
Sets (Quads):

Sets (Resources, Subjects, Predicates, Objects, SubjectKinds, PredicateKinds, ObjectKinds,
Statements: Mappings / Transforms) abstraction for representing Augmented RDF Graphs.

Augmentations:

Inference mechanisms for obtaining metadata from input statements and augmenting, for
example, type information and models schema and transforms.

Data (Statement), Schema (Mapping), Behavior (Transform):

Aggregation

Activation

Alignment

Inputs / API:

I/O Normal Form: Statement
Service Facade. Functional Data Flow: Matching Mapping Transform: Statements. REST
HATEOAS URNs:

I/O Statement:
(Context / Class, Instance, Attribute, Value);

Data Flow: Service Facade API:
REST Data Flow: Services Facade URN request / response HATEOAS flow.
Transform::Mapping::Statement::Kind::Resource;
Resource::Kind::Statement::Mapping::Transform;

Functional Sets Relations. Mappings / Transforms.

Sets (Wrappers): Parsed input Statements Resources instances are wrapped into Resource
Monad Categories Statements:

Resource, CSPO Resources wrappers, Kinds Resources wrappers and Statement, Mapping,
Transform wrappers.

Sets Resources REST HATEOAS / Data Flow IO Model Statements:

(Transform, Mapping, Statement, Kind);

Functional Data Flow:

Transform::Mapping::Statement::Kind::Resource;
Resource::Kind::Statement::Mapping::Transform;

Wrappers Sets:
CSPO Statement Form: for Transform Augmentations.
Functional Template Form: for aggregation inference mechanisms.

Wrapper Statements:
CSPO Statements Form:

Resources: Universe Set.
(Context : Resource, Occurrence : Resource, Attribute : Resource, Value : Resource); Normal
Form.

Subjects:
(SubjectKind, Subject, Attribute : Predicate, Value : Object);

Predicates:
(PredicateKind, Attribute : Resource Subject, Predicate, Value : Object);

Objects: (ObjectKind, Attribute : Resource Predicate, Value : Resource Subject, Object);

SubjectKind (SK): Predicate / Object Intersection.
(Statement, SubjectKind, Attribute : Predicate, Value : Object);

PredicateKind (PK): Subject / Object intersection:
(Statement, Attribute : Subject, PredicateKind, Value : Object);

ObjectKind (OK): Predicate / Subject intersection. Occurring.
(Statement, Attribute : Predicate, Value : Subject, ObjectKind);

Statement / Mapping / Transform: Subject / Predicate / Object intersection:

Dual Occurrence of Transform (Mapping) / Occurring of Mapping (Transform) for Statements.
Templates: apply Transform Matching Mapping Statements.

Transforms:
(Context : Mapping, Occurrence : Resource, Attribute : Resource, Value : Resource);

Mappings:
(Context : Transform, Occurrence : Resource, Attribute : Resource, Value : Resource);

Statements:
(Context : Mapping, Occurrence : Resource, Attribute : Resource, Value : Resource);

Wrapper Statements:
Functional Template Form:

Resources: Universe Set.
(Context : Resource, Occurrence : Resource, Attribute : Resource, Value : Resource); Normal

Form.

Subjects:
(Subject, Occurrence : SubjectKind, Attribute : Resource P, Value : Resource O);

Predicates:
(Predicate, Occurrence: PredicateKind, Attribute : Resource S, Value : Resource O);

Objects: (Object, Occurrence : ObjectKind, Attribute : Resource P, Value : Resource S);

SubjectKind (SK): Predicate / Object Intersection. Occurrence:
(Context : SubjectKind, Occurrence : Statement, Attribute : Predicate, Value : Object);

PredicateKind (PK): Subject / Object intersection:
(Context : PredicateKind, Occurrence : Statement, Attribute : Subject, Value : Object);

ObjectKind (OK): Predicate / Subject intersection. Occurring.
(Context : ObjectKind, Occurrence : Statement, Attribute : Subject, Value : Predicate);

Statement / Mapping / Transform: Subject / Predicate / Object intersection:

Dual Occurrence of Transform (Mapping) / Occurring of Mapping (Transform) for Statements.
Templates: apply Transform Matching Mapping Statements.

Transforms:
(Context : Transform, Occurrence : Mapping, Attribute : Resource T, Value : Resource : U);

Mappings:
(Context : Mapping, Occurrence : Transform, Attribute : Resource T, Value : Resource U);

Statements :
(Context : Statement, Occurrence : Mapping, Attribute : Resource, Value : Resource);

Type Inference: Kinds (Classes):

Aggregate same Attributes occurrences for sets of Resources sharing same Attributes. Activate
Context Transforms Kinds. Activate Kinds Resources Statements.

Wrapped Types (Kinds) Inputs Inference / Matching. Wrappers contains Wrapped CSPO Role
Resources. Functional Flow into Occurrences, Attributes, Values.

Encodings. Representations: Instances / Literals Encoding. URNs. Resolution: sameAs
Mappings / Parsing. Occurrence / Occurring domainOf / rangeOf Type Inference.

Model Kinds: Model Reified.
Domains Kinds: From inputs.
Reified Model Resource Kinds.
Functional: Monads (wrappers types / wrapped types inference). Kinds Domain Flow

(Mappings):

DOM Resources: dynamic object model / kinds.

Sample Statements:
(Dimension, Measure, Unit, Value);
(Relationship, Relation, Role, Player);
(Time, 1h, mins, 60m);
(Working, 1h, USD, 40);
(Working, 160h, USD, ?);

Augmentations:

Alignment:

Data: Statement; Matches Kinds / SPO: Mapping : Statements matching context.

Schema: Mapping; Matches Kinds / SPO: Transform : Mappings matching context.

Behavior: Transform; Matches Kinds / SPO: Transforms : Mapping Statements matching
context.

Alignment API: Functional Functors / Transforms data flows.

Alignment:

Type Activation.

Aggregation:

Aggregation renders Resources into Functional Template Form (Statements / Mappings /
Transforms updated) for Attribute / Value aggregations inference.

● Aggregate Resources for Attribute / Values. Statement: SPO Resource

● Aggregate SPO Resources:
● Subjects: (Subject, Occurrence : SubjectKind, Attribute : Resource P, Value : Resource

O); Kinds

● Aggregate Kinds:
● (Context : SubjectKind, Occurrence : Statement, Attribute : Predicate, Value : Object);

Statements

● Aggregate Statements:
● (Context : Statement, Occurrence : Mapping, Attribute : Resource, Value : Resource);

Mappings

● Aggregate Mappings.

● (Context : Mapping: Occurrence : Transform, Attribute : Resource T, Value : Resource U);
Transform

● Aggregate Transforms:
● (Context : Transform, Occurrence : Mapping, Attribute : Resource T, Value : Resource :

U); Mapping

● Template Transforms (Mapping Roles): TO DO
● Aggregation: Statements for each Context Occurrence Attribute / Value. Mapping: for

each matching Attribute / Value apply Transform, render Statement apply Attribute / Value
Transform. Context: Transform / Class. Occurrence: Subject. Normal Form. Transform
wrapped: Context / Class, Occurrence wrapped: Subject.

● Augmentations: Activation (Schema), Alignment (Data), Aggregation (Behavior) Matching
(Mapping Function) results: Template Transforms (noop, merge, add); Transforms Flow
State: listening for Matching Inputs.

● Aggregation: Statements for each Context Occurrence Attribute / Value. Mapping: for
each matching Attribute / Value apply Transform, render Statement apply Attribute / Value
Transform. Context: Transform / Class. Occurrence: Subject. Normal Form. Transform
wrapped: Context / Class, Occurrence wrapped: Subject.

● Aggregation: Statements for each Context Occurrence Attribute / Value. Mapping: for
each matching Attribute / Value apply Transform, render Statement apply Attribute / Value
Transform. Context: Transform / Class. Occurrence: Subject. Normal Form. Transform
wrapped: Context / Class, Occurrence wrapped: Subject.

● Alignment: Aggregate Resources Context Occurrences, Attributes, Values for Resource,
Kinds, Statements, Mapings, Transforms Resources from Statement, Mapping,
Transforms occurrences / occurring. Positional Roles: Functional Resources Roles
Reification. Wrapper Types. Aggregation: Matching.

● Occurrence Object Member of Subject as Transform / Function Role.
● Occurring Subject Member of Object as Mapping / Function Role.
● Model Aggregation / Expansion (Augmentations match / apply) of Mappings / Transforms

Core Statements
● Subscriptions: domain / range.
● Aggregation: Transforms Reified in Layers Contexts. Pattern Matching Template

Layeresolved.ed
● (Wrapper, Wrapped, Mapping, Transform);
●
● Notes:
● URN : Resource (alignments). Primitives.
● Resource : Root Category. URN : Source / Surrogate Key / Crafted. Naming / Encodings

(below).
● Ontology alignments: Data / Schema / Behavior Augmentations. Model / Schema / Upper

/ Domains: purposes / gestures (MVC / DCI Mappings / Transforms) layers. Example:
● Occurring / Context (Statements / Kinds)
● Roles (Metaclass, Class, Occurrence, Context, Role)
● MVC / DCI Mappings / Transforms. Example: Forms, Purpose, Gestures, Actors, Roles.

Data / Schema / Behavior alignment.
● ESB: Endpoints, Features, Interfaces, Service Process Description / Discovery. Reactive

Events Subscriptions. HATEOAS Endpoints "autowiring".

● BPM: Process, Steps, Flows, etc.
● Augmented Actionable (Process Flows, Items Activation) CMS. Browser: HATEOAS

Protocol / APIs / Augmentations. Inferred / Reified / Resolvable Data Flows. Designer:
Model Pallete. Declarative core / domains types / instances browsing / discovery "wiring".

● Graph Reified Grammars (upper). Terminal / Non Terminal. Rules / Productions.
Mappings / Transform: browse grammar, rules, productions:

● (Rule, Context, lhs, rhs)
● Naming: Kinds / URNs Addressable Encodings. Parsing: URNs Encoded Functional

Distributed Resource Resolution. Data Flow Transform / Mappings: Embedded
Productions: Augmentations. NLP / NER. Ontology Matching: URN Class Transforms.

● Graph Embeddings: ML Backend Services (ML Predictions Augments Mappings /
Transforms). Encodings (Naming).

● Encoding: Deep ML Embeddings. Data: classification, Schema: clustering, Behavior:
regression.

● Naming: Auto Encoders. Semantic Hashing. Resources Mappings / Transforms Reified
Maps / Tables. Keys / Values Resource Hashing / Resolution Functions: Contextual to
Functional Environment State: Mappings Flows / Wrapped State.

● Naming: Augmentations. Contextual Hash Enabled: Functional Mapping Flows Map /
Table Encoded / Resolved. Functional Relations: Ontology Matching / Aggregation /
Inferences by Hash Encoded Metadata / Transforms Resolutions.

● Clients / Browsers: Peers. Protocol: Reactive Dialogs Prompts. Events. Distributed Data,
Schema, Behavior Core Model Statements Encoded I/O: Layers Sync / Augmentation of
Knowledge requested from each Peer(s) as Model inputs given resolution of Dialog
(Subscriptions) event sourcing state. MVC / DCI Distributed State Transforms / Mappings.
Augmented Peer(s) Models: updated View State (flows) / Mappings / Transforms.
Rendezvous Peer Role. Local Peer: APIs for local / remote views (MVC / DCI) views
(Web, REST) Rendering.

● (...)
●

