
Web of Data: P2P Business domain translation of problem spaces.
Semantic Business Integration (WIP draft)

© 2017. Sebastian Samaruga (ssamarug@gmail.com)

Copyright (c) 2017 Sebastian Samaruga
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation License".

GNU Free Documentation License:
https://www.gnu.org/licenses/fdl-1.3.txt

1 - Scope
Enable seamless integration of different datasources and services from different deployments
and platforms to interoperate. A system A, for example, in the domain of CRM (Customer
Relationship Management) and, a system B, in the domain of HMS (Healthcare Management
System) would be able to be plugged into a ‘bus’. Then, actions (CRUD, service invocations) in
one system should have ‘meaning’ for the other (potentially many) systems.

2 - Introduction
The goal is to streamline and augment with analysis and knowledge discovery capabilities
enhanced declarative and reactive event driven process flows of applications between
frameworks, protocols and tools via Semantic Web backed integration and Big (linked) Data
applications enhancements. Perform EAI / Semantics driven Business Integration (BI).

Provide diverse information schema merge and syndicated data sources and services
interoperability (for example different domains or applications databases). Translate behavior in
one domain context into corresponding behavior(s) in other context or domains via aggregation
of domain data into knowledge facts.

Aggregate knowledge into components (metamodels) which can interact between each other
(databases, business domain descriptions, services, etc) into a dialog-enabling manner via
dataflow (activation) protocols which activates referrer / referring contexts with knowledge
enabled from participating models.

Keywords

mailto:ssamarug@gmail.com
https://www.gnu.org/licenses/fdl-1.3.txt

Semantic Web, RDF, OWL, Big Data, Big Linked Data, Dataflow, Reactive programming,
Functional Programming, Event Driven, Message Driven, ESB, EAI, Inference, Reasoning.

Description

Current landscape: Document Web vs. Data Web applications.

The current Web (and the applications built upon it) are inherently ‘document based’
applications in which state change occurs via the navigation of hyperlinks. Besides some state
transitions on the server side by means of ‘application’ servers, not much has changed since the
web was just an ‘human friendly’ frontend of diverse (linked) resources for representation.

Even ‘meta’ protocols implemented over HTTP / REST are layers of indirection over this same
paradigm. At the end we are all ending up spitting HTML in some form or another. And much of
this seems like a workaround over another while we still trying to get some juice from
‘documents’.

The Web of data is not going to change this. And it’s not going to be widely adopted because
the only thing it has in common with ‘traditional’ Web is the link(ed) part. No one will ever figure
out how to build Web pages with ‘Semantic’ Web. It’s like trying to build websites with CSV files.
That’s not the role in which SW will shine.

Semantic Web is a set of representation (serialization) formats and a bunch of (meta) protocols
which excels for the modeling and accessing of graphs. Graphs of… well, graphs of anything
(anything which may have an URI, at least). Let’s call a graph a set of nodes and a set of arcs
between nodes, these are Resources. A triple is a set of three Resources: a Subject Resource,
a Predicate Resource and an Object Resource (SPO: node, arc, node). A Triple may have
eventually a fourth Resource, a Context, then the Triple (Quad) has the form: CSPO.

Now imagine a CSV file (or a database engine) that given this input files could relate it with a lot
of other files, ‘calculates’ missing fields or figures out new ones. It may also figure out new
‘rows’. This is what Semantic Web has of ‘semantic’ and exactly what it has not of ‘Web’, in the
traditional sense.

So, SW is a data exchange mechanism with formats and protocols. For user agent consumption
it has to be rendered into some kind of document, like it is done for a (graph) database. But the
real power of using the SW approach is for machine consumption. We’ll be using it that way in
our example approach of EAI / Business Integration as a metamodel encoding facility which will
entail aggregation and reasoning of business domains facts and flows. We’ll be using
‘ontologies’. An ‘ontology’ is for SW format representations as a database schema is for queries
/ statements only that this schema is modelled as SW resources as well.

Declaratively stated ‘purposes’ (an ontology of task related flows, roles and goals) should
abstract producer / consumer peer interfaces for interactions in message exchanges. An ESB
implementation of metamodels representing various domains of knowledge (databases,
services, learning and inference engines) and message routing between them will exploit the
‘semantic’ capabilities while keeping ‘representation friendly’ consumer agent exchange
mechanisms.

Objectives

Inputs: Syndicated datasources, backends of diverse applications databases, services
interfaces (REST / SOAP / JMS, for example) should be aggregated and merged (matching
equivalent records, for example) via the application of ‘Semantic’ metamodels thus providing via
virtualization and syncing interoperability between those applications.

Features: Once consolidated metamodels of the domains involved into the business integration
process are available, services metamodels come into play providing alignment (ontology
matching, augmentation and sorting), transformations and endpoint features.

Connectors: The goal, once source data / services are consolidated and aligned is to provide
APIs for different languages / platforms which enable consumers of those data / services
retrieve rich ‘augmented’ and enhanced knowledge that was not present in the original
(integrated) backends.

Considerations:

Given applications (big or microservices) there should be a way, given its schemas, data and
behavior to ‘infer’ (align into a semantic upper ontology) what this applications do (semantically
speaking).

Given a business domain problem space (data, schema and behavior for an application, for
example) a ‘translation’ could be made between other domain(s) problem spaces which
encompasses a given set of data, schema and behavior instances (objectives) to be solved in
the other domains in respect of the problems in the first domain.

This shall be accomplished by means of an event-driven architecture in a semantics aware
metamodels layer which leverages diverse backend integration (sync) and schema merge /
interoperability. Also, a declarative layer is provided for aggregation and composition of related
event flows of various objectives to meet a given purpose.

An example: In the healthcare domain an event: flu diagnose growth above normal limits is to
be translated in the financial domain (maybe of a government or an institution) as an increase of
money amount dedicated to flu prevention or treatment. In the media or advertisement domain
the objectives of informing population about flu prevention and related campaigns may be

raised. And in the technology sector the tasks of analyzing and summarizing statistical data for
better campaigns must be done.

Purpose: Domain translation of problem spaces. Trays, flows. Messaging. Goal patterns.
Prompts for state completion. Purpose goals driven domain use cases (DCI) application
platform (services: data / schema for facts, information, behavior). Scoped contexts flows
hierarchies.

Proposal

The proposed application framework to be implemented as mentioned in this document is
thought to provide means for full stack deployments (from presentation through business logic
to persistence) for semantically business integrated and enhanced applications.

The core components are distributed and functional in nature: REST endpoints, transformations
layer, functional metamodels / node abstractions (profile driven discovery and service
subscriptions) over an ESB implementation.

An important goal will be to be able to work with any given datasources / schemas / ontologies
without the need of having a previous knowledge of them or their structures for being able to
work and interact with them via some of the following features:

Feature: Data backends / services virtualization (federation / syndication / synchronization).
Merge of source data and services.

Any datasources (backends / services) entities and schema regarded as being meaningful for a
business domain translation and integration use case, regardless of their source format or
protocol.

Business domain translation (dynamic templates). ESB customization features BI by means of
abstract declarative layers of sources, processing and formatting of knowledge.

Feature: Schema (ontology) merge / match / alignment. Attributes / links inference. Contextual
arrangement (sorting / comparisons). Metamodel services.

Diverse domain application data with diverse backend databases and services and diverse
sources of business data (linked data ontologies, customers, product and suppliers among
others) are to be aligned by merging matching entities and schema, once syndication and
synchronization are available.

Examples: different names for the same entity, entity class or entity attribute. Type inference.

Identity alignment: merge equivalent entities / instances.

Attributes / Links alignment: resolution of (missing / new) attributes or links. Relationship type
promotion.

Order (contextual sorting) alignment: given some context (temporal, causal, etc.) resolve order
relations (comparisons).

Goal: ‘enrich’ applications actual services with domains knowledge. Query this knowledge by
means of a dedicated endpoint for ad-hoc interaction contexts enhancements.

Goal: survey existing applications and components ‘semantic’ descriptors for integration in
context of an ESB deployment which will provide their knowledge and behavior via ‘facades’ of
those systems, which in turn will interact with the systems themselves.

Solution

MDM. Governance (client connectors). For schemas, data and behavior (plug in component /
services for developing custom ad-hoc task apps integrated. platforms app devel toolkits).

Leverage existing solutions

Current needs / problems:

Current enterprise / business applications implementation technologies range from a very wide
variety of vendor products or frameworks which handle different aspects of behavior and
functionality needed for implementing use cases.

The current approach seems to be a ‘divide and conquer’ one. There is much effort being done
in decomposing big applications into ‘microservices’ ones. But there remains being (small) black
boxes which do ‘something’ (small). The semantics and discovery interoperations are left to the
developer building apps that way.

The proposal here is to ‘syndicate’ (homologue) diverse systems backends and services for the
sake of ‘knowledge propagation’ between diverse domains of diverse systems so behavior in
one system is reflected in behavior in other domains.

A Metamodel abstraction takes care of semantically represent and unify, by means of an API
and interfaces, the different datasources, backends, services, features (alignment,
augmentation, reasoning, etc.) that may get integrated into an ESB deployment. Each
Metamodel is plugged into contexts with pipes of message streams with endpoints collaborating
for each Metamodel to perform its tasks plus aggregation and other Node(s) knowledge
propagation.

Messages abstract Metamodels state in ‘semantic’ form. A metamodel has an ontology of
resources which get ‘activated’ from messages and ‘activates’ (fires) new messages.

Metamodels provide (via Messages):

Datasource, backend, service bindings: IO. Virtualization, consolidation / syndication.
Synchronization and schema align and merge.

Core Functional Alignment:

Ontology (schema) merge. Type inference. Attributes and relationships alignment /
augmentation. Relationship promotions.

Order inference. Contextual order inference alignment / augmentation (temporal, causal,
containment, etc.).

Identity and instance equivalence inference. Determine whether two subjects (differents schema
/ identifiers) refer to the same entities.

Infer business domain process semantics and operations / behavior from schema and data (and
services). Aggregate descriptors (events, rules, flows).

Data, information and knowledge layers:

Data layer:
Example: (aProduct, price, 10);
Metamodel: TBD.

Information layer:
Example: (aProductPrice, percentVariation, +10);
Metamodel: TBD.

Knowledge (behavior) layer:
Example: (aProductPriceVariation, tendencyLastMonth, rise);
Metamodel: TBD.

Data: ([someNewsArticle] [subject] [climateChange]);

Information: ([someMedia] [names] [ecology]);

Knowledge: ([mention] [mentions] [mentionable]);

Metamodel layers:

Facts, Information, Knowledge.

TBD.

Enhanced deployments

Existing deployed solutions could leverage of the benefits the stated approach. Existing clients
and services could retrieve knowledge augmented data from a service in the context of their
interactions.

Applications ‘plugged’ in this semantic ‘bus’, their processes could trigger or be triggered from /
to another applications processes (maybe orchestrated by some domain translation declarative
template).

Dados los mecanismos actuales de manejo de información y de la gestión de los procesos
asociados a dicha informacion se pretende proveer a las herramientas actuales de medios
aplicativos de la llamada gestión de bases de conocimiento que brinden insights en tiempo real
tanto de análisis como de explotación de datos que ayuden a enriquecer con mejoras tanto la
utilización del conocimiento como la toma de decisiones.

Infer business domain processes semantics and operations / behavior from schema, data and
services (interfaces). An ontology (domain description schema) should be provided / interpreted
for new or existing applications and services. Aggregated metamodels (events, rules, flows)
based on existing or newly deployed behavior are driven from this schemas.

P2P: Purpose and capabilities discovery driven domain translation of business problem spaces.
Enterprise bus of pluggable ontology domains, topics and peers providing features as backends
(Big Data), alignment, rules, workflows, inference, learning and endpoints. Due the distributed
nature of SOA (ESB) a P2P Peer in some form of protocol could be implemented via messaging
endpoints. ‘Templates metadata’.

As mentioned before an existing deployed application could benefit from this framework
integrating its data and services when plugged into the bus. It then may be enhanced using
actual flows to consume augmented knowledge or being available to / for consumption by other
applications or services.

2 - Metamodel
For enabling different sources of data and services behaviors to be treated in an uniform
manner a fine grained metamodel of such artifacts should be done as for enable description and
discovery of ‘alignments’ which are the means for one element understanding each other
element behavior.

A Metamodel renders schema / instances of data, information and knowledge layers for a given

domain.

The ‘class’ hierarchy, modelled as RDF quads has the following pattern:

Classes and their instances are modelled as a quad hierarchy of OOP classes:

ClassName : (instanceURI, occurrenceURI, attributeURI, valueURI);

A quad context URI (instance / player) identifies an instance statement (in an ontology) of a
given OOP class. All ontology quads with the same context URI represent the same ‘instance’
which have different attributes with different values for a given occurrence.

An instance (player) may have many ‘occurrences’ (into different source statements / quads).
For example: a resource into an statement, a kind into a fact, etc.

For whatever occurrences a player instance may have there will be a corresponding set of
‘attributes’ and ‘values’ pairs determining, for example, if the player is having a subject role in an
statement then the attribute is the predicate and the value is the object of the given statement,
the aggregated pairs of those occurrences, in common with other instances, the ‘subject kind’ of
the resource, thus performing basic type inference.

Metamodel abstractions are wrapped into Functional Programming ‘monads’ (Resource) with
reactive dataflow event driven semantics. Dataflow graph encodes dependencies / dependents
for activation graphs tracking (input, state, output). Publisher, subscriber, subscriptions and
exchanged follow a DCI (TBD) design pattern.

Distance: Dimensional metadata of Functional result Resource. Comparable (order): X is Y of Z
in W (contexts / dimensional statements modelling).

Dimensional (semiotic) statements pattern: reify X is Y of Z in W statements. A statement will
hold references to this dimensional data in their occurrences.

X is Y of Z in W (contexts / dimensional statements modelling). Versions, contexts, scopes
(access control). Attribute / links rel / scope (referrer context).

Upper ontology. Reified Metamodel plus encoding (IPs). Classes / Function / Kinds as
Resources.

Grammars. Kinds Statement patterns.
Sustantivar (S); Verbalizar (P); Adjetivar (O); Pasión, Acción, Estado.

Upper ontology: exchange, merge, align. ISO 4D (object, time, place, attribute, value).
Exchange of reified and instance metamodels (schema + instances). Vocabulary: semiotics sing
+ concept + language.

Normalize URIs hierarchy:

Normalize Metamodel hierarchy into Resource IDs aggregable statements.
Reify Metamodel hierarchy into Resource IDs aggregated statements.

Inferir / aggregate Kinds / Instances of compound URIs.

Example:

Topic: (Statement, URI, Metamodel);

Topic: Amor (Persona / Metamodel, Amante / URI, Pareja / Statement);

Reified Metamodel statements now could be aggregated for Resource ID inference.

Given that:

● Parent: superclass (occurrences).

● Attribute: Parent superclass (occurrences) attributes.

● Value: Parent superclass occurrences attributes values.

And the ‘monadic’ type which homologue all the hierarchy is of the form:

● Resource<Observable<T extends URI>> : T occurrences

The resulting ‘class’ hierarchy, given the following ‘notation’:

● Context (class) : Superclass (S, P, O);

is as follows:

● URI : (URI, URI, URI)

● URI (T): REST Semantics. HATEOAS / HAL, JSON-LD API. Reactive uniform
representation API (HTTP verbs) through Resource monad.

● URI is the parent class of, for example, DBURI, RestURI, SPARQLURI, SoapURI, etc.
which are the types that, wrapped by a monadic Resource, provides the connection
mechanisms to the underlying protocols.

● Metamodel : URI (parent, attr, value);

A Metamodel is anything that could be modelled or represented by URI statements.

● Statement : Metamodel (parent, attr, value);

A Statement (reified) represents a Context Subject, Predicate, Object (CSPO) structure.

● Topic / Purpose : Statement (parent, attr, value);

A Topic is a set of Statements ‘talking’ about the same subject.

● Class : Topic (parent, attr, val);

A Class is the aggregated set of Topics ‘talking’ about the same kind of resources.

● Behavior : Class (parent, attr, val);

A Behavior represents an abstract ‘action’ which may be carried.

● Flow : Behavior (parent, attr, val);

A Flow is a concrete instance of a Behavior, for example a transition between Class attributes.

An aggregation algorithm is to be provided so it is possible to infer / aggregate topmost Flow(s)
from original URI / Statement(s). Also, as Resource is a reactive designed monadic wrapper this
algorithm performs in a publisher / subscriber manner and it is able to ‘react’ the underlying
model given activation or inputs matching consumers which will propagate changes to its
subscribers.

Metamodel specification:

(URI, URI, URI, URI);

(Statement : URI, URI, URI, URI);

Metamodel (domain / kinds): (Metamodel : Statement, Statement, URI, URI);

Topic (kind occurrences): (Topic : Metamodel, Metamodel, Statement, URI);

(Class : Topic, Topic, Metamodel, Statement);

(Behavior : Class, Class, Topic, Metamodel);

(Flow : Behavior, Behavior, Class, Topic);

Reified form (upper ontology domains): (Topic, Class, Behavior, Flow);

Metamodel: semiotic encoding, reification, layers (aggregate inputs): Reify statements of the
form (Statement, Classes / Metaclasses (kinds), SPOs). Aggregate into Metamodel(s).

3 - Metamodel Alignment
Alignment of ontologies is performed via different Representations (ontology, algorithmic,
aggregation alignment) plus grammars / object model / upper ontology (via Facades which
holds Representations) of a Metamodel.

3.1 - Ontology Alignment
Objective: Merge (align / blend) graphs without common keys algorithm. Identity resolution /
merge.

Datasource interoperability

Normalize input statements (URIs):

Translate any datasource to the following tabular roles:

Tabular roles: (Table, PK, Column, Value);

Statement roles: (Player, Occurrence, Attribute, Value);

Traversing quad elements:

Previous element in quad: metaclass.

Current element in quad: class.

Next element in quad: instance.

Aggregation: Same URIs parent / child of previous / next URIs.

Ontology alignment: (Metaclass, Class, Instance, Occurrence);

Instance (next): current role URI / previous role aggregated URIs. Final: datatype / primitive.
Example: age.

Kinds (previous): current role same URIs / next role aggregated URIs. Example: Person. Final:
Top (Object)

Alignment roles: (Kind / Instance, Kind / Instance, Kind / Instance, Datatype / Primitive).

From 2 datasources the final (object) datatype / primitive 'aligns' sources statements (1 and 2
different sources to be merged):

Alignment roles 1: (Carpenter / Guiseppe, Grandparent / Giuseppe, Parent / Peter, Person /
Joseph);

Alignment roles 2: (Carpenter2 / Giuseppe2, Grandparent2 / Guiuseppe2, Parent2 / Peter2,
Person2 / Joseph2);

Context Kind / Context Instance: should be in both sources as the value of the player role of the
statement. Metaclass of subject Kind.

Sliding (disambiguation):

Datatype / Primitives: regarding Context: Carpenter / Profession ‘slides’ to subject position, Sex
/ Male occupies context (sliding till reach primitives).

Chained Kind (SPOs): Identify lowermost (top superclasses, objects) of Kind hierarchies.
Aggregate Kind / sub Kind hierarchies. Sub Kinds: attributes are superset of those of super
Kind.

Assign instance, class, metaclass and player roles. Player role: Datatype / Primitive or Kind /
Instance.

If player role ends in Datatype / Primitive alignment could be performed.

If player role ends in Kind / Instance a new statement should be made ‘sliding’ player to class
and recalculating hierarchies.

Match Datatype / Instance are the same values: Training. Mappings: learn hierarchies for known
matching players. Semiotic alignment (sign is object for context in concept).

Semiotic Function: Languages: terms, semiotic mappings. Augmented dictionary (a is b in ctx
for d).

Match Datatype / Instance are the same values: same Kind / Instance hierarchies taxonomy
(graph shape). Abstract graph of models nodes (Kind roles: previous, current, next). Merge
aggregated graphs augmenting Kind with attributes (Instance lattice). Attribute similarity
function.

Alignments (merge):

● ID / Type merge: matching resources: same entities.
● Link / Attribute merge: matching resources sharing unknown attributes in context

augmentation.

● Order / Context merge: matching resources with 'wildcards' in contexts / CSPO axes
which respect Kind / Instance hierarchies. Wildcards will be provided with a comparator
function.

Reifying Metamodel: Normalize Metamodel hierarchy into Resource IDs (Metamodel)
aggregable statements.

Update:

Ontology align: aggregate inputs

(class / instance / metaclass, class / instance / metaclass, class / instance / metaclass, class /
instance / metaclass);

Context: objects hierarchy; Object: primitives; classes / metaclasses: kinds; Identity merge:
equivalent objects / primitives (kinds) shapes / paths. From equivalent primitives traversal
(slides) to equivalent objects.

Class: Kind relative to Resource attributes / values.

Metaclass: Kind relative to Resource (class) occurrences as value of attribute of other
Resource(s).

Ontology example:
(class / "Computer Supplies" / metaclass, class / "Notebooks" / metaclass, class / "Lenovo" /
metaclass, class / "Lenovo XYZ" / metaclass);

Ontology example (slide left):
(class / "Notebooks" / metaclass, class / "Lenovo" / metaclass, class / "Lenovo XYZ" /
metaclass, class / "Lenovo XYZ S/N 1234" / metaclass);

Ontology example (slide right):
(class / "Inventory" / metaclass, class / "Computer Supplies" / metaclass, class / "Notebooks" /
metaclass, class / "Lenovo" / metaclass);

3.2 - Algorithmic Alignment
Objective: Succinct representation of quads for graph encoding / exchange and validation of
ontology alignment.

Objective: infer links / rels missing or calculated through ontology.

Objective: encode URI statement quads into numeric quads (ResourceIDs) for, for example,
Machine Learning algorithms or virtual network addressing (IPs) for resources.

The idea is being able to use a fixed length quad of fixed length components being able to
'reuse' a same numeric identifier with another meaning in another quad / component position.

This could be used for virtual network addressing of statements for enabling protocols and
operations.

As quads components are themselves metamodels (quads) this process could recursively
encode a vast amount of information in a reduced fashion and enable, by the use of an
identification algorithm, the use of known Machine Learning tools for processing large amounts
of data.

Statement (C, S, P, O):
(meta:(super:(class:inst))

● inst: Primes sequence count (InstanceID)
● class: InstanceID product by corresponding InstanceID next primes (ClassID).
● super: ClassID product by corresponding InstanceID next primes (SuperID).
● meta: SuperID product by corresponding ClassID next primes (MetaID).
● Next prime is in relation with parent prime: parents aggregate child primes count.
● If element repeats, same prime is used as in first occurrence.

● Example
● (Carpenter, Grandfather, Father, Person);
● (FirstBorn, Brother, Son, Person);
● FirstBorn and Carpenter shares Person factor(s). Different identifiers in different contexts

will preserve this characteristic.

● Reduce quad products disambiguating common factors.
● Primes may be mapped to their position in primes list: (1, 2), (2, 3), (3, 5), (4, 7), (5, 11),

etc. Encode / decode from mappings for succinct representation.

Ontology Alignment from Algorithmic Alignment:

Reify Metamodel hierarchy into Resource IDs aggregated statements. Each Metamodel
subclass entity has its corresponding (normalized) aggregable Metamodel statement.

Inferir / aggregate Kinds / Instances of compound URIs.

Example:

Topic: (Statement, URI, Metamodel);

Topic: Amor (Persona / Metamodel, Amante / URI, Pareja / Statement);

Reified Metamodel hierarchy statements now could be aggregated for Resource ID inference.
Alignment with (upper) ontologies could be done using ID, Link, Context ordering functions.

3.3 - Aggregation Alignment
Objective: Context alignment (resolve x is y of z in w); IO / Activation / Reasoning.

Encoding (occurrences: context, player, attribute, value): S(P, O); P(S, O); O(S, P); C(S, P, O);
Shapes / grammars (kinds).

Resolution: (name, player); (context, attribute); (index, value); IO / Activation / Reasoning.

4 - Functional Metamodel
Monadic wrapping of hierarchy elements allow for the application of the above alignment
mentioned methods by means of functional composition.

By means of monadic application of different alignment functions, Ontology Alignment and
Algorithmic Alignment may be used, the first to perform the desired alignment operation on
Resource(s) and the later for the comprobation of correctness in the reasoning / inference
process.

Core alignment functions are: Identity alignment (to identify equivalent entities), Link and
attribute augmentation and contextual ordering / sort function. Also CSPO ‘getters’ functions
and RESTFul HATEOAS functions (by means of HAL or JSON-LD) should be provided.

Because Metamodel(s) aggregate knowledge in such a way, ‘model’ functions may exist which,
for example, reifies the application of a Behavior to an entity instance (a Flow).

Semiotic Function: Languages: terms, semiotic mappings. Augmented dictionary (a is b in ctx
for d). Grammars (ontology Kinds aggregation).

Verification of Ontology Alignments:

ID / Type align augmentation: ResourceID patterns. Applied Functions:
Resource.fmap(AlignFunction<Resource, Resource>).fmap(MergeFunction<Resource,
Resource>) : returns merged Resources.

Order in context align augmentation: ResourceIDs order in context / role (attribute, value axis).
Applied Functions: Resource.fmap(OrderFunction<Resource,
Resource>).fmap(ContextFunction<Resource, Resource>) : returns first.

Attribute / Link: align augmentation: common shared factors. Applied Functions:
Resource.fmap(TypeFunction<Resource, Resource>).fmap(AttributeFunction<Resource,
Resource>) : returns attributes.

Resource Functions: repository of functions (Dataflow specs, DSLs). Core Functions /
declarative functions namespace for retrieving from exchanges and templates.

5 - Solution Architecture
The proposed solution architecture is the implementation of custom extensions to an ESB
(Enterprise Service Bus) platform which allows for the deployment of custom URI(s) (DB,
service, connector, etc.) implementations metamodel components.

By means of declarative ‘templates’ the platform will be allowed to specify and compose diverse
source / service components (local or remote) enabling them to interact with each other.
Interactions will implement the ‘domain translation’ pattern thus enabling gestures / behaviors in
one domain to be translated into corresponding actions into other domains.

Declarative DCI Templates: Java / XML - XSL implementations (www.cactoos.org).

Layers (schema / instances):

Data
Information
Knowledge

Protocol:

Routes
Dialog
Activation Graphs (reactive)

Strategy patterns in functional composition.

Server less (distributed command message pattern).

Integration with documents / office platforms. Forms. Templates.

Monads: TBD.

Type constructor.
Unit.
Map / flatMap
Sequence (apply to list)
Chaining of mappings of functions.
Predicates.
Selectors (patterns).
Stream operations.

Functions:

Domain (Resource(s) URI hierarchy).
Namespaces (Java / Templates).

http://www.cactoos.org/

Resource(s) as functions: Inferred functions from domain. runtime merges function / Resource
streams.

Activation

Dataflow

Functional ‘DOM’ (Java / Templates)

CRUD: Immutable Resource(s). Changes creates new entities in new contexts (axes).

Implementation roadmap:

Core Bundles: Peer. Node. Metamodel (messaging, blueprint, containers).

Core Peer. Customized Camel routing messaging schemes / exchanges (APIs plugins /
templates).

Core Node. Blueprint declarative API. Endpoints (backend / connectors) plugins.

Core Metamodel. Align. Node's model container (Peer's / Node's Message dispatch: reactive
activation dataflows).

Java / ServiceMix. XML / XSLT. Javascript (Node.js Bundles) plugins / templates.

6 - Deployment
Core Bundles: Peer. Node. Metamodel (messaging, blueprint, containers).

Java / ServiceMix. XML / XSLT. Javascript (Node.js Bundles) plugins / Templates.

Deployment of the solution is aggregated into three kind of nesting entities scopes (ESB
bundles): Peers, Nodes and Metamodels which, through messaging, templates and endpoints
constitute the solution proposed runtime.

Templates are declarative entities which may be ‘plugged’ in any message exchange at any
entity level scope (Peer, Node, Metamodel). Implementation may vary from Java classes
implementing some interface, XSLT templates or ‘special’ Node.js bundles.

Templates are plugged declaratively through Node(s) declaration blueprint or may be registered
and invoked by an event filtering mechanism. Templates may use any of the Functional
namespace registered operations / alignments and also ‘selector’ predicates over Resource
monadic type.

Template(s) metadata is the notion of a domain business, its data, information, knowledge and
behavior schema / instances represented as a ‘purposes upper ontology’ Metamodel.

Scopes, domains, purpose, etc. Metadata share / merge (TBD).

Alignment, Functional domains and aggregation are performed through templates.

Peers:

Core Peer. Customized Camel routing messaging schemes / exchanges (APIs plugins /
templates).

P2P Bundles. Aggregates Node(s). Define custom ESB URI scheme for handling of routes and
exchanges of entity scopes layers.

Discovery. Advertisements. Dynamic bindings (containers) of other scopes entities. Peer scope
(dynamic) routes (topics / queues + templates). URI namespaces.

Peer Templates: ‘hooks’ according each exchange semantics. Inputs, functional transforms,
outputs (TBD).

Nodes:

Core Node. Blueprint declarative API. Endpoints (backend / connectors) plugins.

Endpoint / Peer binding scopes. A declarative blueprint in the ESB instantiates a Node which,
through an Endpoint, populates / sync and provides reactive activation of a Metamodel.

Namespaces: Node ‘scopes’ which determines metadata of, for example, domains of business
of Node’s Metamodels for enabling metadata interoperability (templates metadata).

Scopes (Message flow IO):

Peer namespaces.
Node Connector (Endpoint).
Metamodel Connection.

Connector (Domain. Template metadata).
Session (Connection).
Dialog (Metamodel).

Metamodels:

Core Metamodel. Align. Node's model container (Peer's / Node's Message dispatch: reactive
activation dataflows). Facade.

Metamodels are the internal representation of an instance of a Node regarding one Endpoint as
declared into a Peer.

Instantiation. Factory. Population. Aggregation. Activation / Sync / IO (TBD).

Messages / Event IO (metamodel layers, peer components, functions / alignment). (TBD).

Templates: activation routes. Template API spec over ESB routes (class / pattern). Transforms,
filter, etc. Functions available in contexts (Java, XSLT, Node.js).

Function encoded as Resource. Parser. Materialized results (patterns / grammars).

Function: resulting Resource semantics. Contained result Metamodel type. Concat function
expressions.

Endpoints (backend connectors / client connectors)

APIs: JDBC / JAF / JCA. DCI. REST HATEOAS (HAL / JSON-LD).

Kind of ‘drivers’ for Node Metamodel(s). IO Connectors (backend / client) interactions modelled
as service interactions (homologous). Rendering services (bundles) for UX.

Messaging: handle sync / knowledge propagation (TBD).

Connector examples:

JBoss Teiid endpoint.
Apache Metamodel endpoint.
RDF/ OWL / SPARQL endpoint.
REST endpoint (HATEOAS, protocols).
SOAP endpoint.
LDP / SoLiD endpoint.
Java EE (JCA / JAF).
JavaScript (browser).
JavaScript (Node JS).
PHP.
.Net (LINQ).
RDBMSs.
LDAP / JNDI / JCR.
Streams (Big Data).
BI: OLAP / Mining.
Indexing.

Machine learning
Rules engine.
QA.

Peer, Node, Metamodel Template API

Message exchanges between scoped entities (Peer, Node, Metamodel) handled by custom URI
namespaces (defined at Peer level) are ‘augmented’ by ‘wrapper’ Template(s) regarding the
inputs, transforms and outputs / routing results of the exchange.

Activation and Dialog Protocol: Messages ‘activates’ Metamodel Resource(s) in respect to
matching of input patterns, which produces into the Message exchange response the ‘activated’
Resource(s) to be provided by means of Template(s) manipulation.

A ‘Dialog Protocol’ is established in the connection / session / dialog scopes Message
exchanges which allows for wildcards, variables and placeholders to be progressively
‘populated’ in a request / response cycle. (TBD: Functional alignments, aggregation and
patterns).

Normalized message format which may encode / activate Resource / behavior in any route(s)
layer. Message determines routes itself. Referrer semantics (contexts). Aggregates activated
knowledge (routes / payloads) in its exchanges (browsing / discovery agent). Relative to its
‘referrer’ (Context: ‘Developer’, ‘Peter’, ‘Work’ -> ‘Peter Working as a Developer’).

Message: Metamodel Resource instance (Data routes facade, Information and knowledge
payload body / template). Activation / aggregation determines Message facade state for further
routing / payloads. Goal: fulfill specific template.

Template metadata: Upper Ontology. Domain Flows (scenario / context, roles, state,
transitions). Ontology aligned Messages. DCI: Data (Metamodel, Message), Context (sharing
scopes, subscriptions, roles inferred from data / referrer), Interactions (declaratively stated in
routes APIs). (TBD).

Dialog Protocol

Scopes. Wildcards. Variables. Placeholders. QA request / response.

Domain Metamodel. Connection driven. Shared (scope context attribute). Template metadata
driven exchanges.

Purpose: Notion of Template metadata upper ontology Metamodel. Shared (scope context
attribute).

Metamodel layers: Data (Resource, Flow), Information (Kind, Class), Knowledge (Statement,
Rule). FIXME. TBD.

Activation: Dataflow graph from Resource parents / occurrences. Dialog flow (apply / templates).

Activation: Dependencies. Selector. Events.

Activation: Dependants. Selector. Events.

Messages, Routes, Activation / Templates

Between Peer(s), Node(s), Metamodel(s). TBD.

Topic / Queue / PTP. P2P Transparent.

Distributed Dataflow Activation Graph:
Input, State, Output graph (dependent / dependants). Encoded in Metamodel DCI Subscriptions
(dependencies / dependants).

Location transparent (Docker, Kubernetes). Dynamic IP space mapped to CSPO Resource.
Algorithmic ResourceIDs as RESTFul addresses.

Events.
Command pattern.
Normalized Message Resource Monads.
Protocol ‘agents’: activation, routes, payload is Message encoded logic.
Sync: listeners (dependencies / dependants).

Change propagation: aggregate (ctx:msg) tuples for which if a tuple holds the other tuples must
hold too.

Purpose / Metadata (domains): Change propagation + Template metadata.

Semantic activation patterns:
Event source (criteria)
Event destination (profile)

Dialog: Placeholders, wildcards, variables: resolve from context (previous named field inputs,
referrer, history).

Metamodel: immutable Resource state. Activation and exchanges provenance / state
transitions. Message history.

Activation, Aggregation, Alignment, Layers and Functional domains: Dynamic upper
ontology

Metamodel Resource(s) get ‘activated’ (maybe in some ‘degree’ or ‘distance’ which is another
Resource) when matched with another Resource (pattern) obtaining this way some kind of
‘criteria’ or ‘comparison’ result.

A full match returns the same Resource when other degrees of matching depends on
comparisons between CSPO components of Resources in a given sort of criteria (order or
comparison of quad elements and then sorting, for example).

Dynamic upper ontology:

If models shared by Peers share some common underlying ‘upper’ ontology, this could be
aggregated, aligned and matched by only Metamodel data itself. That means no ‘hard-coded’
upper ontology but one that is dynamically shared and exported to other formats if necessary.

Upper ontology: Aggregate Metamodel(s) Metamodels. Peer Node level. Reify Metamodel
hierarchy into Metamodel statements for each class. 'Dynamic': alignment methods between
Peer(s). Align to OWL / RDFS models (SPARQL / endpoint).

Access control. Scopes. Domains. Roles (upper purpose ontology).

Upper purpose ontology: Modelled in Metamodel (reification). Constraints. Restrictions.
Temporal / dimensional parts. ISO like ‘templates’, OWL, RDFS Metamodel IO export / import
(endpoint).

Metamodel Object Model (endpoints / connectors APIs). Metamodel facade: Object graph / RDF
APIs / others. Upper ontology aligned. Grammars (dialog alignment). Facade messaging /
activation / utils.

Classes / RDF literals / Primitives (parse type kind assignment: Address, Age, etc.) Alignment
algorithms.

UX: Grammars. Possible domain / range / properties. Dialog alignment.

Functional / Reactive programming. Resolution interfaces: domain / range input / results (scope,
contexts, levels, content / activation). Index (identity, ‘content’), Naming (links / rels, IDs),
Registry (context positions).

Activation / REST / Pipelines (P2P, addressing, message self routing, Resolution). Templates.
Provenance. Addressable 'transmissions' (exchanges, listeners). Materialized transforms /
operations / routes (cache / patterns / shapes / grammars).

Shape expressions (upper ontology, grammars, facade, activation). LDP. SoLiD. REST
HATEOAS (HAL, JSON-LD) Resource(s) addressing / interface generation (Resolution
interfaces).

(TBD).

Update:

Appendix: APIs, deployment and Runtime configuration

A Runtime (Peer library) JAR is to be configured with Templates (domains / ‘code’) and
Resources (backends / ‘data’) streams which will be handled functionally to achieve the
aggregation, alignment and inference needed mechanisms for the ultimate purpose of
integration of disparate systems / services.

Connector (API) and deployment environment (application server, services, etc) wrapper
libraries are to be provided for a specific instantiation of a Runtime configuration into a
knowledge-aware environment of sources and endpoints for consumption and provenance of
semantic services.

Peer’s Template and Resource Metamodels (instantiated declaratively through configurations)
streams are ‘merged’ via model composition giving insights on new knowledge and populating
helper models (Semantic Object Mapping via upper ontologies, for example) to provide proper
aggregation, alignment and inference.

Runtime:

Hierarchies (configuration) provider (publisher / consumer Endpoints). Monadic wrapper
hierarchy API for functional composition, activation (REST) and transforms.

Project archetypes / issues. Connectors.

Packages / APIs / Interfaces:

Blueprints (abstract bundle interfaces)

Endpoints (bundles).

Endpoints (Peer, Node, Connector, Facade, etc) : Publishers, Subscribers. Activation, dataflow
(dispatch: registered protocols, contexts, scopes, templates, filter streams). Data (Message),
Context (Subscription), Interaction (Exchange, roles). Endpoint metadata (templates exchange).
Endpoint.dispatch(Message). Message interface (Metamodel).

Protocols (custom bundle interactions / dataflow interfaces API ‘signatures’: abstract from
messaging implementations) / Dialog (reactive resolution of patterns / primitives: variables,

wildcards, placeholders in streams).

Routes. Layers (contexts, domains, scopes).

Messages (activation / scopes / domains).

Templates (domains / dataflow subscriptions / contexts). Templates metamodels (domain /
purposes) dataflow translation of domain behaviors.

Peer. Nodes.Facade / Functional APIs (HATEOAS Activation / reactive Resource interfaces).

Connectors (RDF IO: Activation, Patterns, CRUD / Versioning). Connection, Session, Dialog.

Deployment (library): Messages, Endpoints, Protocols, Routes, Activation (reactive dialog),
Templates, etc. service providers / factory interfaces. Default / pluggable implementation of
service providers. DSL. JavaScript. Templates (domains).

Peer deployment: Container, configuration (Nodes), API / Protocol / Clients (Peers, Client
Nodes). OSGi Bundle (blueprints), WAR / EAR (CDI / JAF / JCA), Spring, Jigsaw runtime
(services), etc.

APIs:

Facades: Metamodels / Models.

Metamodel / Templates. Endpoints (publish / subscribe layers Messages). Transforms
(exchanges):

Metamodels hierarchies: Templates, Resources. Stream through Templates hierarchically, then
through for each Template hierarchy. Resources subscriptions via Templates.

Interface Endpoint (publisher / subscriber: protocols Peer, Node, Connector, Facade, etc.
methods / instance, context, scope).

Interface Message (RDF / aggregated Metamodel / scope, context). Template / Metamodel
hierarchy propagation (correlations).

Interface Exchange (Templates / protocol scope / context Metamodel transforms / routes,
publish).

Runtime: Endpoint publish / subscribes to Endpoint streams (Peers, Connectors, Nodes, etc.
Templates hierarchically), Messages, Exchanges sub-streams / protocols (DCI, Dialog protocol).
Configure Peers, Nodes, Connectors, Facades, etc. Streams activates when event occurs in
Endpoint / child (Peer / Node when Node Message publishes). Dataflow: Facade(s) subscribes
to related events (Metamodels) according Templates.

Models.

Aggregation, alignment and inference (exchanges).

Metamodel: Template / Resource hierarchies (message quads):

Statement: Data / Data (Metamodel occurrence):
(Statement, URI, URI, URI);

Metamodel: Interaction / Interaction (Topic occurrence):
(Metamodel, Statement, URI, URI);

Topic: Context / Instance (Class occurrence):
(Topic, Metamodel, Statement, URI);

Class: Connector / Actor (Behavior occurrence):
(Class, Topic, Metamodel, Statement);

Behavior: Node / Role (Flow occurrence):
(Behavior, Class, Topic, Metamodel);

Flow: Peer / Performance:
(Flow, Behavior, Class, Topic);

Messages:

Entire hierarchy encoded (Resources / Templates). Streams (from messages): Template /
Resource streams. Apply entire message from Template to Resource / from Resource to
Template (i.e.: Behavior application over a Metamodel results in an Statement stream).

Layer encoded aggregation of transform / merge changes ‘propagation’ (stream events).

Dataflow / Runtime transform hierarchies (configuration / streams):

Subscribe (recursively) to Template hierarchy Template streams from Runtime and to each
Template Resource sub streams (and recursively observe Resource Templates). Apply parent
Template message to observed Resource streams. Applied hierarchies result into new streams.

Runtime streams (messages: protocol / routes via Observables): Templates, Resources.
Lambdas:

a) Apply Template to Template Resources stream: Template stream.
b) Apply Resource to Resource Templates stream (populated by configuration and a):

Resource stream.

c) Apply (merge streams) a / b corresponding result Resources, Templates (apply a / b
again): Result Resource / Template streams (populate further Template / Resources
streams).

Streams: Observable / publisher with corresponding protocol / layer, instance, context / scope
qualifiers for Runtime contexts streams arrangements (i.e.: Template / Resource lambdas).

Template / Resource streams for each context.

Template / Resource streams for each aggregated parent.

Template / Resource streams for each occurrences of Resource / Template in each other
(Resources matching Templates, Templates applicable to Resources.

Dataflow / Runtime transforms (exchanges / apply merge):

Session / Dialog API. Facade / APIs (Class / Behavior / Flows).

Apply aggregation.

Apply alignment.

Populate models.

Lambdas example:

Template(cook);
Resource(Ingredients):
Template(serve);

Resource(ingredients);
Template(cook):
Resource(meal);

Metamodels: Models (grammars, object, others), Services (resolution), Algorithms (Alignment /
aggregation of hierarchies): Runtime configuration (Templates / Resources interfaces sources /
APIs: i.e.: ML) transform / apply at Message level (interactions) in dialog contexts.

Models:

Grammar models.

Alignment models.

Object models (type object upper ontology).

● Metamodel.
● Alignment models: Ontology, Algorithmic, Aggregation.
● Grammars (primitives / objects: ontology alignment).
● Services: Resolution. Index (identity, ‘content’), Naming (links / rels, IDs), Registry

(context positions).
● Object model (dynamic type object upper ontology / ISO / OWL).

● Peer interface (URI / Metamodel level).
● Connector interface (Statement level).
● Node interface (Topic level).
● Facade interfaces (APIs). Class, Behavior, Flow levels.
● Grammar models.
● Alignment models.
● Object model (ISO / Type object upper ontology).

