful API built with Spring Boot and spring-data-neo4j.

■​ POST /v1/graph/statements: A batch endpoint that accepts a list of triples
and executes a single, optimized Cypher UNWIND ... MERGE query for
high-performance writes.

■​ GET /v1/graph/resource?uri={uri}: Retrieves a resource and its immediate
relationships.

○​ Provenance: Store provenance data (e.g., sourceApplication,
ingestionTimestamp) as properties on the nodes and relationships.

Phase 2: Semantic Core & Knowledge Representation (Months 4-7)

Objective: Transform raw data into an interconnected, semantically rich knowledge
graph. Transform raw data into a semantically rich knowledge graph where resources
are defined not just by their data, but by their behaviors (Content Types).

2.0. The Layered Model Architecture

The framework processes data through three distinct, progressively richer conceptual
models. These models can be implemented on a single underlying property graph,
with an entity's state in each model represented by labels and properties on a single
node.

1.​ Reference Model (Aggregation Layer): Focuses on identity and grammar.
2.​ Graph Model (Alignment Layer): Focuses on relationships, types, and

semantics.
3.​ Activation Model (Activation Layer): Focuses on behavior, state, and

pragmatics.

2.1. Deep Dive: The Reference Model and Prime Number Semantics

The Reference Model, produced by the Aggregation Service, moves from
string-based URIs to a formal, mathematically grounded identification system.

●​ ID & IDOccurrence: An ID is the canonical concept of an entity, identified by a
unique primeID. An IDOccurrence is an ID appearing in a specific role within a
specific context (e.g., as the subject of a statement).

●​ Prime Number Semantics: We leverage the Fundamental Theorem of
Arithmetic. An IDOccurrence's "embedding" is a set of prime IDs defining its full
context. Similarity is a deterministic Jaccard Index on these sets.

●​ FCA with Prime IDs: In Formal Concept Analysis, we use primeIDs for objects
and attributes. A concept's "intent" (its set of shared attributes) can be uniquely
identified by the product of its attribute primeIDs. This allows for
hyper-efficient subsumption checking: a concept C1 is a sub-concept of C2 if
C1's intent-product is cleanly divisible by C2's intent-product. This
transforms expensive set logic into simple integer arithmetic, a technique vital for
large-scale inference as explored in works like "Formal Concept Analysis for
Knowledge Discovery and Data Mining".

2.1. Components & Implementation Details:

●​ Aggregation Service (Java, Spring AI, Python):
○​ Core Logic: Consumes from the datasource-raw-triples-v1 topic.
○​ ID & Embedding Generation: For each new URI, generate a unique ID and an

embedding vector. This can be a separate Python service called via RPC,
using models like Sentence-BERT from the Hugging Face library to create
meaningful embeddings. The mapping of URI to ID and embedding is cached
in Redis.

○​ Type/State Inference: Use in-memory Caffeine caches for high-speed
aggregation.
■​ Map<String, Set<String>> subjectToPredicates: This map tracks all

attributes for a given subject.
■​ A background job periodically analyzes this map. Subjects with a high

Jaccard similarity in their predicate sets are grouped into an inferred Type.
○​ FCA (Formal Concept Analysis): Use the fcalib Java library. Create a formal

context where "objects" are the subject URIs and "attributes" are their
predicates. The resulting concept lattice directly forms the is-a type hierarchy.

○​ Output: Produces Statement<ID, ID, ID, ID> messages to the
aggregation-reference-model-v1 topic.

Given a set of raw SPO triples from Datasources Service, performs type inference
(common attributes aggregation) and state inference (common attribute values
aggregation) and performs type / state hierarchies inference.

Type inference: Subjects with the same Attributes belong to the same type.

State inference: Subjects with Attributes (types) with the same Values are in the same
state.

Hierarchies: Attributes / Values subset / superset relationship (less common attributes
are “higher” into the type hierarchy, same for values). Entities with the same attributes
are considered as of the same type, superset / subset of attributes: type hierarchy.
Attributes with the same values, same states. Superset / subset of values / states: state
hierarchy.

Types are ordered in respect to their common attributes. Most specific types (more
common attributes) are considered to inherit from types with less common attributes
included into the more specific types. A more specific type is considered to be “after” a
more generic type (Person → Employee). Regarding state values, hierarchies are to be
considered regarding attribute values, being resources with common state grouped into
hierarchies (Marital status attribute: Single → Married → Divorced).

Order: Inferred via Type / State hierarchies. Types: Married extends from Single,
Divorced extends from Married. States: Young extends from Child, Old extends from
Young. Cycles in types resolved by state (Unemployed, Employed, Unemployed). Used
in Alignment Service Ordering upper ontology.

Data structures:

Map<Subject, Set<Predicate>​
Map<Set<Predicate>, Type>​
Map<Type, Set<Map<Predicate,Value>>>​
Map<Set<Map<Predicate,Value>>, State>

●​ Alignment Service (Java, RDF4J):
○​ Core Logic: Consumes from the aggregation-reference-model-v1 topic.
○​ Ontology Matching: Use the RDF4J framework's MemoryStore for

in-memory graph operations. Load the Reference Model and pre-defined
upper ontologies (e.g., Schema.org, custom domain ontologies in OWL
format). Use the SPARQL engine with SHACL rules to find and materialize

equivalences (owl:sameAs, rdfs:subClassOf).
○​ Link Completion: Implement this with SPARQL CONSTRUCT queries. For

example, a query can find paths like (A)-[:hasRole]->(B) and
(B)-[:partOf]->(C) to infer a new link (A)-[:contributesTo]->(C).

○​ Output: Produces enriched Statement<Context, Subject, Predicate, Object>
messages to the alignment-graph-model-v1 topic.

Upper ontologies:

a) Domains: Aligned integrated application domains inferred common concepts and
relationships. Infer equivalent concepts and relationships between source applications
domains and populate Domains upper ontology. Materialize integrated domains
concepts and relationships mappings to inferred upper concepts and relationships.
Abstract common meaning (semantics) of source applications concepts and
relationships to enable inter domain contexts interactions.

b) Order: Dimensional arrangement of entities attributes and values. Align measures
(attribute values) into dimensional units. According Aggregation Service types and
states hierarchies establish order relationships (before, greater than, contains, etc.)
between measures. Materialize measures relationships and map dimensional units
measures occurrences into the materialized order relationships. See: [Dimensional
Features].

Ontology Matching: Find and map equivalent entities and relationships domains
occurrences (Core Model Classes), align core model resources into Domains upper
ontology.

Links / Attributes inference: Given an aligned model (mapped to Domains upper
ontology) infer possible links / relationships between resources and possible
attributes and their values.

Common Attributes between Kinds occurring in linking Statements (S1, Attr1, O1; O1,
Attr2, O2; S1, Attr2, O2). Paired Attributes by Kind. Example: Project / Language;
Developer / Project; Developer / Language.

Attributes paths attribute closures: S, brotherOf, O; O, fatherOf, O2; S unkleOf O2.

Ordering: Order dimensional upper ontology alignment. Materialize inferred Type /
State hierarchies order relationships.
The refactored Alignment Service is the central point for deep inference.

●​ Content-Type Inference: A Content Type defines a resource's behavioral
essence (e.g., buy-able, inventory-trackable). These are inferred by analyzing a
combination of:
1.​ Graph Patterns: The roles a resource plays in various Interactions.

2.​ JCA Capabilities: The verbs/commands its underlying source system
supports.

○​ Materialization: Inferred Content Types are stored as a list property on the
resource's node in the graph: contentTypes: ['buy-able', 'view-able'].

●​ Logical Entailment: The service enriches the graph by materializing new, inferred
relationships.
○​ Techniques: It uses rules (SPARQL CONSTRUCT or Cypher MERGE) to infer

links based on properties like Transitivity, Symmetry, and InverseOf.
○​ Attribute Closure: It discovers and materializes complex, domain-specific

entailments. For example, the pattern
(:Developer)-[:WORKS_ON]->(:Project)-[:USES_LANGUAGE]->(:Language)
entails the creation of a new link:
(:Developer)-[:KNOWS_LANGUAGE]->(:Language).

Multidimensional features (OLAP like):

Dimensions: Time, Product, Region.​
Units: Month / Year, Category / Item, State / City.​
Context : (Context, Attribute, Value)

Examples:​
(soldDate, aProduct, aDate)​
((soldDate, aProduct, aDate), Product, aProduct)​
(((soldDate, aProduct, aDate), Product, aProduct), Region, aRegion)

TODO: Materialize / Query Cubes Context Statements into graph models.
●​ Naming Service (Helper Service - Java, Apache Jena):

○​ Core Logic: A dedicated service that manages ontologies.
○​ Storage: Use Apache Jena with a TDB2 persistent backend.
○​ API: Expose a full SPARQL 1.1 endpoint using Jena Fuseki. This allows other

services to query the ontologies directly. It will also have custom REST
endpoints like POST /v1/align/concepts which takes two sets of concepts and
returns a mapping of potential matches with confidence scores.

Phase 3: Activation & Behavior-Driven Interactions

Objective: Implement a dynamic, behavior-driven activation layer where interactions
are inferred from and driven by the Content Types of the participating resources.

3.1. The Activation Service: A JAF-Inspired Semantic Engine

The Activation Service operates like a distributed, semantic JavaBeans Activation
Framework (JAF).

●​ ContentTypeDataHandler: For each Content-Type (e.g., buy-able), a
corresponding Spring bean implementing this interface is registered. This handler
defines the available Verbs (commands like BUY, ADD_TO_CART) and the
Dataflow (sequence of Transforms) for each verb.

●​ Context Inference from Content Types: The availability of use cases (Contexts)
is inferred dynamically. If the system finds a set of Actors whose ContentTypes
match the required Roles for a Context, that Context becomes available for
instantiation.

●​ JCA for Transactional Write-Back: When an Interaction's Dataflow completes,
its final Transform (e.g., FinalizePurchase) is processed by the relevant
ContentTypeDataHandler. This handler obtains a JCA Connection from the
Datasource Service and invokes the outbound transaction on the backend ERP,
guaranteeing data consistency.

3.2. The Activation Model: DCI, DOM, and Stateful Dataflows

●​ Core Patterns: The runtime logic is a direct implementation of DCI (Data,
Context, and Interaction). An Interaction (Context) "casts" plain data Instances
into Actors by dynamically injecting Roles (behavior). This is built on a Dynamic
Object Model (DOM) where an object's capabilities can change at runtime.

●​ Stateful Dataflow: An Actor's state is its position in the use case flow, modeled
as a set of available Transforms (previous, current, next). The entire dataflow is
driven by a reactive stream of declarative Transform messages, which instruct
Actors on how to mutate their internal state, creating a scalable and auditable
distributed state machine.

Phase 3: Activation & Use Case Enablement (Months 8-10)

Objective: Infer and enable the execution of business processes by implementing a
dynamic, message-driven model based on DCI, DDD, and Dynamic Object Model
principles.

3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM)

The Activation Service consumes the semantically rich Graph Model and produces
the Activation Model. This is not a static data structure but a Dynamic Object Model
(DOM), where an object's capabilities can change at runtime. This is a direct
implementation of the ideas found in works like "Dynamic Object Model" and the
Actor Role pattern. Its core entities are Class, Instance, Actor, Role, Context,
Interaction, Transform, and Dataflow.

3.2. Patterns in Practice: DDD, DCI, and the Actor-Role Model

●​ DDD (Domain-Driven Design): The entire Activation Service is a single Bounded
Context. Its Ubiquitous Language consists of the entities above (Context, Role,
etc.).

●​ DCI (Data, Context, and Interaction): The pattern is the blueprint for the
runtime logic. An Interaction (Context) "casts" plain data Instances into Actors by
dynamically injecting Roles (behavior) for the duration of the use case. This
avoids bloating data objects with all possible behaviors, a core tenet of DCI as
described by James Coplien and Trygve Reenskaug.

3.3. Deep Dive: Actor State and Dataflow via Transforms

An Actor's state is its position in the use case flow, modeled as a set of available
Transforms (previous, current, next). The dataflow is driven by a reactive stream of
declarative Transform messages, which instruct Actors on how to mutate their internal
state. This creates a scalable, auditable, and distributed state machine.

Phase 3.5: LLM Integration & Agentic Architecture (MCP, DIDs, COST)

This phase runs in parallel with the latter part of Phase 3 and the start of Phase 4. It
elevates the Activation Service from a simple orchestrator to an intelligent, agentic
system capable of communicating with LLMs and other ApplicationService instances
using standardized protocols.

3.4. Deep Dive: The ApplicationService as a Model Context Protocol (MCP) Server

The ApplicationService will expose an MCP Server endpoint, allowing external clients
(like LLM-based agents or other ApplicationService instances) to interact with its
capabilities in a standardized way. We will use Spring AI as the primary tool to bridge
our internal services with the LLM world.

●​ MCP Endpoint Implementation (Spring WebFlux): A single REST endpoint
(/mcp) will handle all MCP requests. The request body will specify the desired
capability (resource, tool, or prompt_template).

●​ Exposing Capabilities via MCP & Spring AI:
1.​ Resources (Aggregation/Index): An MCP client can ask for resources. "Find

me resources similar to 'a senior Java developer'."
■​ Implementation: The MCP endpoint routes this to the Index Service. The

text query is fed into Spring AI's ReactiveEmbeddingClient to get a vector.
This vector is used to perform a similarity search in the vector DB. The
results (a Flux of resource IDs) are returned.

2.​ Tools (Activation/Registry): An MCP client can request to use a tool.
"Execute the 'OnboardNewEmployee' tool for resource 'user:JohnDoe'."
■​ Implementation: This is the core of the agentic behavior. The MCP

endpoint maps the tool name "OnboardNewEmployee" to an Activation
Context. It then instantiates an Interaction for that Context and assigns
user:JohnDoe as an Actor. The Interaction's dataflow is executed. The
LLM decides what to do; our framework provides the verifiable, stateful
Tool to do it.

3.​ Prompt Templates (Alignment/Naming): An MCP client can request a
template for complex reasoning. "Give me the 'ConceptAlignment' prompt
template to compare 'Customer' and 'Client'."
■​ Implementation: The endpoint fetches a pre-defined prompt string from

the Naming Service. This template has placeholders for context (e.g.,
attributes of 'Customer' and 'Client'). The MCP client populates these and
sends the completed prompt to an LLM using Spring AI's
ReactiveChatClient. The LLM's response (e.g., a mapping of equivalent
attributes) can then be fed back into the system to augment the Graph
Model.

3.5. Deep Dive: COST (COnversational State Transfer) & The HAL Protocol

The communication between the Producer Service (the client) and the Activation
Service (the server) will be implemented as COST, a stateful, conversational protocol
built on the principles of HATEOAS using the Hypertext Application Language
(HAL) specification.

●​ Principle: Every API response not only contains the state of a resource but also
the links (_links) to all possible actions (the next Transforms) that can be taken
from that state. The client does not need to hardcode application logic; it just
needs to know how to follow links.

●​ Example HAL Response for an Actor:​
{​
 "actorId": "user:Alice",​
 "role": "Buyer",​
 "state": "AwaitingPurchaseConfirmation",​
 "instanceData": {​
 "shippingAddress": "123 Main St",​
 "paymentMethod": "**** **** **** 1234"​
 },​
 "_links": {​
 "self": { "href": "/interactions/123/actors/user:Alice" },​
 "interaction": { "href": "/interactions/123" },​
 "next": [​
 {​

 "href": "/interactions/123/transform",​
 "method": "POST",​
 "name": "ConfirmPurchase",​
 "title": "Confirm and Finalize Purchase"​
 },​
 {​
 "href": "/interactions/123/transform",​
 "method": "POST",​
 "name": "ChangeShippingAddress",​
 "title": "Edit Shipping Address"​
 }​
],​
 "previous": {​
 "href": "/interactions/123/revert",​
 "method": "POST",​
 "name": "RevertPaymentSelection"​
 }​
 }​
}​
​
The UI simply renders a button for each object in the _links.next array. This makes
the frontend incredibly dynamic and resilient to changes in the backend workflow.

3.6. Deep Dive: W3C DIDs for Decentralized & Verifiable Identity

To ensure security, provenance, and interoperability, all canonical resource IDs will be
W3C Decentralized Identifiers (DIDs).

●​ Implementation:
1.​ Creation: In the Aggregation Service, when a new resource is first

encountered, we will use a library like did-common-java to generate a did:ion
or did:key. The ID's primeID can even be part of the DID string for
deterministic generation.

2.​ DID Document: The generated DID Document (containing cryptographic keys
and service endpoints like the resource's MCP endpoint) is stored in the
Registry Service's property graph, linked to the resource node.

3.​ Usage: The resource's canonical identifier throughout the system becomes
its DID (e.g., did:ion:Ei...).

●​ Enabled Features:
○​ Verifiable Provenance: Any Statement created by an ApplicationService can

be cryptographically signed using the private key associated with the

service's own DID. Downstream consumers can verify this signature,
guaranteeing data integrity and non-repudiation.

○​ Secure Interoperability: When one ApplicationService acts as an MCP Client
to another, it can use DID-Auth to authenticate. This eliminates the need for
API keys or pre-shared secrets, enabling a zero-trust, federated network.

○​ Decentralized Discovery: The serviceEndpoint in a resource's DID Document
can point directly to its MCP API, allowing different instances to dynamically
discover how to interact with each other.

3.7. The ApplicationService as an MCP Client

The framework's true power is realized when an ApplicationService instance can act
as a client to others.

●​ Scenario: A local Interaction for "HireEmployee" requires a
"PerformBackgroundCheck" tool, which is provided by a trusted, external HR
ApplicationService.

●​ Implementation:
1.​ The local Activation Service determines the need for the external tool.
2.​ It looks up the HR service's DID in its Registry.
3.​ It resolves the DID to find the HR service's MCP endpoint from its DID

Document.
4.​ It authenticates using DID-Auth.
5.​ It sends an MCP request: { "capability": "tool", "name":

"PerformBackgroundCheck", "params": { ... } }.
6.​ The remote service executes the tool and returns the result.
7.​ The local Activation Service receives the result and integrates it into its own

Interaction dataflow, advancing the "HireEmployee" process.

Phase 3: Activation & Use Case Enablement (Months 8-10)

Objective: Infer and enable the execution of business processes by implementing a
dynamic, message-driven model based on DCI, DDD, and Dynamic Object Model
principles.

3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM)

The Activation Service consumes the semantically rich Graph Model and produces
the Activation Model. This is not a static data structure but a Dynamic Object Model
(DOM), where an object's capabilities can change at runtime. This is a direct
implementation of the ideas found in works like "Dynamic Object Model" and the
Actor Role pattern.

Alignment consumes from / augments Aggregation Model​

Activation consumes from /augments Alignment Model which in turn augments
Aggregation Model.

Activation: Resource Content Type Capabilities.

◦ Buy-able (Transaction, Product)

◦ Identify-able (Features, Image)

◦ Locatable (Space, Position)

●​ Core Entities:
○​ Class: The schema for an object. It defines the fields (attributes) an object

can have. This is analogous to a Java Class definition but is itself a data object
that can be created or modified at runtime.

○​ Instance: An instantiation of a Class. It holds the actual data in its attributes
map. This is the "Data" part of DCI.

○​ Actor: An Instance that is actively participating in a use case. It is stateful.
○​ Role: A behavioral contract. It defines the capabilities and dataflows an Actor

can have within a specific Context. This is the "Interaction" part of DCI.
○​ Context: The schema for a use case. It defines the Roles that must be filled

for the use case to proceed. This is the "Context" part of DCI.
○​ Interaction: A running instance of a Context. It's the stateful orchestrator that

binds Actors to Roles.
○​ Transform: A message representing a single, atomic state change operation

to be performed by an Actor.
○​ Dataflow: A rule within a Context that defines the sequence of Transforms for

a given Role.
●​ Parallel Statement Types:

○​ Schema Statements: Statement<Context, Role, Dataflow>. These define the
"rules of the game." For example: "In the Purchase Context, the Buyer Role
follows a Dataflow that involves creating a payment."

○​ Data Statements: Statement<Interaction, Actor, Transform>. These represent
the actual "moves in the game." For example: "In Interaction #123, Actor
user:Alice executes the Transform to set her payment method."

3.2. Patterns in Practice: DDD, DCI, and the Actor-Role Model

●​ DDD (Domain-Driven Design): The entire Activation Service is a single Bounded
Context. Its Ubiquitous Language consists of the entities above (Context, Role,
Interaction, etc.). It listens for Domain Events from the Alignment service (e.g.,
NewProductKindDiscovered) and uses them to infer and create new Context
schemas.

●​ DCI (Data, Context, and Interaction): This pattern is the blueprint for the
service's runtime logic.
1.​ Data: The Instances (e.g., a specific user, a specific product) are the plain

data objects. They have state but no intrinsic business logic.
2.​ Context: An Interaction is created (e.g., a user clicks "Buy"). This Interaction

is the Context.
3.​ Interaction (The "Casting"): The Interaction "casts" Instances into Actors by

assigning them Roles. The user:Alice Instance is now the Buyer Actor. The
product:Laptop Instance is now the ItemForSale Actor. The Role (Buyer),
which contains the business logic, is dynamically injected into the Actor for
the duration of this Interaction. This avoids bloating data objects with all
possible behaviors, a core tenet of DCI as described by James Coplien and
Trygve Reenskaug.

3.3. Deep Dive: Actor State and Dataflow via Transforms

The core of the model's dynamism lies in how Actors manage state and interact via
Transform messages.

●​ Actor State (previous, current, next):
○​ An Actor's state is not just its data; it's its position in the use case flow. This is

explicitly modeled as a set of available Transforms.
○​ current: Map<Context, Transform>: The Transform that led the Actor to its

current state.
○​ next: Map<Context, Transform[]>: A map of the available Transforms the

Actor can execute next within a given Context. This is the system's "API" at
runtime. The Producer service reads this map to render the available buttons
or actions to the user.

○​ previous: Map<Context, Transform>: The Transform that can be used to
revert the current state (for undo functionality).

●​ Implementing Dataflow with Transform Messages:
○​ A Dataflow is a sequence of Transforms. A Transform is a declarative

message, not imperative code. It's a data object that instructs an Actor on
how to mutate its internal Instance data (its DOM).

○​ Transform Message Structure:​
{​
 "transformId": "txf_987",​
 "targetActorId": "user:Alice",​
 "operation": "SET_FIELD", // or GET_FIELD, ADD_TO_LIST, MUTATE_FIELD​
 "payload": {​
 "fieldName": "shippingAddress",​

 "value": { "street": "123 Main St", "city": "Anytown" }​
 }​
}​

○​ Message-Driven Implementation:
1.​ The Interaction orchestrator (or another Actor) publishes a

Statement<Interaction, Actor, Transform> message to a Kafka topic.
2.​ The target Actor (a stateful microservice instance or an object managed

by the Activation Service) consumes this message.
3.​ The Actor inspects the Transform's operation and payload.
4.​ It applies the change to its internal Instance object's attributes map. For

example, for SET_FIELD, it executes this.instance.attributes.put(fieldName,
value).

5.​ After successfully applying the Transform, the Actor updates its own
previous, current, and next state maps based on the Dataflow rules
defined in its Role.

6.​ It then emits an ActorStateUpdated event, potentially triggering the next
Transform in the sequence.

●​ Example: "Purchase" Interaction Dataflow
1.​ Initial State: Buyer Actor's next transforms include [SelectPaymentMethod].

Seller Actor's next is [WaitForPaymentSelection].
2.​ User selects a credit card. The Producer sends a message that the Interaction

translates into a Transform statement: (interaction:123, actor:Buyer,
transform:SetPaymentMethod).

3.​ The Buyer Actor consumes this. It updates its internal Instance data with the
payment info. Its state changes:
■​ current becomes SetPaymentMethod.
■​ next is now [ConfirmPurchase].

4.​ The Buyer emits BuyerPaymentMethodSet.
5.​ The Interaction orchestrator hears this and sends a Transform to the Seller:

(interaction:123, actor:Seller, transform:ReceivePaymentNotification).
6.​ The Seller Actor consumes this. Its state changes:

■​ current becomes ReceivePaymentNotification.
■​ next is now [ShipItem].

7.​ This message-based flow of declarative Transforms continues until the
Interaction is complete. This approach is highly scalable, auditable, and allows
for complex, long-running, and distributed use cases.

3.1. The Activation Service: The Semantic JAF Engine

The Activation Service is refactored to operate as a distributed, semantic JavaBeans
Activation Framework (JAF). Its job is to orchestrate, but the "how-to" for any given
action is delegated to a specialized handler.

●​ ContentTypeDataHandler: The Pluggable Behavior Module
○​ Implementation: For each Content-Type (e.g., buy-able), a corresponding

Spring bean implementing the ContentTypeDataHandler interface is
registered.

○​ Interface Definition:​
public interface ContentTypeDataHandler {​
 String getContentType(); // Returns "buy-able"​
 // Determines which verbs are valid given the Actor's CURRENT state​
 Set<Verb> getAvailableVerbs(Actor actor);​
 // Provides the declarative sequence of Transforms for a given verb​
 Dataflow defineDataflowForVerb(Verb verb, Actor actor);​
}​

●​ Dynamic Verb Availability: The power of this pattern is that getAvailableVerbs is
state-dependent. For a buy-able product, the BUY verb is only returned by the
handler if the Actor's state is ForSale. If the state is SoldOut, the handler might
return an empty set, or perhaps a SUBSCRIBE_FOR_RESTOCK verb. This makes
the system's available actions dynamically adapt to the resource's real-time state.

●​ Context Inference from Content Types: The inference of available Contexts is
now driven by behavior.
○​ Rule: The Activation Service scans for Actors whose ContentTypes match the

Role requirements for a Context. A Trade Context might require two roles,
both needing the transferable Content-Type. The service finds an Actor that is
buy-able (a sub-type of transferable) and another that is sell-able (also a
sub-type), and thus makes the Trade Context available for instantiation
between them.

●​ JCA for Transactional Write-Back: The loop is closed by the
ContentTypeDataHandler.
1.​ When an Interaction's Dataflow requires a write-back (e.g., the

FinalizePurchase Transform), it is dispatched to the handler for the buy-able
Content Type.

2.​ The handler retrieves the resource's JCA provenance from the Registry.
3.​ It obtains a JCA Connection from the Datasource Service.
4.​ It invokes the outbound JCA Interaction (e.g., createOrder), executing the

transaction in the backend ERP and guaranteeing data consistency.

Phase 4: The Behavior-Driven API & UI

Objective: Expose the framework's dynamic capabilities through a standardized
agentic protocol and a user interface that is entirely driven by the available behaviors
of its resources.

4.1. The COST/HAL Protocol: An API of Verbs

The conversational protocol is refactored to be fully behavior-driven, following the
JAF/REST approach.

●​ Verbs in HAL Links: The _links section of a HAL response now contains a verbs
array. This array is dynamically populated by calling the getAvailableVerbs(actor)
method on the resource's active ContentTypeDataHandler. The name of the link is
the verb.​
// HAL Response for a resource with Content-Type: 'buy-able' in a 'ForSale' state​
"_links": {​
 "self": { "href": "/products/did:..." },​
 "verbs": [​
 {​
 "href": "/products/did:.../invoke",​
 "method": "POST",​
 "name": "BUY", // The command from the DataHandler​
 "title": "Purchase this item now"​
 // "schema" for placeholders remains as before​
 },​
 {​
 "href": "/products/did:.../invoke",​
 "method": "POST",​
 "name": "ADD_TO_CART",​
 "title": "Add this item to your shopping cart"​
 }​
]​
}

Phase 3: Activation & Use Case Enablement (Months 8-10)

Objective: Infer and enable the execution of business processes and use cases from
the knowledge graph.

3.1. Components & Implementation Details:

●​ Activation Service (Java, Spring Boot):

○​ Core Logic: Consumes from the alignment-graph-model-v1 topic.
○​ DCI (Data, Context, Interaction): Implement the DCI pattern.

■​ Context Inference: Use graph traversal algorithms (e.g., Depth First
Search) or Cypher queries on the Registry to find recurring patterns that
represent potential use cases. For example, a pattern of
(Order)-[contains]->(Product)<-[trackedIn]-(Inventory) infers a
ReplenishStock Context.

■​ Role & Actor: Roles are the types of nodes in the pattern (e.g., Product,
Inventory). Actors are specific instances (e.g., product:123).

■​ Interaction: An Interaction is an instantiated Context. It's a stateful object
that tracks the assigned Actors and the progress of the use case.

○​ Dataflow & Rules: Use a rules engine like Drools to define the business logic.
A rule might be: WHEN Inventory.level < Inventory.threshold THEN CREATE
ReplenishStock.Interaction. The actual data transformations between actors
can be defined using XSLT or implemented as simple Java methods.

○​ Output: Produces Statement<Context, Interaction, Role, Actor> to the
activation-dci-model-v1 topic.

●​ Index Service (Helper Service - Python, Vector DB):
○​ Core Logic: A service for similarity-based retrieval.
○​ Database: Use a dedicated vector database like Milvus or Pinecone.
○​ API:

■​ POST /v1/index/resources: Adds a resource's embedding to the index.
■​ POST /v1/search/similar: Takes a vector and context filters (e.g., "find

products similar to this one") and returns a list of matching resource URIs.
This is used to find suitable Actors for a Role.

Phase 4: Agentic Architecture, API, and UI

Objective: Expose the framework's capabilities through a standardized agentic
protocol and a dynamic, conversational user interface.

4.1. The Model Context Protocol (MCP) Server

The ApplicationService exposes an MCP Server endpoint, allowing external clients
(LLM agents, other AppService instances) to interact with its capabilities.

●​ Exposed Capabilities:
1.​ Resources (Aggregation/Index): Provides access to find and retrieve

resources, using Spring AI's ReactiveEmbeddingClient for similarity searches.
2.​ Tools (Activation/Registry): Allows an agent to execute a named Tool, which

maps directly to an Activation Context, providing a verifiable, stateful way to
perform actions.

3.​ Prompt Templates (Alignment/Naming): Provides structured prompts for
complex reasoning, which can be populated by the agent and sent to an LLM
via Spring AI's ReactiveChatClient.

4.2. W3C DIDs for Decentralized & Verifiable Identity

All canonical resource IDs are W3C Decentralized Identifiers (DIDs), generated
using libraries like did-common-java. This enables:

●​ Verifiable Provenance: Statements can be cryptographically signed.
●​ Secure Interoperability: Services can authenticate with each other using

DID-Auth, eliminating API keys.
●​ Decentralized Discovery: Service endpoints are discoverable via DID

Documents.

4.3. The COST/HAL Protocol with JAF/REST Semantics

The communication between the Producer Service (client) and the Activation Service
is implemented as COST (COnversational State Transfer), a stateful protocol built
on HATEOAS using the HAL specification.

●​ Semantic Verbs: The _links section of a HAL response contains a verbs array,
populated by the resource's ContentTypeDataHandler. The name of each link is
the command (e.g., BUY, ADD_TO_CART).

●​ Conversational Placeholders: Link schemas can contain placeholders for user
input, including a possibleValues link that the client can follow to fetch a list of
valid options. This enables a rich, back-and-forth conversational flow where the
client UI is dynamically generated from the server's responses.

Phase 4: API & User Interface (Months 11-12)

Objective: Expose the framework's capabilities through a developer-friendly API and
an intuitive user interface.

4.1. Components & Implementation Details:

●​ Producer Service (API/Frontend - Java/Spring Boot, React):
○​ Backend API: A Spring Boot application that provides the public-facing

interface.
○​ REST API:

■​ GET /v1/contexts: Lists available use cases.
■​ POST /v1/interactions: Creates a new instance of a use case.
■​ GET /v1/interactions/{id}: Retrieves the state of a specific transaction.
■​ POST /v1/interactions/{id}/roles/{roleName}/assign: Assigns an actor to a

role.

○​ Hypermedia (HATEOAS): Use spring-boot-starter-hateoas. Each response
will contain _links that guide the client. An Interaction response will have links
like assign-actor or complete-step.

○​ Frontend (React):
■​ A Single-Page Application (SPA) built with React and TypeScript.
■​ Use a component library like Material-UI or Ant Design for a consistent

look and feel.
■​ Implement a generic form renderer that builds input forms dynamically

based on the JSON schema of the Roles provided by the API.
■​ Use WebSockets to connect to the Augmentation Service (through an API

Gateway) to receive real-time updates on the status of Interactions.
○​ Authentication: Implement OAuth 2.0 with an identity provider like Keycloak

or Auth0. The API Gateway will enforce authentication and authorization
policies.

1.1. Components & Reactive Implementation Details:

●​ Datasource Service (Java, Spring WebFlux):
○​ Reactive Core: The service will be built entirely on a non-blocking stack.

Instead of traditional controllers, it will use Spring's functional handler
functions.

○​ Reactive Ingestion:
■​ RestApiAdapter: Will use WebClient to consume external APIs. The

WebClient natively returns a Flux<T>, allowing the service to stream
paginated results without holding a thread, processing each item as it
arrives.
■​ Example:

webClient.get().uri("/items?page=0").retrieve().bodyToFlux(Item.class)
.expand(lastItem -> fetchNextPage(lastItem))...

■​ R2DBCAdapter: For supported SQL databases, it will use R2DBC
(spring-boot-starter-data-r2dbc) to perform non-blocking database
queries, returning a Flux<Row>.

○​ Functional Transformation: The transformation from source format to SPO
triples will be a pure function within a reactive pipeline.
■​ Example (Project Reactor):​

Flux<SourceData> sourceStream = adapter.fetchData();​
Flux<Statement<String,String,String,String>> tripleStream = sourceStream​
 .flatMap(data -> Flux.fromIterable(transformer.toTriples(data))); //
1-to-many transform​

This approach aligns with functional principles described in resources like
"Functional Programming in JavaScript" by treating data transformation as a
series of composable, stateless operations on a stream.

●​ Augmentation Service (Java, Spring Cloud Stream):
○​ Reactive Dataflow: This service is the reactive backbone. It will be

implemented using Spring Cloud Stream's functional programming model.
Instead of @StreamListener, we define beans of type
java.util.function.Function<Flux<T>, Flux<R>>. The framework automatically
binds these to Kafka topics.
■​ Example: A function that routes raw triples to the aggregation service.​

@Bean​
public Function<Flux<RawStatement>, Flux<AggregatableStatement>>
processRawTriples() {​
 return flux -> flux​
 .map(this::enrichWithMetadata)​
 .log(); // Log each event in the stream​
}​

This embodies the principles of event-driven microservices discussed in the
"Simple Event-Driven Microservices with Spring Cloud Stream" reference.

○​ Saga Pattern (Reactive): The Saga orchestrator will be implemented using
Flux.usingWhen to manage transactional boundaries across services,
ensuring that compensating actions are triggered reactively on error signals.

●​ Registry Service (Helper Service - Java, Spring WebFlux, Neo4j):
○​ Reactive API: The REST API will be built with Spring WebFlux functional

endpoints. Endpoints will return Mono<ServerResponse> for writes and
Flux<Statement> for reads.

○​ Database Interaction: While the official Neo4j Java driver is blocking, we can
make it non-blocking from the perspective of the event loop by offloading the
work to a dedicated scheduler.
■​ Example:​

public Mono<Void> saveStatement(Statement stmt) {​
 return Mono.fromRunnable(() -> {​
 // Blocking driver call​
 session.run("MERGE (s:Resource {uri: $s_uri})", parameters("s_uri",
stmt.getSubject()));​
 }).subscribeOn(Schedulers.boundedElastic()).then();​
}​

This prevents the blocking call from consuming a precious event-loop thread, a core
tenet of reactive programming.
Phase 2: Semantic Core & Knowledge Representation (Months 4-7)

Objective: Transform raw data into an interconnected, semantically rich knowledge
graph using reactive streams and AI/ML models.

2.1. Components & Reactive Implementation Details:

●​ Aggregation Service (Java, Spring AI, Python):
○​ Functional Aggregation Pipeline: The core of this service is a multi-stage

reactive pipeline.
■​ Example:​

// 1. Consume raw triples​
Flux<RawStatement> rawStream = ...;​
// 2. Group by subject to collect all predicates​
Flux<GroupedFlux<String, RawStatement>> groupedBySubject =
rawStream.groupBy(RawStatement::getSubject);​
// 3. Process each group to infer type​
Flux<InferredTypeStatement> typeStream = groupedBySubject​
 .flatMap(group -> group​
 .map(RawStatement::getPredicate)​
 .collect(Collectors.toSet())​
 .flatMap(this::inferTypeFromPredicates) // Calls FCA logic​
);​

○​ FCA (Formal Concept Analysis): The inferTypeFromPredicates method will
use fcalib (as cited in the references). The set of predicates for a group of
subjects is used to build a FormalContext. The resulting ConceptLattice
provides the type hierarchy, which is then flattened back into a Flux of type
assertion statements. This aligns with the use of FCA for knowledge discovery
outlined in papers like "Formal Concept Analysis for Knowledge Discovery and
Data Mining".

○​ Spring AI (Reactive Embeddings): Embeddings will be generated within the
reactive stream using Spring AI's ReactiveEmbeddingClient.
■​ Example:​

// Inside the flatMap pipeline​
.flatMap(statement ->
reactiveEmbeddingClient.embed(statement.getObject())​

 .map(embedding -> statement.withEmbedding(embedding))​
)​

This ensures that the network call to an embedding model (like one from Hugging
Face or a local Ollama instance) is non-blocking.

●​ Alignment Service (Java, RDF4J):
○​ Reactive Ontology Matching: This service consumes the Reference Model

stream. For each statement, it performs a lookup against the upper
ontologies.

○​ RDF4J Integration: SPARQL queries via RDF4J will be wrapped in
Mono.fromCallable and executed on a dedicated scheduler to avoid blocking.
■​ Example:​

public Flux<Statement> align(Flux<Statement> statements) {​
 return statements.flatMap(stmt ->​
 Mono.fromCallable(() -> executeSparqlAlignment(stmt)) // Blocking
call​
 .subscribeOn(Schedulers.boundedElastic())​
 .flatMapMany(Flux::fromIterable) // Flatten results into the stream​
);​
}​

This approach leverages the power of semantic frameworks like RDF4J within a
fully reactive architecture, as envisioned by concepts in
"SPARQL-Micro-Services".

●​ Naming Service (Helper Service - Java, Apache Jena):
○​ Reactive SPARQL Endpoint: While Jena Fuseki is typically servlet-based, it

can be proxied by a Spring WebFlux application to provide a fully reactive
interface to the rest of the system, ensuring end-to-end non-blocking I/O.

Phase 3: Activation & Use Case Enablement (Months 8-10)

Objective: Infer and enable the execution of business processes using the DCI and
DDD patterns within a reactive model.

3.1. Components & Reactive Implementation Details:

●​ Activation Service (Java, Spring Boot):
○​ DDD (Domain-Driven Design): This service is a classic DDD Bounded

Context. The Activation Model is its Ubiquitous Language. It consumes
AlignmentModelChanged domain events from Kafka and produces

InteractionStateChanged events. This follows the principles from Eric Evans'
"Domain-Driven Design: Tackling Complexity in the Heart of Software".

○​ DCI (Data, Context, and Interaction): This pattern is implemented reactively.
■​ Context: A Context is a class that defines a use case. It contains the logic

to find the required Roles. This logic can be a reactive graph query.
■​ Role: A Role is a java.util.function.Function<Flux<ActorState>,

Flux<TransformedState>>. It's a functional interface that defines the
behavior an Actor will perform.

■​ Interaction: An Interaction is a stateful, but non-blocking, orchestrator.
When instantiated, it subscribes to the Flux streams representing the state
of its assigned Actors. It then applies the Role functions to these streams
to drive the use case forward. This dynamic composition of behavior is a
core idea from the DCI papers by Trygve Reenskaug and James Coplien.

■​ Example:​
// An Interaction orchestrating a 'Buy' use case​
Flux<BuyerState> buyerStream =
actorRepository.find(buyerId).getStateStream();​
Flux<SellerState> sellerStream =
actorRepository.find(sellerId).getStateStream();​
// Apply the Role functions​
Flux<Payment> paymentStream = buyerRole.process(buyerStream);​
Flux<Shipment> shipmentStream = sellerRole.process(sellerStream);​
// Combine the results​
Flux.zip(paymentStream,
shipmentStream).subscribe(this::handleCompletedTransaction);​

●​ Index Service (Helper Service - Python, Vector DB):
○​ Reactive Indexing: It will subscribe to a Kafka topic of ResourceUpdated

events. Using a reactive Kafka consumer (like aiokafka in Python), it will
update the vector database (e.g., Milvus) as soon as a resource's embedding
changes.

Phase 4: API & User Interface (Months 11-12)

Objective: Expose the framework's capabilities through a fully reactive API and a
real-time user interface.

4.1. Components & Reactive Implementation Details:

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React):
○​ Fully Reactive API: The entire API will be built with Spring WebFlux.

○​ Server-Sent Events (SSE): For real-time updates on long-running
Interactions, the API will use SSE. A client can subscribe to an endpoint like
GET /v1/interactions/{id}/stream, which returns a Flux<InteractionState> with
the Content-Type of text/event-stream.
■​ Example:​

@GetMapping(value = "/interactions/{id}/stream", produces =
MediaType.TEXT_EVENT_STREAM_VALUE)​
public Flux<InteractionState> streamInteractionUpdates(@PathVariable
String id) {​
 return
interactionRepository.findById(id).flatMapMany(Interaction::getStateStrea
m);​
}​

This provides a much more efficient and standard-based alternative to
WebSockets for server-to-client data pushes, as advocated in many reactive
programming tutorials (e.g., "Building Reactive Microservices with Spring
WebFlux").

○​ Frontend (React with RxJS): The React frontend will use a library like RxJS
to manage the SSE streams from the backend. The state of a component can
be directly bound to an Observable derived from the event stream, causing
the UI to update automatically and efficiently as new data arrives. This aligns
with the "Thinking in React" and "Thinking in RxJava" mental models.

1.1. Components & Reactive Implementation Details:

●​ Datasource Service (Java, Spring WebFlux):
○​ Reactive Core: The service will be built entirely on a non-blocking stack using

Spring WebFlux's functional handler functions instead of traditional
controllers.

○​ Reactive Ingestion:
■​ RestApiAdapter: Will use WebClient to consume external APIs. It natively

returns a Flux<T>, allowing the service to stream paginated results without
holding a thread, processing each item as it arrives.
■​ Example:

webClient.get().uri("/items?page=0").retrieve().bodyToFlux(Item.class)
.expand(lastItem -> fetchNextPage(lastItem))...

■​ R2DBCAdapter: For supported SQL databases, it will use R2DBC
(spring-boot-starter-data-r2dbc) to perform non-blocking database
queries, returning a Flux<Row>.

○​ Functional Transformation: The transformation from source format to SPO
triples will be a pure function within a reactive pipeline. This aligns with
functional principles described in resources like "Functional Programming in
JavaScript" by treating data transformation as a series of composable,
stateless operations on a stream.
■​ Example (Project Reactor):​

Flux<SourceData> sourceStream = adapter.fetchData();​
Flux<Statement<String,String,String,String>> tripleStream = sourceStream​
 .flatMap(data -> Flux.fromIterable(transformer.toTriples(data))); //
1-to-many transform​

●​ Augmentation Service (Java, Spring Cloud Stream):
○​ Reactive Dataflow: This service is the reactive backbone, implemented using

Spring Cloud Stream's functional programming model. We define beans of
type java.util.function.Function<Flux<T>, Flux<R>>, which the framework
automatically binds to Kafka topics. This embodies the principles of
event-driven microservices discussed in the "Simple Event-Driven
Microservices with Spring Cloud Stream" reference.

○​ Saga Pattern (Reactive): The Saga orchestrator will be implemented using
Flux.usingWhen to manage transactional boundaries across services,
ensuring that compensating actions are triggered reactively on error signals.

●​ Registry Service (Helper Service - Java, Spring WebFlux, Neo4j):
○​ Reactive API: The REST API will be built with Spring WebFlux functional

endpoints, returning Mono<ServerResponse> for writes and Flux<Statement>
for reads.

○​ Database Interaction: To keep the event loop non-blocking, the blocking
Neo4j Java driver calls will be offloaded to a dedicated scheduler.
■​ Example:​

public Mono<Void> saveStatement(Statement stmt) {​
 return Mono.fromRunnable(() -> {​
 // Blocking driver call​
 session.run("MERGE (s:Resource {uri: $s_uri})", parameters("s_uri",
stmt.getSubject()));​
 }).subscribeOn(Schedulers.boundedElastic()).then();​
}​

Phase 2: Semantic Core & Knowledge Representation (Months 4-7)

Objective: Transform raw data into an interconnected, semantically rich knowledge

graph using reactive streams, Formal Concept Analysis, and a set-oriented model.

2.1. Deep Dive: The Reference Model and Prime Number Semantics

The Reference Model, produced by the Aggregation Service, moves from
string-based URIs to a formal, mathematically grounded identification system.

●​ ID & IDOccurrence: An ID is the canonical concept of an entity, identified by a
unique primeID. An IDOccurrence is an ID appearing in a specific role within a
specific context (e.g., as the subject of a statement).

●​ Prime Number Semantics: We leverage the Fundamental Theorem of
Arithmetic. An IDOccurrence's "embedding" is a set of prime IDs defining its full
context. Similarity is a deterministic Jaccard Index on these sets.

●​ FCA with Prime IDs: In Formal Concept Analysis, we use primeIDs for objects
and attributes. A concept's "intent" (its set of shared attributes) can be uniquely
identified by the product of its attribute primeIDs. This allows for
hyper-efficient subsumption checking: a concept C1 is a sub-concept of C2 if
C1's intent-product is cleanly divisible by C2's intent-product. This
transforms expensive set logic into simple integer arithmetic, a technique vital for
large-scale inference as explored in works like "Formal Concept Analysis for
Knowledge Discovery and Data Mining".

2.1. Deep Dive: The Reference Model and Prime Number Semantics

The Reference Model is the first layer of abstraction over raw data, produced by the
Aggregation Service. Its purpose is to move from string-based URIs to a formal,
mathematically grounded identification system that facilitates powerful inferences. It
revolves around two key entities: ID and IDOccurrence.

●​ ID Entity:
○​ Definition: An ID represents the canonical, context-free identity of a

resource. It is the "idea" of an entity. For example, the URI
http://example.com/users/alice and the database row (users, PK=123) both
resolve to the same single ID for the concept of "Alice".

○​ primeID: long: The core of the ID. Upon first encountering any new resource
URI, the Aggregation Service assigns it a unique prime number. This is its
immutable identifier.

○​ Implementation: A centralized, atomic "Prime Number Service" (e.g., using a
Redis INCR command against a pre-computed list of primes) will be used to
dispense unique primes, guaranteeing no collisions across the distributed
system.

●​ IDOccurrence Entity:

○​ Definition: An IDOccurrence represents an ID appearing in a specific role
within a specific context. It is the "instance" of an idea in action. For example,
in the statement (Alice, worksFor, Google), "Alice" is not just her canonical ID;
she is an IDOccurrence playing the subject role.

○​ Structure: It contains the ID of the entity itself (occurringId), and a reference
to the context in which it appears (context, which is itself an IDOccurrence
representing the statement).

●​ Prime Number Embeddings & Similarity:​
The document mentions "embeddings," but in this model, it refers to a set of
prime numbers, not a dense vector from an LLM. This leverages the Fundamental
Theorem of Arithmetic, as alluded to in John Sowa's work referenced in the
source document.
○​ Composition: An IDOccurrence's embedding is a set of primeIDs that define

its complete context: {primeID_of_self, primeID_of_predicate,
primeID_of_object, primeID_of_statement_context}.

○​ Similarity Calculation: Similarity between two IDOccurrences is calculated
using a Jaccard Index on their prime embedding sets. A high score signifies
a high degree of shared context, implying semantic similarity. This is
computationally cheaper and more deterministic than vector cosine similarity.

●​ Model Statements:
○​ Data Statements: A raw triple (Subject, Predicate, Object) is transformed into

Statement<IDOccurrence, ID, IDOccurrence>. This captures that the subject
and object are specific occurrences, while the predicate is the canonical
relationship ID.

○​ Schema Statements: A schema statement like (Person, hasName, String) is
represented as Statement<ID, ID, ID>, as it describes relationships between
canonical concepts, not specific instances.

2.1. Deep Dive: Formal Concept Analysis (FCA) in the Aggregation Service

FCA is a mathematical method used to find conceptual structures in data. It is a
cornerstone of the Aggregation Service for inferring types, hierarchies, and hidden
relationships. We will use the fcalib library (as cited in the references) within our
reactive pipeline. The service will construct three different kinds of formal contexts
from the incoming stream of Statement<ID, ID, ID, ID>.

A formal context is a triplet (G, M, I) where G is a set of objects, M is a set of
attributes, and I is a binary relation I ⊆ G × M.

1.​ Predicate-as-Context Analysis:
○​ Context: For a given predicate P (e.g., worksFor), the formal context is

(Subjects, Objects, I), where I contains a pair (s, o) if the statement (s, P, o)
exists.

○​ Example: Given statements (Alice, worksFor, Google), (Bob, worksFor,
Google), (Alice, worksFor, StartupX).
■​ G (Objects/Subjects): {Alice, Bob}
■​ M (Attributes/Objects): {Google, StartupX}
■​ I (Relation): {(Alice, Google), (Bob, Google), (Alice, StartupX)}

○​ Inference: The resulting concept lattice will group employees by their
employers. It allows for attribute implication. For example, the lattice might
reveal that "every person who worksFor both Google and StartupX also has
the attribute isSeniorDeveloper". This discovers implicit rules in the data. This
aligns with FCA's use in ontology alignment as described in "Aligning
Ontologies through Formal Concept Analysis".

2.​ Subject-as-Context Analysis:
○​ Context: For a given subject S, the formal context is (Predicates, Objects, I).
○​ Example: Given (Alice, title, "Engineer"), (Alice, uses, Java).

■​ G (Objects/Predicates): {title, uses}
■​ M (Attributes/Objects): {"Engineer", Java}
■​ I (Relation): {(title, "Engineer"), (uses, Java)}

○​ Inference: This helps define what a subject is. By comparing the concept
lattices of different subjects (e.g., Alice vs. Bob), we can find similarities in
their attributes and thus establish a "type" hierarchy. Subjects with similar
lattices belong to the same inferred type.

3.​ Object-as-Context Analysis:
○​ Context: For a given object O, the formal context is (Subjects, Predicates, I).
○​ Example: Given (Alice, uses, Java), (ProjectX, builtWith, Java).

■​ G (Objects/Subjects): {Alice, ProjectX}
■​ M (Attributes/Predicates): {uses, builtWith}
■​ I (Relation): {(Alice, uses), (ProjectX, builtWith)}

○​ Inference: This helps understand the different roles an entity plays. The
lattice for "Java" reveals all the subjects that interact with it and the ways
(predicates) they do so, defining its role in the ecosystem.

2.2. Deep Dive: The Graph Model (CSPO) in the Alignment Service

The Alignment Service elevates the Reference Model to the Graph Model, which
reifies statements into higher-order concepts called Kinds. This is where the system's
understanding of the domain truly takes shape.

●​ CSPO Entities (Context, Subject, Predicate, Object):
○​ These are not mere identifiers; they are rich, first-class objects in the model.

In a Java implementation, they would be records or classes.
○​ Data vs. Schema Statements: The model supports two parallel universes:

1.​ Data (Instance) Statements: Statement<Context, Subject, Predicate,
Object>. Here, each element is an instance. Context is a specific
transaction ID (e.g., tx:9987), Subject is user:123, Predicate is the specific
purchase event, and Object is product:456.

2.​ Schema (Type) Statements: Statement<ContextKind, SubjectKind,
PredicateKind, ObjectKind>. Here, each element is a type. ContextKind is
PurchaseEvent, SubjectKind is Customer, PredicateKind is Purchases, and
ObjectKind is Product.

●​ Domains Modeling & Traversal:
○​ A domain (e.g., "E-commerce," "Human Resources") is modeled as a

collection of related Kinds. The schema statements form a "type graph" that
defines the rules of the domain.

○​ Traversal becomes type-based. Instead of just "find connected nodes," we
can ask, "Find all ContextKinds that the Customer SubjectKind can participate
in." This is a query on the schema graph, providing powerful domain discovery
capabilities.

○​ Implementation: This is best implemented in a property graph database like
Neo4j. We would use a dual-schema approach:
■​ Instance nodes: (u:Instance:User {id: 'user:123'})
■​ Type nodes: (c:Kind:Customer {name: 'Customer'})
■​ Connection: (u)-[:INSTANCE_OF]->(c)​

This allows a single Cypher query to traverse both instance and type
information seamlessly.

●​ Functional Operations & Inference:
○​ The model enables powerful, type-safe functional operations on reactive

streams.
■​ Function<Subject, Flux<Context>>: "Given a specific user instance, stream

all transaction contexts they participated in."
■​ Function<SubjectKind, Flux<PredicateKind>>: "Given the Customer type,

stream all possible action types they can perform."
○​ Inference: The primary inference is validation. "Can user:123 (who is a

Customer) perform a deleteAccount action?" The system validates this by
querying the schema graph: MATCH
(:Customer)-[:CAN_PERFORM]->(:AccountDeletionAction). If a path exists, the
operation is valid according to the learned domain rules.

2.3. Deep Dive: Dimensional Features & Order Inference

The Alignment Service is also responsible for inferring order, which is crucial for
understanding processes, trends, and state transitions. Order is not explicit; it's
inferred from hierarchies in type and state.

●​ The Dimensional Model: Order is understood along specific Dimensions (e.g.,
Time, Price, Complexity). A measurement is a tuple: (Dimension, Unit, Value).
Multidimensional features (OLAP like):​
Dimensions: Time, Product, Region.​
Units: Month / Year, Category / Item, State / City.​
Context : (Context, Attribute, Value).

Examples:​
(soldDate, aProduct, aDate)​
((soldDate, aProduct, aDate), Product, aProduct)​
(((soldDate, aProduct, aDate), Product, aProduct), Region, aRegion)

TODO: Materialize / Query Cubes Context Statements into graph models.

●​ Order from Type/Schema Hierarchies:
○​ Principle: Generality defines order. More general concepts come "before"

more specific ones.
○​ Mechanism: The type hierarchy is derived from the FCA lattice. A type with

more attributes (a more specific concept) is considered "after" a type with
fewer attributes.

○​ Example:
■​ Person Type: Attributes {hasName, hasAge}.
■​ Employee Type: Attributes {hasName, hasAge, hasEmployeeID, hasSalary}.
■​ Inference: The attribute set of Employee is a superset of Person's. The

system establishes a conceptual ordering: Person < Employee. This means
Person is a prerequisite concept to Employee.

●​ Order from State/Data Hierarchies:
○​ Principle: States in a process follow a defined sequence.
○​ Mechanism: For certain attributes (e.g., "OrderStatus"), a state transition

graph can be defined or learned.
○​ Example: A Flux<OrderEvent> stream is processed. The system sees an order

transition through states: Placed -> Paid -> Shipped -> Delivered. This
sequence is materialized as an ordered relationship in the graph, allowing the
system to infer that Paid comes "after" Placed.

2.4. Deep Dive: Property Graphs as a Unifying Implementation

While the Reference, Graph, and Activation models are conceptually distinct layers of
abstraction, they can be elegantly implemented on a single underlying property

graph database (Neo4j). This avoids data duplication and enables powerful,
cross-layer queries.

●​ Unified Node Strategy: A single node in the graph can represent an entity
across all models, distinguished by labels and properties.
○​ Example Node (n):

■​ id: 'user:123'
■​ labels: ['Resource', 'Instance', 'User', 'Actor']
■​ Reference Model Properties: primeId: 8675309, uri: 'db://users/123'
■​ Graph Model Relationships: (n)-[:INSTANCE_OF]->(:Kind:Customer)
■​ Activation Model Relationships: (interaction:Interaction)-[:PLAYS_ROLE

{roleName: "Buyer"}]->(n)
●​ Benefits for Traversal, Inference, and Functional Operations:

○​ Traversal: This unified graph allows for seamless traversal across abstraction
layers in a single, powerful Cypher query.
■​ Example Query: "Find all Interactions of type HighValuePurchase where

the Buyer Role was played by an Actor of Kind PremiumCustomer, and
then find other Actors of the same Kind who have a high Reference Model
prime-set similarity to the original buyer."

○​ Inference: Inferences become multi-layered and incredibly rich. The system
can reason about an Activation Interaction based on the Graph Kind of its
actors and their Reference primeID similarity to other entities.

○​ Functional Operations: The unified graph enables powerful functional
compositions.
■​ Function<Interaction, Flux<ReferenceModelSimilarityScore>>: "Given a

specific transaction instance, calculate the Reference Model similarity
scores for all its participating actors." This function would trigger a Cypher
query that traverses from the :Interaction node to its :Actor nodes and
then computes the Jaccard index on their primeId context sets.

2.4. Deep Dive: Dimensional Features & The Alignment Service

The Alignment Service is not only responsible for semantic matching but also for
creating a unified understanding of order and measurement across all integrated
applications. This is achieved through the Dimensional Features model, which is
managed by a dedicated Dimensional Service (a helper service) and leveraged by
the Alignment Service.

●​ The Dimensional Service: A Helper for Measurement
○​ Purpose: This service acts as the central repository and processor for all

dimensional information. It understands dimensions, units, and conversions.

○​ Implementation: A Spring Boot service with a dedicated API for dimensional
operations. It will maintain a knowledge base of conversion factors and
dimensional relationships (e.g., Speed = Distance / Time).

●​ Storage and Functional Retrieval of Dimensional Data:
○​ Modeling in the Property Graph (Neo4j): Dimensional data is not stored as

simple literal properties. It's modeled as a rich structure to preserve context.
■​ An attribute like a product's price is not price: 99.99. Instead, the Product

node is linked to a Measure node.
■​ (:Product {id: 'prod:123'})-[:HAS_MEASURE]->(m:Measure {value: 99.99})
■​ (m)-[:HAS_UNIT]->(:Unit {name: 'USD'})
■​ (m)-[:OF_DIMENSION]->(:Dimension {name: 'Currency'})

○​ Functional Retrieval: This structure enables powerful, context-aware
functional queries via the Dimensional Service's API.
■​ Function<Measure, Flux<ConvertedMeasure>>: A core function that takes

a Measure and a target Unit and returns a stream of equivalent measures.
For example, converting a Measure of (1, 'Hour', Time) to (3600, 'Second',
Time).

■​ Function<Set<Measure>, Flux<DerivedMeasure>>: A function for deriving
new measures. Given (120, 'Kilometers', Distance) and (1, 'Hour', Time), it
can derive (120, 'Kilometers per hour', Speed).

●​ Alignment Features & Their Materialization:​
The Alignment Service consumes raw data and uses the Dimensional Service to
produce and materialize alignments back into the property graph. This enriches
the model at all layers.
1.​ Ontology Matching/Linking:

■​ Process: The service identifies that sourceA.user.creation_date and
sourceB.client.signup_timestamp are semantically equivalent. It uses the
Naming Service (and potentially an LLM via Spring AI) to match these
concepts.

■​ Materialization: It writes a new relationship into the Graph Model:
(:Attribute:creation_date)-[:OWL_SAME_AS]->(:Attribute:signup_timestam
p). This permanently links the two concepts.

2.​ Order Alignment (from Type/State Hierarchies):
■​ Process: As described previously, the system infers order from type

hierarchies (Person < Employee) and state transitions (Placed < Paid <
Shipped).

■​ Materialization: It creates explicit ordering relationships in the Graph
Model's schema. (:Type:Employee)-[:PRECEDED_BY]->(:Type:Person).
This allows for path-based queries to determine process prerequisites.

3.​ Dimensional Alignment:
■​ Process: This is the most critical feature. The service finds two measures,

price_eur: 100 and price_usd: 118, linked to the same product. It uses the
Dimensional Service to confirm they are comparable along the Currency
dimension.

■​ Materialization: The alignment is materialized in the Reference Model
and reflected up to the Activation Model. The Product node in the graph
now has two HAS_MEASURE relationships, but both are linked to the same
canonical :Dimension:Currency node. This allows an Activation Role like
PriceAuditor to instantly find all price measures for a product, regardless
of their original source or unit.

●​ Concrete Upper Ontology Example: owl:time
○​ Problem: Source A stores dates as MM/DD/YYYY. Source B uses ISO 8601

timestamps. Source C uses Unix epoch seconds.
○​ Alignment using a Time Upper Ontology: The Dimensional Service is

configured with a Time upper ontology based on W3C's owl:time. This
ontology defines concepts like Instant, Interval, Duration, and properties like
hasBeginning, inXSDDateTimeStamp.

○​ Process:
1.​ When the Alignment Service encounters a date value, it sends it to the

Dimensional Service.
2.​ The Dimensional Service parses the value and maps it to a canonical

representation defined by the ontology. All three date formats are
converted into a single, standard XSDDateTimeStamp.

3.​ Materialization: The original literal value is kept for provenance, but a
new relationship is created from the instance node to a canonical
TimeInstant node in the graph:
(:Order:order_456)-[:OCCURRED_AT]->(:TimeInstant {xsdDateTime:
'2025-07-26T22:04:00-03:00'}).

○​ Result: All temporal data across all integrated systems is now aligned to a
single, queryable timeline, enabling powerful temporal analysis in the BI layer.

2.2. Deep Dive: Formal Concept Analysis (FCA) with Prime IDs

FCA is a cornerstone of the Aggregation Service for inferring types and hierarchies.
Using primeIDs as the identifiers for objects and attributes in the FCA context
provides unique mathematical properties for inference.

●​ Context Construction with Primes: The formal context (G, M, I) is built as
follows:
○​ G (Objects): A set of primeIDs representing the subjects of a set of

statements.
○​ M (Attributes): A set of primeIDs representing the objects of those statements.
○​ I (Relation): A binary relation connecting a subject's primeID to an object's

primeID.
●​ Inference via Prime Products: This is the model's key innovation. A "formal

concept" in the resulting lattice is a pair (A, B), where A is a set of subject
primeIDs (the extent) and B is a set of object primeIDs they all share (the intent).
1.​ Concept Intent Identifier: For each concept, we can compute a unique

identifier for its intent B by multiplying all the prime IDs in B. Let's call this
the IntentProduct. Due to the Fundamental Theorem of Arithmetic, this
product is unique to that specific set of attributes.

2.​ Subsumption Inference via Division: This allows for incredibly efficient
hierarchy checking. If we have two concepts, C1 with IntentProduct1 and C2
with IntentProduct2, we can determine if C1 is a sub-concept of C2 (i.e., if all
objects in C1's extent are also in C2's) by a simple integer division check. If
IntentProduct1 is cleanly divisible by IntentProduct2, then C2 is a more
general concept than C1.

○​ Example:
■​ Concept Vehicle: Intent {hasWheels, canMove} -> Primes {5, 7} ->

IntentProduct = 35.
■​ Concept Car: Intent {hasWheels, canMove, hasEngine} -> Primes {5, 7, 11}

-> IntentProduct = 385.
■​ Inference: 385 % 35 == 0. The divisibility mathematically proves that Car

is a sub-concept of Vehicle without performing any expensive set
operations. This technique, referenced in papers like "Formal Concept
Analysis for Knowledge Discovery and Data Mining," makes large-scale
hierarchy inference computationally feasible.

2.3. Deep Dive: The Graph Model & Set-Oriented Kinds

The Alignment Service elevates the Reference Model to a Graph Model based on set
theory, reifying statements into higher-order concepts called Kinds.

●​ Visualizing the Model:

​

●​ Reification & Inference:​
This model enables powerful, type-safe inferences using functional interfaces.
○​ Inference: Can a Customer (SubjectKind) perform a Return (PredicateKind)

on a Service (ObjectKind)? We check if a ContextKind exists at the
intersection of these three sets. This validates interactions based on the
system's learned knowledge.

○​ Functional Interface: The logic can be expressed functionally:
■​ Function<SubjectKind, Set<PredicateKind>>: "Given a type of subject,

what are all the types of actions it can perform?"
■​ Function<PredicateKind, Tuple<Set<SubjectKind>, Set<ObjectKind>>>:

"Given a type of action, what are the valid types of subjects and objects
for it?"

2.2. Deep Dive: The Graph Model & Set-Oriented Kinds in the Alignment Service

The Alignment Service consumes the Reference Model and elevates it to a Graph
Model based on set theory, as depicted in the source document. This reifies the raw
statements into higher-order concepts called Kinds.

●​ Visualizing the Model:​

●​ Reification Process:​

The service consumes a Flux<Statement<ID, ID, ID, ID>> and groups statements to
build these Kind sets.
1.​ SubjectKind: A SubjectKind is formed by grouping all Subjects that interact

with a similar set of Predicates and Objects. It represents a "type" of subject.
For example, all subjects that interact with Predicates like hasOrder and
Objects like Product would be reified into the Customer SubjectKind.

2.​ PredicateKind: A PredicateKind groups Predicates that connect similar
SubjectKinds and ObjectKinds. It represents a "type" of relationship, like
Transaction.

3.​ ObjectKind: An ObjectKind groups Objects that are acted upon by similar
SubjectKinds via similar PredicateKinds. It represents a "type" of object, like
PurchasableItem.

4.​ ContextKind: This is the intersection of all three, representing a complete,
reified event or use case type, like PurchaseEvent.

●​ Set-Based Inferences and Functional Interfaces:​
This model enables powerful, type-safe inferences using functional interfaces.

○​ Inference: We can check for valid interactions. Can a Customer (SubjectKind)
perform a Return (PredicateKind) on a Service (ObjectKind)? By checking the
set intersections, the system can determine if this is a valid operation.
IsInteractionValid(s: SubjectKind, p: PredicateKind, o: ObjectKind): boolean.

○​ Functional Interface: The core of the alignment logic can be expressed
functionally:
■​ Function<SubjectKind, Set<PredicateKind>>: "Given a type of subject,

what are all the types of actions it can perform?"
■​ Function<PredicateKind, Tuple<Set<SubjectKind>, Set<ObjectKind>>>:

"Given a type of action, what are the valid types of subjects and objects
for it?"

2.3. Other Components & Reactive Implementation Details:

●​ Aggregation Service (Continued):
○​ Functional Interface: Function<Flux<Statement>, Flux<ConceptLattice>>.
○​ Spring AI (Reactive Embeddings): Embeddings are generated within the

reactive stream using Spring AI's ReactiveEmbeddingClient, ensuring network
calls to models (e.g., from Hugging Face or a local Ollama instance) are
non-blocking.

●​ Alignment Service (Continued):
○​ Functional Interface: Function<Flux<ReferenceStatement>,

Flux<GraphStatement>>.
○​ RDF4J Integration: SPARQL queries via RDF4J will be wrapped in

Mono.fromCallable and executed on a dedicated scheduler to avoid blocking,
as envisioned by concepts in "SPARQL-Micro-Services".

●​ Naming Service (Helper Service - Java, Apache Jena):
○​ Provides a reactive SPARQL endpoint by proxying Jena Fuseki with Spring

WebFlux, ensuring end-to-end non-blocking I/O.

Phase 3 & 4: Activation, API, and UI

These phases build upon the rich, interconnected knowledge graph established in
Phase 2.

●​ Activation Service (Java, Spring Boot): Implements DDD and DCI patterns. A
Role is a reactive Function<Flux<ActorState>, Flux<TransformedState>>, allowing
for the dynamic composition of behavior onto data objects (Actors). The key
inference is Function<DesiredOutcome, Flux<InteractionPlan>>, which uses
reactive graph traversal to find a sequence of Role functions to achieve a goal.

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): Exposes the
framework's capabilities via a fully reactive API using Server-Sent Events (SSE)

for real-time updates. The React frontend uses RxJS to create a responsive UI
that is directly bound to these event streams.

Phase 3: Activation & Use Case Enablement (Months 8-10)

Objective: Infer and enable the execution of business processes using the DCI and
DDD patterns within a reactive model.

3.1. Components & Reactive Implementation Details:

●​ Activation Service (Java, Spring Boot):
○​ DDD (Domain-Driven Design): This service is a classic DDD Bounded

Context. The Activation Model is its Ubiquitous Language. It consumes
AlignmentModelChanged domain events from Kafka and produces
InteractionStateChanged events, following principles from Eric Evans'
"Domain-Driven Design".

○​ DCI (Data, Context, and Interaction): This pattern is implemented reactively.
■​ Role (Functional Interface): A Role is a Function<Flux<ActorState>,

Flux<TransformedState>>. It's a functional interface defining the behavior
an Actor will perform, a direct implementation of the DCI pattern where
Roles are injected into Data objects at runtime, as described in the papers
by Trygve Reenskaug and James Coplien.

■​ Interaction: A stateful, non-blocking orchestrator that subscribes to
Actor state streams and applies Role functions to drive the use case
forward.

○​ Activation Model Inferences: Inferences here are pragmatic. The key
functional interface is: Function<DesiredOutcome, Flux<InteractionPlan>>.
"Given a desired outcome, what sequence of Role functions must be applied
to which Actors?"

●​ Index Service (Helper Service - Python, Vector DB):
○​ Reactive Indexing: Subscribes to a Kafka topic of ResourceUpdated events

and updates a vector database (e.g., Milvus) as embeddings change.

3.1. Components & Reactive Implementation Details:

●​ Activation Service (Java, Spring Boot):
○​ DDD (Domain-Driven Design): This service is a classic DDD Bounded

Context. The Activation Model is its Ubiquitous Language. It consumes
AlignmentModelChanged domain events from Kafka and produces
InteractionStateChanged events. This follows the principles from Eric Evans'
"Domain-Driven Design: Tackling Complexity in the Heart of Software".

○​ DCI (Data, Context, and Interaction): This pattern is implemented reactively.

■​ Context: A Context class defines a use case. It contains logic to find
required Roles, often via a reactive graph query.

■​ Role (Functional Interface): A Role is a Function<Flux<ActorState>,
Flux<TransformedState>>. It's a functional interface defining the behavior
an Actor will perform. This is a direct implementation of the DCI pattern
where Roles are injected into Data objects at runtime.

■​ Interaction: An Interaction is a stateful, non-blocking orchestrator. It
subscribes to the Flux streams representing its Actors' states and applies
the Role functions to drive the use case forward. This dynamic
composition is a core idea from the DCI papers by Trygve Reenskaug and
James Coplien.

○​ Activation Model Inferences: Inferences here are pragmatic and
goal-oriented. The key functional interface is: Function<DesiredOutcome,
Flux<InteractionPlan>>. "Given a desired outcome, what sequence of Role
functions must be applied to which Actors?" This is solved using reactive
graph traversal and constraint satisfaction.

●​ Index Service (Helper Service - Python, Vector DB):
○​ Reactive Indexing: It will subscribe to a Kafka topic of ResourceUpdated

events. Using a reactive Kafka consumer (aiokafka in Python), it will update
the vector database (e.g., Milvus) as soon as a resource's embedding
changes.

Phase 4: API & User Interface (Months 11-12)

Objective: Expose the framework's capabilities through a fully reactive API and a
real-time user interface.

4.1. Components & Reactive Implementation Details:

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React):
○​ Fully Reactive API: Built with Spring WebFlux.
○​ Server-Sent Events (SSE): For real-time updates on Interactions, the API will

use SSE. A client subscribes to an endpoint like GET
/v1/interactions/{id}/stream, which returns a Flux<InteractionState>. This is
more efficient than WebSockets for server-to-client data pushes, as
advocated in "Building Reactive Microservices with Spring WebFlux".

○​ Frontend (React with RxJS): The React frontend will use RxJS to manage
the SSE streams, binding component state directly to an Observable so the UI
updates automatically. This aligns with the "Thinking in React" and "Thinking
in RxJava" mental models.

4.1. Components & Reactive Implementation Details:

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React):
○​ Fully Reactive API: The entire API will be built with Spring WebFlux.
○​ Server-Sent Events (SSE): For real-time updates on long-running

Interactions, the API will use SSE. A client subscribes to an endpoint like GET
/v1/interactions/{id}/stream, which returns a Flux<InteractionState> with the
Content-Type of text/event-stream. This is more efficient than WebSockets for
server-to-client data pushes, as advocated in "Building Reactive
Microservices with Spring WebFlux".

○​ Frontend (React with RxJS): The React frontend will use a library like RxJS
to manage the SSE streams. The state of a component can be directly bound
to an Observable derived from the event stream, causing the UI to update
automatically as new data arrives. This aligns with the "Thinking in React" and
"Thinking in RxJava" mental models.

Phase 4: API & User Interface

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): The
Producer's role is to render the Actor's next set of Transforms as UI elements
(e.g., buttons, forms). When a user interacts, the Producer constructs the
appropriate Transform message and sends it to the Interaction to drive the state
machine forward. It uses Server-Sent Events (SSE) to reactively listen for
ActorStateUpdated events and update the UI in real-time.

Phase 4: API & User Interface

●​ Producer Service (API/Frontend - Java/Spring WebFlux, React): The
Producer's role is to be a fully compliant COST/HAL client. It renders the UI
based entirely on the _links section of the responses from the Activation Service.
When a user interacts, the Producer constructs the appropriate request based on
the link's href, method, and name, driving the state machine forward. It uses
Server-Sent Events (SSE) to reactively listen for state change notifications and
trigger a re-fetch of the resource to get the new state and available actions.

Appendix 1: Models Architecture

The idea is to enable model representations being equivalent (containing the same
data) in various layers to be switched back an forth between each layer
representation to be used in the most appropriate task for a given representation.

Reification: Statements could be about any type of URI (URIOcurrence(s)) in which
Statements subjects, predicates and objects occurrences plays determinate role
(Kind: Type / State) regarding this Statement occurrence context. Statements

themselves are URIOccurrence(s) with their URIOccurrence uri being their subject URI,
their statement being the statement itself (this) and their URIOccurrence Kind uri
being their subject uri, their Kind type its predicate Kind Type and its Kind state being
its object Kind State.

Those entities are to be able to be retrieved and their representations should enable
functional programming techniques to be applied to streams of their representations
to perform Aggregation, Alignment and Activation.

The nodes and arcs of the graph triples are URIs and should have a "retrievable"
internal representation with metadata that each service / layer populates through the
"helper" services: Registry, Naming (NLP) and Index service shared by each layer.
Describe core model classes serialization in JSON.

Materialize. Reification of RDFS / OWL. Ontology Schema Statements. Same as.
Schema (alignment) statements materialization.

Reference Model

(Aggregation / Grammar)

ID​
- primeID : long​
- urn : string​
- occurrences : IDOccurrence[]​
- embedding : double[]

IDOccurrence : ID​
- occurringId : ID​
- context : IDOccurrence​
- embedding : double[]

Statement : IDOcurrence (Property Graphs)​
- context : ID​
- subject : ID​
- predicate : ID​
- object : ID

Statements:​
Data: (IDOccurrence(ID), IDOccurrence(ID), IDOccurrence(ID))​
Schema: (ID(IDOccurrence), ID(IDOccurrence), ID(IDOccurrence)

Graph Model

(Alignment, Semantics, Sets / Kinds)

Context : IDOccurrence (Set)

Subject : IDOccurrence (Set)

Predicate : IDOccurrence (Set)

Object : IDOccurrence (Set)

Interface Kind<AttributeType, ValueType>​
- superKind : Kind​
- attributeValues : Tuple<AttributeType, ValueType>[]

Reification: Kind implementations extends / plays Subject, Predicate and Object roles
in statement.

SubjectKind : extends Subject, implements Kind<Predicate, Object> (Predicates
intersection Objects)​
- occurrences : Subject[]

PredicateKind : extends Predicate, implements Kind<Subject, Object> (Subjects
intersection Objects)​
- occurrences : Predicate[]

ObjectKind : extends Object, implements Kind<Predicate, Subject> (Predicates
intersection Subjects)​
- occurrences : Object[]

The underlying model Statements can be represented as sets being Subjects,
Predicates and Objects three sets where the intersection of Predicates and Objects
sets conforms the “Subject Kinds” set, the intersection of the Subjects and Objects
sets conforms the “Predicate Kinds” set, the intersection of the Subjects and
Predicates sets conforms the “Object Kinds” set and the intersection of the three sets
conforms the “Statements” set.

Sets based inference and functional algorithms should leverage this form of
representation of the model graph.

Statements:
Data: Context(Subject, Predicate, Object)
Schema: Context(SubjectKind, PredicateKind, ObjectKind)

Activation Model

(Activation, DOM / DCI / Actor, Role. Pragmatics)

DOM (Dynamic Object Model):

Instance : IDOccurrence​
- id : ID​
- label : string​
- class : Class​
- attributes : Map<string, Instance>

Class : Instance​
- id : ID​
- label : string​
- fields : Map<string, Class>

DCI (Data, Context, Interaction):

Context​
- roles : Role[]

Role : Class​
- previous : Map<Context, Dataflow>​
- current : Map<Context, Dataflow>​
- next : Map<Context, Dataflow>

Dataflow : Context​
- role : Role​
- rule : Rule (TODO)

Interaction​
- actors : Actor[]

Actor / Role Pattern:

Actor : Instance​
- previous : Map<Context, Transform>​
- current : Map<Context, Transform>​
- next : Map<Context, Transform>

Transform​
- actor : Actor​
- production : Production (TODO)

Statements:​
Data: (Interaction, Actor, Transform)​
Schema: (Context, Role, Dataflow)

Appendix A: Business Intelligence & Analytics Layer

The true value of unifying and aligning data from disparate systems is realized when it
can be leveraged for analytics and business intelligence. Each organization's
ApplicationService instance becomes a goldmine of clean, contextualized data ready
for analysis.

BI Architecture: The Dimensional Data Mart

While the property graph is excellent for operational queries and traversals, traditional
BI tools work best with star schemas and OLAP cubes. A BI layer can be implemented
on top of the ApplicationService as follows:

1.​ ETL Process: A periodic (e.g., nightly) batch process is run. This process
executes a series of Cypher queries against the Neo4j graph to extract and
flatten the aligned data.

2.​ Data Warehouse: The extracted data populates a classic dimensional data
warehouse (e.g., in PostgreSQL, BigQuery, or Snowflake).
○​ Fact Tables: These are created from Interaction or Measure nodes. A

SalesFact table would have columns for product_key, customer_key, time_key,
quantity, and total_value_usd.

○​ Dimension Tables: These are created from the Kind and canonical instance
nodes. The CustomerDimension table would contain all the aligned attributes
of customers (name, region, signup_date, etc.).

3.​ OLAP Cube: An OLAP cube (using technology like Apache Druid, Kylin, or
SSAS) is built on top of the data warehouse. This pre-aggregates the data across
all dimensions, allowing for near-instantaneous slicing and dicing.

Leveraging the Data: Reports and Indicators

With the OLAP cube in place, business users can connect standard BI tools (like
Tableau, Power BI, or Looker) to generate sophisticated reports and dashboards
without needing to understand the underlying complexity of the source systems.

●​ Example Reports:
○​ "Quarterly Sales Performance by Product Category and Customer

Region": This is a simple slice-and-dice operation on the cube. Because all
sales data and customer data were aligned into common dimensions (Time,
Currency, Geography), this report can be generated with a few clicks, even if
the data originally came from three different CRM and ERP systems.

○​ "Use Case Flow Analysis": By analyzing the materialized state transition
graphs (Placed -> Paid -> Shipped), analysts can create reports on process
bottlenecks, such as "Average Time between Payment and Shipment by

Warehouse."
●​ Example Indicators (KPIs):

○​ "Average Customer Lifetime Value (LTV)": This requires combining
purchasing data, marketing interaction data, and customer support data.
Since the ApplicationService has unified all this data around a single,
canonical Customer entity, calculating a true LTV becomes trivial.

○​ "Product Concept Affinity": By analyzing the FCA-derived concept lattices,
analysts can discover non-obvious relationships. An indicator could show the
"affinity score" between ProductCategory:OutdoorGear and
CustomerAttribute:OwnsDog, suggesting a new marketing campaign.

This BI layer turns the ApplicationService from a powerful operational integration tool
into a strategic asset for data-driven decision-making.

Appendix B: The Semantic Engine & Conversational State Transfer (COST)

This appendix provides a deep dive into the runtime core of the Activation Service: the
Semantic Engine. This engine is responsible for interpreting the declarative
Activation Model and executing stateful Interactions through the conversational,
message-based COST protocol.

1. The Semantic Engine Architecture

The Semantic Engine is not a monolithic block but a collection of capabilities within
the Activation Service that brings the DCI pattern to life. Its primary function is to
manage the lifecycle of an Interaction, interpret the Dataflow rules associated with
each Role, and dispatch Transform messages to the appropriate Actors.

2. Encoding Behavior: Declarative Dataflow and Transforms

To make the system truly dynamic and model-driven, the behavior of a use case is not
hardcoded. It's declaratively defined in the Dataflow associated with a Role in a
Context schema. A Dataflow is an ordered list of Transform definitions.

●​ The Transform Definition: A Transform is a declarative data structure that
specifies a single, atomic operation. It is the "verb" of the system.
○​ Implementation: This can be a JSON/YAML schema or a Java record.​

record TransformDef(​
 String name,​
 OperationType operation, // e.g., ASSIGN, TRANSFER, COMPUTE,
INVOKE_TOOL​
 Map<String, FieldDef> inputs, // Named inputs for the operation​
 Map<String, FieldDef> outputs // Named outputs produced​

) {}​
​
record FieldDef(String role, String field) {}​

●​ Example: ProductBuy Context Dataflow​
Let's model the user's example: Product.owner(aSeller -> aBuyer); aBuyer.owns =
aProduct; aBuyer.accountBalance -= anAmount; aSeller.accountBalance +=
anAmount;​
This single business step would be encoded in the Dataflow of the Purchase Role
as a sequence of four Transform definitions:
1.​ TransferProductOwnership Transform Definition:​

{​
 "name": "TransferProductOwnership",​
 "operation": "TRANSFER",​
 "inputs": { "item": { "role": "Product", "field": "self" } },​
 "outputs": { "previousOwner": { "role": "Seller" }, "newOwner": { "role":
"Buyer" } }​
}​

2.​ DebitBuyerAccount Transform Definition:​
{​
 "name": "DebitBuyerAccount",​
 "operation": "COMPUTE",​
 "inputs": {​
 "currentBalance": { "role": "Buyer", "field": "accountBalance" },​
 "debitAmount": { "role": "Amount", "field": "value" }​
 },​
 "outputs": { "newBalance": { "role": "Buyer", "field": "accountBalance" } }​
}​

3.​ (And similar definitions for CreditSellerAccount and AssignProductToBuyer)

When the Purchase Interaction reaches this step, the Semantic Engine reads these
definitions, populates them with the actual Actor IDs, and dispatches them as
executable Transform messages.

3. The COST/HAL Protocol with Placeholders

The power of COST lies in its ability to guide the client through a conversation by
providing not just data, but also the "how-to" for the next step. This is achieved by

embedding placeholders within the HAL _links.

●​ HAL Link with Placeholders: A link for a next action is no longer just a URL; it's a
template for the next Transform message.​
// Part of a HAL response for an Interaction​
"_links": {​
 "next": [​
 {​
 "href": "/interactions/123/transform",​
 "method": "POST",​
 "name": "SelectProductForPurchase",​
 "title": "Select a Product to Buy",​
 "schema": { // The placeholder definition​
 "type": "object",​
 "properties": {​
 "selectedProduct": {​
 "type": "string",​
 "description": "The DID of the product to purchase.",​
 "_links": {​
 "possibleValues": { // Link to fetch the options​
 "href": "/interactions/123/roles/Product/possibleActors"​
 }​
 }​
 }​
 },​
 "required": ["selectedProduct"]​
 }​
 }​
]​
}​

4. The Conversational Dataflow in Action

This enables a rich, back-and-forth conversational flow between the client (Producer)
and the server (Semantic Engine).

1.​ Server Initiates: The server starts a ProductBuy Interaction. It sends the initial
HAL state. The _links.next array contains the SelectProductForPurchase action
template shown above.

2.​ Client Discovers Options (Client-Side Population):

○​ The client UI sees the SelectProductForPurchase action and its schema.
○​ It sees that the selectedProduct placeholder has a possibleValues link.
○​ It performs a GET on /interactions/123/roles/Product/possibleActors.
○​ The server responds with a list of available products (potential Actors for the

Product Role). The UI renders this as a dropdown or a list.
3.​ Client Responds with Data:

○​ The user selects a product (e.g., did:ion:product_456).
○​ The client constructs the Transform message body according to the schema:

{ "transformName": "SelectProductForPurchase", "payload": {
"selectedProduct": "did:ion:product_456" } }.

○​ It POSTs this body to the href: /interactions/123/transform.
4.​ Server Infers and Prompts for Confirmation (Server-Side Population):

○​ The Semantic Engine receives the Transform and assigns the product to the
Product Role. The next step in the Dataflow is AssignShippingPartner.

○​ The engine's internal logic (potentially a Graph Neural Network trained on
past shipments, as referenced in the GNN papers) infers that "FedEx" is the
optimal shipping partner for this product and destination.

○​ The engine populates this value itself. It sends a new HAL state back to the
client. The new _links.next action is:​
{​
 "href": "/interactions/123/transform",​
 "method": "POST",​
 "name": "ConfirmShippingPartner",​
 "title": "Confirm Shipping Partner: FedEx",​
 "schema": {​
 "properties": {​
 "confirmedPartner": {​
 "type": "string",​
 "default": "did:ion:fedex", // The server's inferred choice​
 "readOnly": true // The client can't change it, only confirm​
 }​
 }​
 }​
}​

5.​ Client Confirms: The UI displays "Shipping with: FedEx" and a "Confirm" button.
Clicking it sends the ConfirmShippingPartner Transform message, and the
conversation continues.

This conversational, placeholder-driven approach makes the interaction incredibly
flexible. The client doesn't need to know the business logic for choosing a shipper; it
only needs to know how to render forms from schemas and follow links. The server's
logic can evolve independently without breaking the client, fulfilling the promise of a
truly decoupled, model-driven architecture.

Appendix C: End-to-End Integration Use Case: A Federated Supply Chain

This appendix depicts a complete, multi-organization use case, demonstrating how
three independent entities can form a seamless, automated, and intelligent supply
chain using the ApplicationService framework.

1. The Participants & Their Systems

●​ Retailer: Sport and Fitness Stores (SFS)
○​ Internal Systems: A legacy ERP for inventory management and a modern

CRM for sales data.
○​ AppService Instance: as-sfs.com

●​ Manufacturer: SportProducts Manufacturing Inc. (SPM)
○​ Internal Systems: A custom SCM (Supply Chain Management) system and an

ERP for production planning.
○​ AppService Instance: as-spm.com

●​ Provider: Sports Goods Raw Materials LLC (SGRM)
○​ Internal Systems: A simple database for tracking raw material stock and

orders.
○​ AppService Instance: as-sgrm.com

Each organization has its own ApplicationService instance, which has ingested,
aggregated, and aligned the data from its internal systems. The entities within these
systems (products, materials, orders) have been assigned globally unique W3C DIDs.

2. Use Case: Automated Inventory Replenishment

Scenario: SFS's inventory of the "Pro-Lite Running Shoe" drops below the reorder
threshold, triggering an automated chain of events that flows from the retailer to the
manufacturer to the raw materials provider.

Step 1: Low Inventory Trigger at the Retailer (SFS)

●​ Services Layout & Roles:
○​ SFS.Datasource: Continuously ingests inventory levels from SFS's ERP.
○​ SFS.Alignment: Aligns the raw stock number into a canonical Measure

(Dimension: "StockLevel", Unit: "Pairs"). It has also previously aligned the

"Pro-Lite Running Shoe" from the ERP with SPM's official product definition,
creating an owl:sameAs link between did:sfs:product_789 and
did:spm:product_ProLite.

○​ SFS.Activation: An internal Context named MonitorInventory is constantly
running.

●​ Messages & Dataflow:
1.​ SFS.Datasource produces a raw statement: ("store_boston", "stock_PLRS",

"49").
2.​ SFS.Aggregation/Alignment processes this into a Graph Model statement,

linking it to the canonical product DID and a Measure node.
3.​ The SFS.Activation engine's MonitorInventory Interaction evaluates a rule: IF

StockLevel.Measure.value < ReorderThreshold.Measure.value THEN START
ReplenishStock.Context. The condition is met.

4.​ A new ReplenishStock Interaction begins. It determines that the supplier for
did:spm:product_ProLite is SPM. It prepares to act as an MCP Client.

Step 2: Retailer Places Purchase Order with Manufacturer (SFS -> SPM)

●​ Services Layout & Roles:
○​ SFS.Activation (as MCP Client): Initiates contact with SPM.
○​ SPM.Activation (as MCP Server): Receives and processes the order

request.
●​ Messages & Protocol (MCP):

1.​ SFS.Activation resolves SPM's DID (did:spm:corp) to find its MCP service
endpoint (https://as-spm.com/mcp).

2.​ It authenticates using DID-Auth.
3.​ It sends an MCP request:​

{​
 "capability": "tool",​
 "name": "CreatePurchaseOrder",​
 "params": {​
 "productDid": "did:spm:product_ProLite",​
 "quantity": 500,​
 "deliverTo": "did:sfs:store_boston"​
 }​
}​

4.​ SPM.Activation receives this, starts a FulfillOrder Interaction, and begins a
COST/HAL conversation back with the SFS agent to confirm pricing and
delivery dates. Once confirmed, the Interaction is finalized and updates SPM's

internal ERP via its Datasource service.

Step 3: Manufacturer Checks Raw Materials (SPM)

●​ Services Layout & Roles:
○​ SPM.Activation: The FulfillOrder Interaction continues.
○​ SPM.Datasource: Provides access to SPM's SCM system data.

●​ Messages & Dataflow:
1.​ The FulfillOrder Interaction's Dataflow includes a Transform to check internal

stock for the required raw materials (did:sgrm:material_eva_foam,
did:sgrm:material_syn_mesh).

2.​ It queries its own Graph Model (which reflects the SCM data) and finds the
stock of "EVA Foam" is insufficient.

3.​ This triggers a new internal Interaction: ProcureMaterials. This Interaction
identifies the supplier for did:sgrm:material_eva_foam as SGRM. SPM's
AppService now prepares to act as an MCP Client.

Step 4: Manufacturer Orders Raw Materials from Provider (SPM -> SGRM)

●​ This step mirrors Step 2. SPM.Activation acts as an MCP client, sending a
CreatePurchaseOrder tool request to SGRM.Activation, which acts as the MCP
server. A new FulfillOrder Interaction is created on SGRM's side, and the raw
material order is processed.

3. Multidimensional Features & OLAP Encoding in Practice

Throughout this process, each transaction generates dimensional data. Let's model a
single final sale of one pair of shoes at the Boston SFS store.

●​ The Event: A pair of "Pro-Lite Running Shoes" is sold in Boston on July 26, 2025,
for $120.

●​ Alignment & Encoding: The SFS.Alignment service creates a series of nested
DimensionalContextStatements in its graph database.
1.​ Base Fact Statement (The "What"):

■​ s1 = (tx_999, sold_product, did:sfs:product_789)
■​ (tx_999, sold_for_price, measure_120_usd)

2.​ Time Dimension Slice (The "When"):
■​ s2 = (s1, has_dimension, dim:Time)
■​ (s2, has_value, time_2025_07_26)

3.​ Product Dimension Slice (The "Which"):
■​ s3 = (s2, has_dimension, dim:Product)
■​ (s3, has_value, did:sfs:product_789)

4.​ Region Dimension Slice (The "Where"):

■​ s4 = (s3, has_dimension, dim:Region)
■​ (s4, has_value, region_boston)

●​ Storage & Querying: This nested structure creates explicit paths in the property
graph: (s4)->(s3)->(s2)->(s1). An OLAP-style query like "Show me all sales for the
Pro-Lite shoe in Boston" becomes a graph traversal query that finds all paths
matching this pattern.

4. Leveraging Business Intelligence

●​ Internal BI:
○​ SFS: Can analyze its sales data, sliced by store, product, and time, to optimize

marketing and inventory. They can create a KPI for "Sell-Through Rate" for the
Pro-Lite shoes.

○​ SPM: Can analyze its production data. By correlating FulfillOrder Interaction
times with the ProcureMaterials Interaction times, they can create an indicator
for "Production Delay due to Material Shortage."

○​ SGRM: Can track demand for its raw materials by manufacturer and region.
●​ Federated BI (The Holy Grail):​

Because all entities are identified by DIDs and linked with owl:sameAs, a
revolutionary new form of BI is possible. With the appropriate permissions
(managed via DID-Auth), SPM can be allowed to run a federated query.
○​ The Query: "Show me the end-consumer sell-through rate at SFS stores for

products made with my materials, correlated with my raw material shipment
times."

○​ Execution: SPM's BI tool sends a query to its own ApplicationService. This
service, in turn, acts as an MCP client, sending authorized sub-queries to the
SFS and SGRM AppServices. The results are securely returned and
aggregated, providing a complete, end-to-end view of the supply chain's
performance that is impossible with siloed systems. This allows SPM to move
from just-in-case manufacturing to data-driven, predictive supply chain
optimization.

Appendix D: Advanced Inference & The Dimensional Model

This appendix provides a deep dive into the advanced reasoning capabilities of the
framework, covering pragmatic inference in the Activation Service, logical entailment
in the Alignment Service, and the architecture of the OLAP-like Dimensional Model.

1. Activation Inference: From What You Have to What You Can Do

The Activation Service performs pragmatic inference—reasoning about goals and
capabilities. It moves beyond simple event orchestration to proactively suggest and

facilitate actions. This is modeled on the "have/need" duality.

●​ The Duality Pattern:
○​ "Have -> Can" (Forward-Chaining): I have these ingredients, so I can

prepare these dishes. In a business context: We have a validated UI
component, a tested API endpoint, and available server capacity (Actors),
therefore we can launch the "User Profile V2" Product Feature (Context).

○​ "Want -> Need" (Backward-Chaining): I want to make a specific dish, so I
need to gather these ingredients. In a business context: We want to launch
the "Real-time Dashboard" Product Feature (Context), therefore we need to
acquire a "Streaming Data Source" Actor and a "WebSocket API" Actor.

●​ Implementation via Graph Queries:
○​ Forward-Chaining (Possibility Inference): This is a graph pattern-matching

query executed periodically or on events. The query searches for a subgraph
of available Actors whose ContentTypes and states match the Role
requirements for a known Context schema. When a match is found, a new
Interaction is suggested or instantiated.

○​ Backward-Chaining (Goal-Seeking Inference): When a user requests a
Context for which the required Actors are not all available, this becomes a
pathfinding query. The query looks for Dataflows that can create or transform
existing Actors into the needed ones. This can drive complex workflows, like
automatically provisioning infrastructure before deploying a feature.

2. Alignment Inference: Discovering Hidden Knowledge (Entailment)

The Alignment Service is responsible for logical inference, or entailment, where
new facts are derived from existing ones. It enriches the graph by materializing these
new relationships, making the model smarter and queries simpler.

●​ Recap of Core Techniques: The service uses FCA for type hierarchies and
owl:sameAs for entity linking.

●​ Advanced Entailment Patterns: The service implements rules (via SPARQL
CONSTRUCT or Cypher MERGE on patterns) to materialize new links based on
logical properties of predicates.
○​ Transitivity: (A)-[:LOCATED_IN]->(B) and (B)-[:LOCATED_IN]->(C) entails the

materialization of a new link: (A)-[:LOCATED_IN]->(C).
○​ Symmetry: (A)-[:SPOUSE_OF]->(B) entails (B)-[:SPOUSE_OF]->(A).
○​ InverseOf: (A)-[:EMPLOYS]->(B) entails (B)-[:EMPLOYED_BY]->(A).
○​ Attribute Closure (The "Language" Example): This is a custom,

domain-specific rule. The pattern
(:Developer)-[:WORKS_ON]->(:Project)-[:USES_LANGUAGE]->(:Language) is

detected. The engine then executes a MERGE to create a new, inferred
relationship: (:Developer)-[:KNOWS_LANGUAGE]->(:Language). This
materialized link represents new knowledge—the developer's skill—that was
not explicit in any source system.

These materialized entailments dramatically accelerate the Activation Service's
pragmatic inference and provide richer dimensions for the BI layer.

3. The Dimensional Model: OLAP on the Graph

To provide powerful, OLAP-style analytics directly on the live graph, the framework
introduces a formal Dimensional Model. This model is populated in real-time by the
Activation Service and queried via the Index Service.

●​ Dimensional Model Architecture:
○​ Core Entity (ContextMeasure): This is not just a statement but a node in the

property graph (e.g., (:ContextMeasure)). It represents a specific
measurement that occurred within the context of a specific Interaction.

○​ Schema (Dimensions & Units): Canonical Dimension and Unit nodes exist in
the graph (e.g., (:Dimension {name: 'Time'}), (:Unit {name: 'Day'})).

○​ Data (Nested Statements): The model uses nested contextual statements to
build dimensional slices, as described in the source document. This is
implemented in the graph with relationships:
■​ An Interaction node is linked to its base ContextMeasure nodes:

(:Interaction)-[:PRODUCED_MEASURE]->(:ContextMeasure).
■​ A ContextMeasure representing a slice is linked to the one it refines:

(cm_slice_product)-[:IS_SLICE_OF]->(cm_slice_time).
■​ Each ContextMeasure is linked to its Dimension and its Value (which can

be a literal or a link to a canonical entity node like a specific Product).
●​ Population & Synchronization:

○​ The Activation Service is responsible for populating this model.
○​ When an Interaction executes a Transform that involves a quantitative or

categorical fact (e.g., a sale is completed), the Dataflow includes a step to
create the corresponding ContextMeasure nodes and relationships.

○​ This ensures the analytical model is a transactional, real-time reflection of the
operational model's activities.

●​ Index Service API: Functional Dimensional Traversal
○​ The Index Service provides the query interface for the Dimensional Model. It

indexes all ContextMeasure nodes and their dimensional paths for fast
traversal.

○​ API Endpoint: POST /v1/dimensional/query

○​ Functional Request Body: The API takes a declarative, OLAP-style request.​
{​
 "measures": ["salesValueUSD", "unitsSold"],​
 "sliceBy": ["Time.Year", "Region.State", "Product.Brand"],​
 "filters": {​
 "Product.Category": ["Running Shoes", "Hiking Boots"]​
 }​
}​

○​ Implementation: The Index Service translates this request into a complex
Cypher query. The query starts at the base ContextMeasure nodes matching
the measures, then traverses the IS_SLICE_OF paths, filtering at each
dimensional level based on the filters and sliceBy clauses. The final results are
aggregated and returned, providing a powerful, functional, and real-time BI
capability directly on the operational graph.

	Implementation Roadmap: Application Service Framework
	1. Introduction
	Phase 1: Core Infrastructure & Data Ingestion (Months 1-3)
	1.1. Components & Implementation Details:

	Phase 2: Semantic Core & Knowledge Representation (Months 4-7)
	2.0. The Layered Model Architecture
	2.1. Deep Dive: The Reference Model and Prime Number Semantics
	2.1. Components & Implementation Details:

	Phase 3: Activation & Behavior-Driven Interactions
	3.1. The Activation Service: A JAF-Inspired Semantic Engine
	3.2. The Activation Model: DCI, DOM, and Stateful Dataflows

	Phase 3: Activation & Use Case Enablement (Months 8-10)
	3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM)
	3.2. Patterns in Practice: DDD, DCI, and the Actor-Role Model
	3.3. Deep Dive: Actor State and Dataflow via Transforms

	Phase 3.5: LLM Integration & Agentic Architecture (MCP, DIDs, COST)
	3.4. Deep Dive: The ApplicationService as a Model Context Protocol (MCP) Server
	3.5. Deep Dive: COST (COnversational State Transfer) & The HAL Protocol
	3.6. Deep Dive: W3C DIDs for Decentralized & Verifiable Identity
	3.7. The ApplicationService as an MCP Client

	Phase 3: Activation & Use Case Enablement (Months 8-10)
	3.1. Deep Dive: The Activation Model's Dynamic Object Model (DOM)
	3.2. Patterns in Practice: DDD, DCI, and the Actor-Role Model
	3.3. Deep Dive: Actor State and Dataflow via Transforms
	3.1. The Activation Service: The Semantic JAF Engine

	Phase 4: The Behavior-Driven API & UI
	4.1. The COST/HAL Protocol: An API of Verbs

	Phase 3: Activation & Use Case Enablement (Months 8-10)
	3.1. Components & Implementation Details:

	Phase 4: Agentic Architecture, API, and UI
	4.1. The Model Context Protocol (MCP) Server
	4.2. W3C DIDs for Decentralized & Verifiable Identity
	4.3. The COST/HAL Protocol with JAF/REST Semantics

	Phase 4: API & User Interface (Months 11-12)
	4.1. Components & Implementation Details:
	1.1. Components & Reactive Implementation Details:

	Phase 2: Semantic Core & Knowledge Representation (Months 4-7)
	2.1. Components & Reactive Implementation Details:

	Phase 3: Activation & Use Case Enablement (Months 8-10)
	3.1. Components & Reactive Implementation Details:

	Phase 4: API & User Interface (Months 11-12)
	4.1. Components & Reactive Implementation Details:
	1.1. Components & Reactive Implementation Details:

	Phase 2: Semantic Core & Knowledge Representation (Months 4-7)
	2.1. Deep Dive: The Reference Model and Prime Number Semantics
	2.1. Deep Dive: The Reference Model and Prime Number Semantics
	2.1. Deep Dive: Formal Concept Analysis (FCA) in the Aggregation Service
	2.2. Deep Dive: The Graph Model (CSPO) in the Alignment Service
	2.3. Deep Dive: Dimensional Features & Order Inference
	2.4. Deep Dive: Property Graphs as a Unifying Implementation
	2.4. Deep Dive: Dimensional Features & The Alignment Service
	2.2. Deep Dive: Formal Concept Analysis (FCA) with Prime IDs
	2.3. Deep Dive: The Graph Model & Set-Oriented Kinds
	2.2. Deep Dive: The Graph Model & Set-Oriented Kinds in the Alignment Service
	2.3. Other Components & Reactive Implementation Details:

	Phase 3 & 4: Activation, API, and UI
	Phase 3: Activation & Use Case Enablement (Months 8-10)
	3.1. Components & Reactive Implementation Details:
	3.1. Components & Reactive Implementation Details:

	Phase 4: API & User Interface (Months 11-12)
	4.1. Components & Reactive Implementation Details:
	4.1. Components & Reactive Implementation Details:

	Phase 4: API & User Interface
	Phase 4: API & User Interface
	Appendix 1: Models Architecture
	Reference Model
	Graph Model
	Data: Context(Subject, Predicate, Object)
	Schema: Context(SubjectKind, PredicateKind, ObjectKind)
	Activation Model
	(Activation, DOM / DCI / Actor, Role. Pragmatics)
	
	Statements:​Data: (Interaction, Actor, Transform)​Schema: (Context, Role, Dataflow)
	
	Appendix A: Business Intelligence & Analytics Layer
	BI Architecture: The Dimensional Data Mart
	Leveraging the Data: Reports and Indicators

	Appendix B: The Semantic Engine & Conversational State Transfer (COST)
	1. The Semantic Engine Architecture
	2. Encoding Behavior: Declarative Dataflow and Transforms
	3. The COST/HAL Protocol with Placeholders
	4. The Conversational Dataflow in Action

	Appendix C: End-to-End Integration Use Case: A Federated Supply Chain
	1. The Participants & Their Systems
	2. Use Case: Automated Inventory Replenishment
	3. Multidimensional Features & OLAP Encoding in Practice
	4. Leveraging Business Intelligence

	Appendix D: Advanced Inference & The Dimensional Model
	1. Activation Inference: From What You Have to What You Can Do
	2. Alignment Inference: Discovering Hidden Knowledge (Entailment)
	3. The Dimensional Model: OLAP on the Graph

