

The Security Division of EMC

Key Encapsulation: A New Scheme for Public-Key Encryption

XML Security Working Group F2F, May 2009

Summary

- Most specifications of public-key encryption follow the original "encrypt/decrypt" model from 25 years ago
- New model is emerging, based on work of Shoup and others: key encapsulation, with better flexibility and security proofs
- Recommend transition to new model:
 - Introduction of key encapsulation into XML Encryption v1.1.

Original Approach

- Bob has public key / private key pair
- Alice encrypts message *M* with Bob's public key to produce a ciphertext *C*:

$$C = \mathbf{E}(PubKey_{B}, M)$$

Bob decrypts C with his private key:

 $M = \mathbf{D}(PrivKey_{B}, C)$

Limitations

- Message length: Length of M may be limited
- Malleability: Encryption may not protect message integrity
- Mathematical properties: Encryption of related messages may be related
- Modeling: DH (ECDH) doesn't fit well

Traditional Remedies

- Typically, some message padding is applied to address these limitations, but current approaches for RSA are less than ideal:
 - PKCS #1 v1.5 padding is *ad hoc*, doesn't provide integrity
 - OAEP provides integrity and is provably secure, but bounds aren't tight (e.g. knowledge of plaintext in RSA-OAEP reveals input to RSAEP; this is not the case with RSA-KEM)
- Message length is still bounded, and DH needs its own method

New Remedy: Two Layers

- Public-key layer establishes a random symmetric key
- Symmetric-key layer protects data with the established symmetric key and symmetric algorithm
 - data can be of any length
- Layers are independent

Addressing the Limitations

- Modeling: DH, RSA, other PKC all fit
- Message length: Length of M not limited
- Malleability: Symmetric method can provide integrity protection
- Mathematical properties: Symmetric keys are unrelated; symmetric method avoids mathematical properties

Don't We Do This Already?

Many specifications (including S/MIME) have two layers:

- message encrypted with symmetric key
- symmetric key encrypted with RSA public key
- But the symmetric key is generated first *then* encrypted; more than needed, and results in a looser (or no) proof of security

Public-Key Layer: Key Encapsulation

Encryption: Alice generates a symmetric key W and a ciphertext C that "encapsulates" W:

 $(C, W) = \mathbf{E}(PubKey_B)$

• *Decryption:* Bob regenerates *W* from *C*:

 $W = \mathbf{D}(PrivKey_{B}, C)$

Two Layers with Key Encapsulation

Encapsulation Using RSA

Encrypt with public key (n, e):

- *r* ←_R [0, *n*-1]
- $C_0 \leftarrow r^e \mod n$
- *W* ← KDF(*r*)
- Decrypt with private key (n, d)
 - $r \leftarrow C_0^d \mod n$
 - $W \leftarrow KDF(r)$

Key Transport Using KEM

1. Generate a random integer z ($0 \le z \le n-1$)

```
z = \text{RandomInteger}(0, n-1)
```

2. Encrypt the random integer z using the recipient's public key (n,e)

 $c = z^e \mod n$

3. Derive a key-encrypting key *KEK* of length *kekLen* bytes from *z* using the underlying key derivation function

KEK = KDF (*z*, *kekLen*)

4. Wrap the keying data *K* with the key-encrypting key *KEK* using the underlying key-wrapping scheme to obtain wrapped keying data *WK*

WK = Wrap (KEK, K)

5. Concatenate the ciphertext C and the wrapped keying data WK to obtain the encrypted keying data EK

 $EK = C \parallel WK$

6. Output the encrypted keying data *EK*

Key Transport in Two Layers (similar for message encryption)

The Security Division of EMC

Key Encapsulation in Standards

Standard	Status
ANSI X9F1 (X9.63, X9.44 draft)	\checkmark
IEEE P1363 (P1363a draft, P1363b)	Proposed
ISO/IEC 18033-2 (draft)	\checkmark
PKCS #11	Being proposed
XML Encryption	Proposed here
S/MIME	In WG last-call

Conclusions & Proposal

- Key encapsulation is a convenient way of positioning public-key cryptography
- Specific suggestion for XMLSec: Include KEM as new key transport method in XMLEnc 2.0 (?)
 - RSA-KEM, ECDH-KEM
- Will entail: Defining schema for defining key encapsulation method (RSA-KEM, ECDH-KEM), key derivation function, key length and key wrapping scheme

Related Research & Information

- Zheng-Seberry, Bellare-Rogaway proposed RSA-based schemes with two layers (early 1990s)
- Shoup: KEM for ISO proposal (2001)
- Handschuh *et al.*: GEM (2002)
- http://www.rsa.com/rsalabs/node.asp?id=3D2147
- Jakob Jonsson's paper comparing security bounds of OAEP and KEM:
 - http://eprint.iacr.org/2002/034.pdf

Key Agreement in Two Layers (one key-pair case)

RSA The Security Division of EMC

Encapsulation Using DH

• Encrypt with public key (p, q, g, y):

- *r* ←_R [1, *q*-1]
- $C_0 \leftarrow g^r \mod p$
- $Z \leftarrow y^r \mod p$
- $W \leftarrow \mathsf{KDF}(C_0 \parallel Z)$
- Decrypt with private key (p, q, g, x)
 - $Z \leftarrow C_0^x \mod p$
 - $W \leftarrow \mathsf{KDF}(C_0 \parallel Z)$

