
Abstract Upper Ontology
The metamodels described are aligned into a common vocabularies ontology (RDFS/OWL, ISO
15926).

Aligned RDF/OWL model. Facades. ISO 15926. SoLiD Containers / Ports (Facades,
Templates).

The basic attempt is to rely on standard Big (Linked) Data datasources (RDF, OWL, SPARQL
and other formats/protocols endpoints), ‘RDFized’ datasources (relational or other
endpoints/protocols via 'Adapters’) then provide a set of features thanks to an 'internal’ scheme
of models and representations (not strictly RDF, described in the topics in this document) which
will provide, in an ESB ‘components’ fashion the building blocks for 'declaratively’ compose
'Ports’ (endpoints/protocols/formats) which may or may not produce strictly standards based
Semantic Web applications (other kinds of applications are allowed).

For this we use ‘Facades’ built upon ‘Templates’ (both described later) and one can, for
example, expose an SPARQL or RDF(S)/OWL endpoint (aligned to the classes and properties
of an ontology of choice) using a ‘Protocol’ implementation, expose an ontology through SOAP
or perform a object-semantic mapping in some dynamic language in the form object-relational
mapping performs for databases.

Features:
Type inference.
Attribute inference.
Link inference.
Merge (identity).
Sort (temporal / logical).
Alignement.
Dataflow via predicates.

Message flow (Template graphs)
Ports / Adapters are specific Container types.

Protocols <-> Container(Port/Adapter <-> Facades <-> Model layers).

Container layout: discover / wire bindings. Models, Grammars and Facades for a metamodel
'layer’. Templates encoded as Model’s data. Apache Service mix / Sun’s JXTA (DHTs)
deployment (FCA, Protocol learning).

Resources metamodel
Resource : Set (Predicate). Multiple URIs (identity), ID: URI in context? OWL Resource.

Predicate (Resources metamodel): Templates (expressions) Resource IDs selectors / patterns
(identity: inclusion, order: inclusion depth).

Resource ID: S P O : (S.ResID, P, O). P/O also have similar Resource IDs.

A triples (quads) input graph is processed and aggregated into metamodel levels layers.

All metamodel levels: Facts, Objects, Purposes (layers) statements and helper resources are
encoded into quads following the same pattern, from source SPOs to behavior (Purpose)
quads.

An upper layer takes its base layer statements as subjects of their own statements. Then it
takes base layer Kinds (types) as its predicates. Finally, base layer SPOs are layer’s objects.

Each layer statements, types and individuals (models) are represented by the following
metamodel classes. The rest of the schema is described by instances of the following classes.

Class Predicate.

- holds(resource : Resource)

Class Set.

- predicate : Predicate

Class Resource (extends Set).

- URI : String
- resourceId : Resource
- context : Resource
- subject : Resource
- predicate : Resource
- object : Resource
- parents : Map<Resource, Resource>
- roles : Map<Resource, Resource>
- mappings : Map<Resource, List<Resource>>
- previous(ctx : Resource, state : Resource) : List<Resource>
- next(ctx : Resource, state : Resource) : List<Resource>
- children(ctx : Resource) : List<Resource>
- add(res : Resource, role : Resource)
- list(role : Resource) : List<Resource>

- apply(template : Resource) : Resource
- owlRdfResource : Node

Resource dataflow: Reified Resource ID as CSPO, callbacks, events, messages, Templates.
Add resource (res : Resource, role : predicate/set). Children collection derived from parent.
Update.

add(res : Resource, role : Resource)
list(role : Resource)
apply(ctx : Resource, res : Resource)

Protocol: Template exchange, for required state, KB asks for necessary modifications until
everything is asserted. Protocol learning: classification / regression in the form of Template
exchange / population (FCA).

Statements, Kinds, CSPOs, Resources
Each metamodel level has its own meanings for their statement components. The most
important helper resource derived from statements are Kinds. Kinds are a form of type inference
based on a resource attributes and values. A given SubjectKind, for example, is a 'kind of’
Subject.

A Subject has, given this model, some parent statements for which its role is Subject (resource
model instance) and plays a SubjectKind.

A SubjectKind aggregates Subjects sharing the same set of Predicates in different statements
inferring their 'class’. It then can aggregate this Kind with statements with the same attributes
(Predicate) with those with the same values (Object) inferring their 'metaclass’.

The same accounts for PredicateKinds and ObjectKinds with their respective attributes and
values. TBD.

Resources metamodel levels
The different metamodel layers, aggregated as stated before, are the following:

The Facts layer attempts to arrange input statements and their components into sets: Facts
(actual statements), Subject, Predicate and Object sets and their respective Kinds. It also
manages statement contexts. TBD.

The Objects (semiotic) layers arranges previous (Facts) layer SPOs into 'Signs’, Kinds into
'Concepts’ and statements into 'Objects’. Its statements (Topics) are of the form:

(ctx : Topic) (object) (concept) (sign)

Its Kinds are: TBD.

The Behavior (purpose) layer arranges previous (Objects) layer OCSs into ‘Players’, OCS Kinds
into 'Roles’ and statements (Topics). Its statements (Purposes) are of the form:

(ctx : Purpose) (topic) (role) (player)

Its Kinds are: TBD.

Facades are resources that group related resources (Templates). They may be considered as
another model layer. For example all Facts for a given subject, all order Objects, all order
management purposes. Their statements are of the form:

(ctx) (Purpose) (Object) (Fact)

Resources model instances
For each model level a similar structure of sets of statement, kinds, and SPOs is represented by
actual instances of resources 'modelling’ each layer entity types. Each type represents a similar
'role’ in each layer. For example, Facts, Objects and Purposes are all kinds of statements as
objects, signs and players are all objects (role) in statements.

Contexts, Models: Facts, Objects, Purposes.
Statements: Fact, Topic, Purpose.
Subject, Object, Topic.
Predicate, Concept, Role
Object, Sign, Actor.

Same (aggregated) instances may be shared across metamodels. Each resource (set) definition
will match appropriate instances.

Resources functional mappings
Each resource has resolution of the entities corresponding itself in respect to other resources or
contexts:

(Triple, Kind) : SPOs
(Triple, SPO) : Kind
(Kind, SPO) : Triple
(S, O) : P
(P, O) : S
(S, P) : O
(SK, OK) : PK

(PK, OK) : SK
(SK, PK) : OK

ID Res: common superset, common rels / links.

Data: SPO / Resources (reifying types & behavior).

Types: OCS / Kinds.

Behavior: TSP / Statements (grammars).

Resources reference model
Reference model attempts to provide an uniform manner of accessing resources metamodel
and applying transformations (Templates).

This is mainly achieved by sorting hierarchicaly and horizontally a graph of resources in specific
contexts.

Methods of resource are: parent, children, previous and next. Example. TBD.

anEmp.next(Emp, Dev) : Leader.

aTask.parent(aProject) : aContract.

Kinds operations (reification, hierarchies)
Kinds (types) may be reifyied as their corresponding SPOs as means to establish type
hierarchies or as a metadata facility for augmenting their meaning.

Also, using reifyied Kinds there could be expressions matching resources with a given Kind,
common supertypes or common links and relations.

Resource IDs
Given a resource, this concept aims to populate an 'ID’ augmenting it with all resource’s
occurrences and the Kinds in that occurrences context.

Then, given a proper encoding, a resource 'ID’ may serve to match or find similar (or equivalent)
resources and query information between them. Also and expression can be built to retrieve a
desired pattern of resources.

Resource ID: TBD.

Resource ID (Subject): (S.resourceID, P, O) for all statements of S.

Primitive terms.
Opposites.
Negation.
Inverse.
Complements.

Term has term in role in context. Classes.

Terminal has terminal as non-terminal in production/rule.

non-terminal has non-terminal as terminal in production/statement.

Resource ID: Template. Terminals: SPOs, non-terminal: Kinds. Statements, ordered by
statement context:

(context, role) (rule, non-terminal) (statement, terminal)

Context / Role (classes) calculated through aggregated term identifiers.

Resource ID statements context: temporal metadata. Reify events (resources), temporal
relations (compare) other resources/events. Truth values.

Resource ID 'relationships' selectors (ordered) for: Peter, Joe: Neighbors, Friends, Partners. For
Peter, Developer: Peter's Position (reified, order comparable). For Trainee, Senior: Transitions.
Truth values (temporal).

Events, Flows, Rules
Event: SK. Prev. TVal. Passion. (flow, rule).
Flow: OK. Act. TVal. State. (state, rule).
Rule: PK. Next TVal. Action. (state, flow).

Identity / Order metadata: Predicates (inclusion, depth). Metadata: reifyied Context. Example:
Ctx. S: act, P: prev, O: next.

Definitions / Instances. TBD.

Grammars
Grammars are models built from actual models Kinds, using Kinds as SPO, respectively, in
statements ('rules’). For a grammar:

Kind: non terminal
SPOs: terminal
Statements (of kinds): production rules

Lambdas: Types (Kinds / OCSs), Data(SPOs), Behavior (Grammar / Statement, TSPs).

Data, information, knowledge. Information classifies data (data: price, information: price
variation) in some given axis / context. Knowledge aggregates information into behaviors (some
variation, tendency).

Monads: wrappers, lift operations / types into domain (int + int : int, int + string : string).

Reify Temporal, Reference, Mappings relations. Measurement. Units, Dimensions: birth(Y2000)
: 2000’s births.

Templates / Protocol
A Template is a set (graph resource) of statements with any layer SPOs, Kinds, Statements,
variables and wildcards. It also may contain reference model (hierarchical) or functional
(mappings) expressions. A Template may give form to a Facade and be the means of
interaction with resources apply(ing) them as transformations.

Also, identity resolution (align and merge) and ordering (temporal and arrangement) can be
expressed in term of Templates. Resource IDs and Template resources are the basis for
dataflow implementation

Once submitted to a resource (apply) a Template starts a dialog in a 'protocol’ with request /
response cycles in which each part asks / replies till no resolutions left.

Predefined Templates: Metamodel Predicates, Inference / Learning, Facade aggregation
Templates.

Alignment: Adapter / Port Templates.

Application Templates (Protocol declarative messages)

Dataflow via Predicates: Templates, Events, Flows, Rules. Callbacks.

Example: TBD. Messages / apply (Containers, successive contexts).

Facades
Facades are models narrowed to an specific context in an specific level. Facades for Facts
regards to one particular Subject (anOrder) Facades for Objects regards to a particular Topic
(orders) and Facades for Behavior regards to one particular Purpose (orderManagement).

Facades: models with TSP, OCS, SPO statements. Dataflow. Resource.apply(Resource).

Identity resolution / merge
Use grammar and mappings to create all possible statements between graphs to merge.
Calculate Resource IDs. Merge matching IDs resources. Resolve ambiguity using functional
mappings and reference model.

Identity resolution: all possible statements, all possible Resource IDs. Merge with actual
resources, refine possibilities with Template dialog (contexts, this, that, theirs 'pointing'
variables) mappings / reference model.

Contexts: reified contexts (identity, ordering). Truth values (statements, resources) in contexts.
Reifyied ordering (events, flows, rules types/instances) temporal/contextual 'holds' values
(octal). Merge Template: tautology. Dictionary: sameAs.org. Term in context (actor, role, topic).

lang(concept) : sign. object, topic (ctx).

Alignement: Ps (column) equivalent: shares Os (values). Os equivalent: shares Ss. Ss (PK
column) equivalent: shares Ps.

Attributes and links discovey
(dept) (leader) (peter)
(joe) (worksAt) (dept)
: (joe) (boss) (peter)
TBD.

Streams. Learning, analysis, mining, CEP, rules, flows, inference, augmentation. Templates with
reference model and functional mappings operations. Dataflow (eval Predicates).

Ordering and temporal alignment
A series of statements like this may be presented:

(someone) (wash) (car)
(someone) (takesOut) (car)

(someone) (takesIn) (car)

Infer correct ordering. Encode ordering kinds: (actual) (prev) (next). Operate over ordering:
encode position in three bits. TBD.

Order inference: opposites, complements (truth values, contexts). Order 'kinds': actual, prev,
next (Subject temp context SPOs). Events, Flows, Rules (verb action, passion, state). Bounds.

Dimensions, axes, units, measures.

Primitive terms.
Opposites.
Negation.
Inverse.
Complements.

SK / OK: Complements. Ordering. Statements reification into SPOs.

PK Inverse: swap S/O.

Opposites: P respect to PK, three possible values: original value, opposite, negation.
Expression. TBD.

take out/wash car complement of wash/take in car. take out/take in opposites. Opposites: order
SPO. Predicate: statement with P of both kinds. Determine S (first) by PK state/ordering
(Resource IDs). TBD.

Types (Kinds) 'natural’ ordering (Dimensions, Units). TBD.

Applications
Abstract representation metamodel (alignment into an interoperable upper ontology(ies)).

BI (Business Intelligence) and Big Linked Data. Learning: regression, classification. Dimensional
analysis, Units.

Sources (Adapters) and Endpoints (Ports) for various protocols. Dashboard, management UX
for deployment customization. Browser (engine). Drive / Docs 'gestures’ (Template driven).

Wrappers for existing applications services / endpoints (SOA, JMS, JDBC) augmenting /
enhancing interactions in contexts.

Enhanced applications. Abstract declaratively representations of DCI. Augmentation. Big Linked
Data. Hooks into wrappers.

Deployment features
Distributed declarative discovery and remote binding of container entities. Messaging based
container / models interaction (Templates, Protocol).

Containers layout: TBD.

Models layout: TBD.

Container (uniform modelling, may play different roles / bindings):
Models: SPO.
Grammars: OCS.
Facades: TSP.

Container, Models / Grammars, Facades: onMessage(msg : Template). Resolution: Message
route applies to Container, Model, Facade.

Message oriented (Templates):
Containers - Models / Grammars - Facades hierarchy.

Message dispatch (broadcast) to Containers, Models and Facades. Resolution. Each level
populates (response) it’s part of the Template with its corresponding part of knowledge. Partially
populated response (Template) traverses again the message hierarchy or gets re-posted along
containers (broadcast).

Alignment: Identity between Facades & Resources. TBD.

Adapters
Container with models translated from some datasource. Port Adapters. Events (messages)
updates / update from source models.

Ports
Container (Models, Grammars, Facades) exposed in layers transformed from Models into an
specific protocol representation (REST, SOAP, OData, RDF/OWL, SPARQL, Facades:
Microservices).

