
On Sat, Nov 28, 2020 at 3:16 AM Michael Kay <mike@saxonica.com> wrote:

> Tuple types - or Record types as I'm now proposing to call them - possibly provide a way

forward on this. For example the math functions could be declared as an instance of a record type

>

> record (pi as function() as xs:double,

> sin as function(xs:double) as xs:double,

> ... etc)

Thank you Dr. Kay for your positive response.

> and if $math is statically known to conform to this type, then $math?sin is statically known

> to be a function with a particular signature. (But note, it's $math?sin, not $math?sin#1).

It is amusing how easy this is to do:

Let's have a map $Strings and one of its members is the map $replace:

let $replace := map {
 '_3' : replace#3,
 '_4' : replace#4
 }
return
 $replace?_3 ('abbbcdbbbba', 'b', 'B')

produces exactly the wanted result:

aBBBcdBBBBa

We certainly can add a little bit of language support, for example to allow the second

argument of ? to accept the # character. Then we could have even this:

let $replace := map {
 '#3' : replace#3,
 '#4' : replace#4
 }
return
 $replace?#3 ('abbbcdbbbba', 'b', 'B')

We can go even a little bit further and specify that the way to evaluate this

expression:

 $replace('abbbcdbbbba', 'b', 'B')

as:

"When a map contains just several overloads of a function (such as '#3', '#4') and is

called as a function without specifying arity, then the arity of the actual call is used to

determine the member of the map that will be the actual function to be invoked."

In the above case the arity used in the function invocation is 3, thus replace#3 will

be invoked and we get the same correct result:

 aBBBcdBBBBa

> it's a bit hard to see how to introduce it alongside existing mechanism without ending up with

> a rather clumsy mixture of different approaches coexisting

Grouping functions within maps is very flexible. A function can be referenced by a

map, and in the same time it can be referenced directly (globally) as in all versions of

XPath up to 3.1.

Thus there is no backwards compatibility problem.

Versions of XPath > 3.1 will provide the $fn:Functions map which represents a

hierarchy (actually a forest) that is a grouping of all functions provided in the

F & O standard. Starting with the next version of XPath, people will use this

"SysMap" as it is easy and intuitive to learn and navigate (a semantic hierarchy) and

minimizes the possibility of name and signature conflicts.

So there is not going to be a "clumsy mixture" because there is not going to be a

mixture at all -- code written in the older versions uses the global referencing, code

written with the new versions relies heavily on the convenience of the SysMap

functions grouping.

I would like to thank all the readers for their support and would appreciate your

further comments and suggestions.

Thanks,

Dimitre

