
 

XML Signature Best Practices
Editor's Draft 14 April 2008

$Revision: 1.1 $ $Date: 2008/08/22
18:17:26 $
This version: 

http://www.w3.org/TR/2008/WD‐xmldsig‐bestpractices‐
20080414/ 

Latest version: 
http://www.w3.org/TR/xmldsig‐bestpractices/ 

Editors: 
Frederick Hirsch, Nokia 
Pratik Datta, Oracle 

Copyright © 2008 W3C® (MIT, ERCIM, Keio), All Rights
Reserved. W3C liability, trademark and document use rules apply.

 

Abstract
This Note serves to record Best Practices for XML Signature
[XMLDSIG].

Status of this Document
This document is an editors' copy that has no official standing.

This section describes the status of this document at the time of its
publication. Other documents may supersede this document. A list

of current W3C publications and the latest revision of this
technical report can be found in the W3C technical reports index
at http://www.w3.org/TR/.

Table of Contents
1 Overview 2 Best Practices 2.1 For Implementors: Reduce the
opportunities for denial of service attacks 2.1.1 Example:
XSLT transform that causes denial of service 2.1.2 Example:
XPath Filtering transform that causes denial of service 2.1.3
Example: Retrieval method that causes an infinite loop 2.1.4
Example: Problematic external references 2.1.5 Example:
Denial of service caused by too many transforms 2.2 For
Applications: Check what is signed 2.2.1 Base Approval
example 2.2.2 Modified Approval Example: XPath transform
that causes nothing to be selected for signing 2.2.3 Modified
Approval Example: XSLT transform that causes nothing to be
selected for signing 2.2.4 Modified Approval Example:
Wrapping attack 2.3 For Implementors: provide a mechanism to
determine what was signed 2.3.1 Return pre digested
data 2.3.2 Return pre c14n data 2.4 For Applications:
prevent replay attacks 2.4.1 Sign what matters 2.4.2
Make Effective use of signing time and Nonces to protect against
Replay Attacks 2.4.3 Use Timestamps tokens issued by
Timestamp authorities for long lived signatures 2.5 Signing
XML without namespace information ("legacy XML") 3
Acknowledgments 4 References 5 XML Signature Best Practices
Change Log

 

1 Overview
This document outlines best practices for the use of XML
Signature as noted by the W3C XML Security Specifications

Maintenance WG, the XML Security WG, and members of the
W3C community that participated in the Workshop on Next Steps
for XML Security [XMLSecNextSteps]. Most of these best
practices are related to improving security and mitigating attacks,
yet others are for best practices in the practical use of XML
Signature, such as signing XML that doesn't use namespaces, for
example.

The XML Signature specification [XMLDSIG] offers powerful
and flexible mechanisms to support a variety of use cases. This
flexibility has the downside of increasing the number of possible
attacks. One countermeasure to the increased number of threats is
to follow best practices, including a simplification of use of XML
Signature where possible.

2 Best Practices

2.1 For Implementors: Reduce the opportunities for
denial of service attacks

XML signature implementations are often used in application
server systems, where multiple incoming messages are being
processed simultaneously. In this situation incoming messages
should be assumed to be possibly hostile, and it is not acceptable
for a single poison message to bring down an entire set of web
applications and services.

An implementation that literally follows the XML signature spec
and performs the reference validation before the signature
validation is extremely susceptible to denial of service attacks. As
will be seen below, certain kinds of transforms require an
enormous amount of processing time, certain retrieval method
constructs lead to infinite loops and certain external URI
references can lead to security violations. An implementation

Frederick Hirsch ! 8/22/08 2:37 PM
Deleted: This Note outlines best practices
noted by the XML Security Specifications
Maintenance WG as well as items brought to
the attention of the community in a Workshop
on Next Steps for XML Security
[XMLSecNextSteps]. While most of these best
practices are related to mitigating attacks,
some are for other issues - e.g. signing xml that
doesn't use namespaces.

should first "authenticate" the signature, before running any of
these dangerous operations. This will allow trust in the signing
party to be assessed prior to to performing potentially dangerous
operations and possibly reducing the risks in processing the
signature.

Best Practice 1: Mitigate denial of service attacks by executing
potentially dangerous operations only after authenticating the
signature.

XML Signature operations should follow this order of operations:

1. Step 1 fetch the verification key and establish trust in that
key

2. Step 2 validate SignedInfo with that key

3. Step 3 validate the references

In step 1 and step 2 the message should be assumed to be untrusted, 
so no dangerous operations should be carried out. But by step 3, the 
entire Signed info has been authenticated, and so all the URIs and 
transforms in the SignedInfo can be attributed to a responsible party. 
However an implementation may still  choose to still disallow these 
operations even in step 3, if the party is not trusted to perform them. 
Best Practice 2: Take care when processing RetrievalMethod.

In step 1, if the verification key is not known beforehand and needs
to be fetched from KeyInfo, the implementation should be very
careful. The KeyInfo can have a RetrievalMethod, and this could
have bad transforms, insecure external references and infinite
loops (See examples below). RetrievalMethods do have some
legitimate advantages though, for example when there are multiple
signatures in the same document, these signatures can use a
RetrievalMethod to avoid duplicate KeyInfo certificate entries. An
implementation that must handle potentially hostile messages

Frederick Hirsch ! 8/22/08 2:24 PM

Frederick Hirsch ! 8/22/08 2:24 PM

Frederick Hirsch ! 8/22/08 2:25 PM

Frederick Hirsch ! 8/22/08 2:25 PM

Frederick Hirsch ! 8/22/08 2:39 PM

Frederick Hirsch ! 8/22/08 2:26 PM

Frederick Hirsch ! 8/22/08 2:27 PM

Frederick Hirsch ! 8/22/08 2:27 PM

Frederick Hirsch ! 8/22/08 2:27 PM

Frederick Hirsch ! 8/22/08 2:27 PM

Deleted: at

Deleted: ,

Deleted: this

Deleted: substantially reduce the attack
surface, as it is lot less likely that an
authenticated party will send a malicious
message

Deleted: [bhill: I don’t feel this is an
appropriate assumption for a security
specification. I would rephrase: “as trust in
the responsible party can be assessed prior to
performing potentially dangerous operations
and a malicious message can be attributed to
the responsible party.”]

Deleted: trusted 

Deleted: can 

Deleted: So the

Deleted: A

Deleted: which

should choose to allow only very constrained RetrievalMethods -
e.g. those that do not have any transforms, and only one level of
indirection using a local URI.

Another potential security issue in step 1, is untrusted public keys
in KeyInfo. Just because an XML Signature validates
mathematically with a public key in the KeyInfo, does not mean
that the signature should be trusted. The implementation should at
first validate the public key. If the KeyInfo is a X509Certificate
element, the certificate needs to be validated. This involves
verifying information in the certificate (for example, the expiration
date, the purpose of the certificate, checking that it is not revoked,
etc), and potentially building and validating a chain of certificates
to a trusted certificate authority. See RFC 3280 for more
information. If the KeyInfo is For an RSA or DSA KeyValue, then
there is no way to validate the key, so these should not be normally
trusted; unless the keys has already been exchanged out of band,
and the implementation only uses the KeyInfo to compare against
the OOB exchanged key. Key Validation is typically more than an
implementation issue, and often involves application specific
information.

Best Practice 3: Establish trust in the verification/validation key.

2.1.1 Example: XSLT transform that causes denial of service

The following XSLT transform contains 4 levels of nested loops,
and for each loop it iterates over all the nodes of the document. So
if the original document has 100 elements, this would take 100^4 =
100 million operations. A malicious message could include this
transform and cause an application server to spend hours
processing it. But as mentioned before the scope of this denial of
service attack is greatly reduced if the implementation follows the
above best practices, because it is unlikely that an authenticated
user would include this kind of transform. As discussed previously,

Frederick Hirsch ! 8/22/08 2:27 PM

Frederick Hirsch ! 8/22/08 2:27 PM

Deleted: may

Deleted:

XSLT transforms should only be processed for References, not for
KeyInfo RetrievalMethods, and only after first authenticating the
entire signature and establishing an appropriate degree of trust in
the originator of the message.

Example: dos_xslt.xml 
<Transform Algorithm="http://www.w3.org/TR/1999/REC-
xslt-19991116">
 <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:for-each select="//. | //@*">
 <xsl:for-each select="//. | //@*">
 <xsl:for-each select="//. | //@*">
 <foo/>
 <xsl:for-each>
 <xsl:for-each>
 <xsl:for-each>
 </xsl:stylesheet>
<Transform>

As discussed further, below, support for XSLT transforms may also
expose the signature processor or consumer to further risks in
regard to external references or modified approvals. To totally
eliminate these kinds of attack an implementation can choose to
not support XSLT at all or provide a mechanism to allow the
application to optionally disable support for it.

Best Practice 4: Consider avoiding XSLT Transforms

2.1.2 Example: XPath Filtering transform that causes denial of
service

The following XPath Transform has an expression that simply
counts all the nodes in the document, but it is embedded in special
document that has a 100 namespaces, ns0 to ns99, and a 100 <e2>
elements. The XPath model expects namespace nodes for each in-
scope namespace to be attached to each element, and since in this

Frederick Hirsch ! 8/22/08 2:49 PM

Frederick Hirsch ! 8/22/08 3:03 PM

Deleted: this

Deleted: . B

special document all the 100 namespaces are in scope for each of
the 100 elements, the document ends up having 100x100 = 10,000
NamespaceNodes. Now in an XPath Filtering transform, the XPath
expression is evaluated for every node in the document. So it takes
10,000 x 10,000 = 100 million operations to evaluate this
document. Again the scope of this attack can be reduced by
following the above best practices

Example: dos_xpath.xml 
 <dsig:Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
 <dsig:XPath>count(//. | //@* |
//namespace::*)</dsig:XPath>
 </dsig:Transform>

To totally eliminate this kind of attack an implementation can
choose to not support XPath Filter transform at all or provide a
mechanism to allow the application to optionally disable support
for it. Another option is to support a limited set of XPath
expressions - which only use the ancestor or self axes and do not
compute string-value of elements. Yet another option is to use the
XPath Filter 2.0 transform instead, because in this transform, the
XPath expressions are only evaluated once, not for every node of
the transform.

Best Practice 5: Try to avoid or limit XPath transforms

2.1.3 Example: Retrieval method that causes an infinite loop

The KeyInfo of a signature can have a RetrievalMethod, which can
be used to reference a key somewhere else in the document.
However there is nothing that prevents the RetrievalMethod from
pointing back to itself directly or indirectly, forming a cyclic chain
of references. RetrievalMethods have other problems too - they can
include the above XPath or XSLT transform, and they can also

have insecure external references, so RetrievalMethod should be
avoided or constrained.

Example: dos_retrieval_loop1.xml 
<RetrievalMethod xml:id="r1" URI="#r1"/>

Example: dos_retrieval_loop2.xml 
<RetrievalMethod Id="r1" URI="#r2"/>
<RetrievalMethod Id="r2" URI="#r1"/>

Best Practice 5: Try to avoid or limit RetrievalMethod support
with KeyInfo
2.1.4 Example: Problematic external references

An XML Signature can use URIs to reference keys or to reference
data to be signed. Same document references are fine, but external
references to the file system or to other web sites can cause
exceptions or cross site attacks. For example a message could have
URI reference to "file://etc/passwd" in its KeyInfo. Obviously
there is no key present in file://etc/passwd , but if the xmlsec
implementation blindly tries to resolve this URI, it will end up
reading the /etc/passwd file. If this implementation is running in a
sandbox, where access to sensitive files is prohibited, it may be
terminated by the container for trying to access this file.

URI references based on HTTP can cause a different kind of
damage since these URIs can have query parameters that can cause
some data to be submitted/modified in another web site. Suppose
there is a company internal HR website that is not accessible from
outside the company. If there is a web service exposed to the
outside world that accepts signed requests it may be possible to
inappropriately access the HR site. A malicious message from the
outside world can send a signature, with a reference URI like this
http://hrwebsite.example.com/addHoliday?date=May30.. If the
XML Security implementation blindly tries to dereference this URI
when verifying the signature, it may unintentionally have the side

Frederick Hirsch ! 8/22/08 2:40 PM

Frederick Hirsch ! 8/22/08 2:40 PM

Frederick Hirsch ! 8/22/08 2:40 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:41 PM

Frederick Hirsch ! 8/22/08 2:42 PM

Frederick Hirsch ! 8/22/08 2:42 PM

Frederick Hirsch ! 8/22/08 2:42 PM

Frederick Hirsch ! 8/22/08 2:42 PM

Formatted: Default Paragraph Font
Frederick Hirsch ! 8/22/08 2:43 PM

Formatted: Default Paragraph Font
Frederick Hirsch ! 8/22/08 2:43 PM

Frederick Hirsch ! 8/22/08 2:43 PM

Frederick Hirsch ! 8/22/08 2:43 PM

Frederick Hirsch ! 8/22/08 2:43 PM

Frederick Hirsch ! 8/22/08 2:43 PM

Deleted: The

Deleted: message

Deleted: s

Deleted: http based

Deleted: , because

Deleted: which

Deleted: some

Deleted: n

Deleted: hr

Deleted: which

Deleted: But

Deleted: this

Deleted: which

Deleted: ,

Deleted: xmlsec

Deleted: will

Deleted: try

Deleted: and

effect of adding an extra holiday.

 Implementations should take caution in retrieving references with
arbitrary URI schemes which may trigger unintended side-effects
and/or when retrieving references over the network. Care should
be taken to limit the size and timeout values for content retrieved
over the network in order to avoid denial of service conditions.

Implementations should follow the recommendations in section 2.3
to provide cached references to the content as verified, as remote
references may change between the time they are retrieved for
verification and subsequent retrieval for use by the application.
Retrieval of remote references may also leak information about the
verifiers of a message, as with a “web bug”.

 Implementations that support XSLT transforms may further wish
to constrain outbound network connectivity from the XSLT
processor in order to avoid information disclosure risks as XSLT
instructions may be able to dynamically retrieve content from local
files and network resources and disclose this to other networks.

Some kinds of external references are perfectly acceptable, e.g.
Web Service uses a "cid:" URL for referencing data inside
attachments, this can be considered to be a same document
reference. Another legitimate example would be to allow
references to content in the same ZIP or other virtual file system
package as a signature, but not to content outside of the package.

The scope of this attack is much reduced by following the above
best practices, because with that only URIs inside a validated
SignedInfo section will be accessed. But to totally eliminate this
kind of attack, an implementation can choose not to support
external references at all.

Best Practice 6: Control External References

Frederick Hirsch ! 8/22/08 2:44 PM
Deleted: [bhill: I am not sure if Cross-Site
Request Forgery should strictly be in-scope for
discussion of XML Signature best practices.
External references can cause problems such as
denial of service conditions if allowed to
retrieve arbitrarily large amounts of data or
from a slow-responding source. They can
cause information disclosures in concert with
other transforms - many XSLT
implementations would allow valid XML data
imported via the file:// method as discussed
above to be leaked to an external URL.
Finally, they can lead to time-of-check, time-
of-use flaws in applications that do not use
cached reference retrieval (as in 2.3) or rely on
long-lived signatures (issues addressed by
XAdES)]

2.1.5 Example: Denial of service caused by too many
transforms

XML Signature spec does not limit the number of transforms, and
a malicious message could come in with 10,000 C14N transforms.
C14N transforms involve lot of processing, and 10,000 transforms
could starve all other messages.

Again the scope of this attack is also reduced by following the
above best practices, as now an unauthenticated user would need to
at first obtain a valid signing key and sign this SignedInfo section
with 10,000 c14n transform.

This signature has a 1000 c14n and a 1000 XPath transforms,
which makes it slow. This document has a 100 namespaces ns0 to
ns99 and a 100 <e2> elements, like in the XPath denial of service
example. Since XPath expands all the namespaces for each
element, it means that there are 100x100 = 10,000
NamespaceNodes All of these are processed for every c14n and
xpath transform, so total operations is 2000 x 10,000 = 20,000,000
operations. Note some c14n implementations do not expand all the
Namespace nodes but do shortcuts for performance, to thwart that
this example has an xpath before every c14n.

Example: dos_toomanytranforms.xml 
 <Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
 <XPath>1<:XPath>
 </Transform>
 <Transform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315">

 <Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
 <XPath>1<:XPath>

 </Transform>
 <Transform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315">

 ... repeated 1000 times

To totally eliminate this kind of attack, an implementation can
choose to have an upper limit of the number of transforms in each
Reference

Best Practice 7: Limit Number of Transforms Allowed.

2.2 For Applications: Check what is signed

XML Signature offers many complex features, which can make it
very difficult to keep track of what was really signed. For an
application, it is completely meaningless to invoke a xmlsec library
call to verify a signature, without knowing what the signature is
really signing. The examples below illustrate how an errant XSLT
or XPath transform can change what was supposed to have been
signed. So the application should inspect the signature and check
all the references and the transforms, before accepting it. This is
done much easier if the application sets up strict rules on what
kinds of URI references and transforms are acceptable. Here are
some sample rules.

• For simple disjoint signatures: Reference URI must use
local ID reference, and only one transform - C14n

• For simple enveloped signatures: References URI must use
local ID reference, and two transforms - Enveloped
Signature and C14n, in that order

• For signatures on base64 encoded binary content:
Reference URI must local ID references, and only one

transform - Base64 decode.

There rules need to be modified slightly for WSSecurity, which
adds some extra transforms - an STRTransform could be used in
place of an C14N transform, and for SWA Attachment,
Attachment Content/Complete transform could be used in place of
base64

Sometimes ID references may not be acceptable, because the
element to be signed may have a very closed schema, and adding
an ID attributes would make it invalid. In that case the element
should be identified with an XPath filter transform. Other choices
are to use an XPath Filter 2 transform, or XPath in XPointer URI,
but support for these are optional. However XPath expressions can
be very complicated, so using an XPath makes it very hard for the
application to know exactly what was signed, but again the
application could put in a strict rule about the kind of XPath
expressions that are allowed, for example:

• For XPath expressions The expression must be of the farm
: ancestor-or-self:elementName. This expressions includes
all elements whose name is elementName. Choosing a
specific element by name and position requires a very
complex XPath, and that would be too hard for the
application to verify

Best Practice 8: Check the reference URIs and transforms when
verifying the signature

2.2.1 Base Approval example

Consider an application which is processing approvals, and expects
a message of the following format where the where the Approval is
supposed to be signed

Frederick Hirsch ! 8/22/08 2:29 PM
Deleted: xp

Example: Expected message for approval verification 

<Doc>
 <Approval xml:id="ap" >...</Approval>
 <Signature>
 ...
 <Reference URI="ap"/>
 ...
 </Signature>
</Doc>

It is not sufficient for the application to check if there is a URI in
the reference and that reference points to the Approval. Because
there may be some transforms in that reference which modify what
is really signed

2.2.2 Modified Approval Example: XPath transform that
causes nothing to be selected for signing

In this case there is XPath transform, which evaluates to zero or
false for every node, so it ends up selecting nothing. So even
though the signature seems to sign the Approval, it actually
doesn't. The application should reject this document.

Example: Insecure Approval verification message 

<Doc>
 <Approval xml:id="ap">...</Approval>
 <Signature>
 ...
 <Reference URI="ap">
 <Transforms>
 <Transform
Algorithm="...XPath...">
 <XPath>0</XPath>
 </Transform>
 </Transforms> ...
 </Reference>
 </Signature>
</Doc>

2.2.3 Modified Approval Example: XSLT transform that
causes nothing to be selected for signing

Similar to the previous example, this one uses an XSLT transform
which takes the incoming document, ignores it, and emits a
"<foo/>" . So the actual Approval isn't signed. Obviously this
message needs to be rejected.

Example: Insecure Approval verification message 

<Doc>
 <Approval xml:id="ap">...</Approval>
 <Signature>
 ...
 <Reference URI="ap">
 <Transforms>
 <Transform Algorithm="...xslt...">
 <xsl:stylesheet>
 <xsl:template match="/">
 <foo/>
 </xsl:template>
 </xsl:stylesheet>
 </Transform>
 </Transforms> ...
 </Reference>
 </Signature>
</Doc>

2.2.4 Modified Approval Example: Wrapping attack

This one is a different kind of problem - a wrapping attack. There
are no transforms here, but notice that Reference URI is not "ap"
but "ap2". And "ap2" points to another <Approval> element that is
squirreled away in an Object element. An Object element allows
any content. The application will be fooled into thinking that the
approval element is properly signed, it just checks the name of
what the element that the Reference points to. It should check both
the name and the position of the element.

Frederick Hirsch ! 8/22/08 2:50 PM
Deleted: which

Best Practice 9: When checking a reference URI, don't just check
the name of the element

Example: Insecure Approval verification message 

<Doc>
 <Approval xml:id="ap">...</Approval>
 <Signature>
 ...
 <Reference URI="ap2"/>
 ...
 <Object>
 <Approval xml:id="ap2">...</Approval>
 </Object>
 </Signature>
</Doc>

2.3 For Implementors: provide a mechanism to
determine what was signed

As shown above, it is very hard for the application to know what
was signed, especially if the signature uses complex XPath
expressions to identify elements. An implementation should
provide a mechanism to inspect a signature and return was signed.
This is especially important when implementations allow
references to content retrieved over the network so that an
application does not have to dereference such references again. A
second dereference raises the risk that what is obtained is not the
same – avoiding this guarantees receiving the same information
originally used to validate the signature. This section discusses
two approaches for this.

2.3.1 Return pre digested data

While doing reference validation, the implementation needs to run
through the transforms for each reference, the output of which is a
byte array, and then digest this byte array. The implementation

Frederick Hirsch ! 8/22/08 2:29 PM

Frederick Hirsch ! 8/22/08 2:30 PM

Frederick Hirsch ! 8/22/08 2:30 PM

Frederick Hirsch ! 8/22/08 2:30 PM

Frederick Hirsch ! 8/22/08 2:31 PM

Frederick Hirsch ! 8/22/08 2:31 PM

Frederick Hirsch ! 8/22/08 2:50 PM

Frederick Hirsch ! 8/22/08 2:32 PM

Frederick Hirsch ! 8/22/08 2:32 PM

Deleted: if

Deleted: which

Deleted: would

Deleted: otherwise

Deleted: again, with no

Deleted: as to

Deleted: s

Deleted: it

Deleted: s

should provide a way to cache this byte array and return it to the
application. This would let the application know exactly what was
considered for signing. This is the only recommended approach
for processors and applications that allow remote DTDs, as entity
expansion during C14N may introduce another opportunity for a
malicious party to supply different content between signature
validation and an application’s subsequent re-processing of the
message.

2.3.2 Return pre c14n data

While the above mechanism lets the application know exactly what
was signed, it cannot be used by application to programmatically
compare with what was expected to be signed. For programmatic
comparison the application needs another byte array, and it is hard
for the application to generate a byte array that will match byte for
byte the expected byte array.

A better but more complicated approach is to return the pre-c14n
data as a nodeset. For this the implementation should run through
all the transforms except the last c14n transform - the output of this
should be nodeset. If there are multiple references in the signature,
the implementation should compute a union of these nodesets and
return them. The application can compare this nodeset with the
expected nodeset. The expected nodeset should be a subset of the
signed nodeset

DOM implementations usually provide a function to compare if
two nodes are the same - in some DOM implementations just
comparing pointers or references is sufficient to know if they are
the same, DOM3 specifies a "isSameNode()" function for node
comparison.

This approach only works for XML data, not for binary data. Also
the transform list should follow these rules.

Frederick Hirsch ! 8/22/08 2:32 PM

Frederick Hirsch ! 8/22/08 2:32 PM

Frederick Hirsch ! 8/22/08 2:32 PM

Frederick Hirsch ! 8/22/08 2:32 PM

Deleted: which

Deleted: which

Deleted: with

Deleted: expected

• The C14n transform should be last transform in the list.
Note if there no C14N transform, an inclusive C14n is
implicitly added

• There should be no transform which causes data to be
converted to binary and then back to a nodeset. The reason
is that this would cause the nodeset to be from a completely
different document which cannot be compared with the
exptected nodeset.

2.4 For Applications: prevent replay attacks

2.4.1 Sign what matters

By electing to only sign portions of a document this opens the
potential for substitution attacks.

Best Practice 10: Unless impractical, sign all parts of the
document.

To give an example, consider the case where someone signed the
action part of the request, but didn't include the user name part. In
this case an attacker can easily take the signed request as is, and
just change the user name and resubmit it. These Replay attacks
are much easier when you are signing a small part of the
document. To prevent replay attacks, it is recommended to include
user names, keys, timestamps, etc into the signature.

A second example is a "wrapping attack" [McIntoshAustel] where
additional XML content is added to change what is signed. An
example is where only the amounts in a PurchaseOrder are signed
rather than the entire purchase order.

2.4.2 Make Effective use of signing time and Nonces to protect
against Replay Attacks

Frederick Hirsch ! 8/22/08 2:51 PM

Frederick Hirsch ! 8/22/08 2:51 PM

Frederick Hirsch ! 8/22/08 2:51 PM

Deleted: Because

Deleted: that

Deleted: , and they cannot

Best Practice 11: Long lived signatures should include a
xsd:dateTime field to indicate the time of signing just as a
handwritten signature does.

Note that in the absence of a trusted time source, such a signing
time should be viewed as indicating a minimum, but not a
maximum age. This is because we assume that a time in the future
would be noticed during processing. So if the time does not
indicate when the signature was computed it at least indicates
earliest time it might have been made available for processing.

It is considered desirable for ephemeral signature to be relatively
recently signed and not to be replayed. The signing time is useful
for either or both of these. The use for freshness is obvious.
Signing time is not ideal for preventing replay, since depending on
the granularity, duplicates are possible.

A better scheme is to use a nonce and a signing time. The nonce is
checked to see if it duplicates a previously presented value. The
signing time allows receivers to limit how long nonces are retained
(or how many are retained).

Best Practice 12: Use a nonce in combination with signing time

In many cases replay detection is provided as a part of application
logic, often and a by product of normal processing. For example, if
purchase orders are required to have a unique serial number,
duplicates may be automatically discarded. In these cases, it is not
strictly necessary for the security mechanisms to provide replay
detection. However, since application logic may be unknown or
change over time, providing replay detection is the safest policy.

Best Practice 13: Do not rely on application logic since application
may change.

Nonces and passwords must fall under at least one signature to be

effective. In addition, the signature should include at least a critical
portion of the message payload, otherwise an attacker might be
able to discard the dateTime and its signature without arousing
suspicion.

Best Practice 14: Nonce and signing time must be signature
protected.

WSS defines a <Timestamp> element which can contain a Created
dateTime value and/or a Expires dateTime value. The Created
value obviously represents an observation made. The expires value
is more problematic, as it represents a policy choice which should
belong to the receiver not the sender. Setting an expiration date on
a Token may reflect how long the data is expected to be correct or
how long the secret may remain uncompromised. However, the
semantics of a signature "expiring" is not clear.

WSS provides for the use of a nonce in conjunction with hashed
passwords, but not for general use with asymmetric or symmetric
signatures.

WSS sets a limit of one <Timestamp> element per Security header,
but their can be several signatures. In the typical case where all
signatures are generated at about the same time, this is not a
problem, but SOAP messages may pass through multiple
intermediaries and be queued for a time, so this limitation could
possibly create problems. In general Senders should ensure and
receivers should assume that the <Timestamp> represents the first
(oldest) signature. It is not clear how if at all a <Timestamp>
relates to encrypted data.

2.4.3 Use Timestamps tokens issued by Timestamp authorities
for long lived signatures

ETSI has produced TS 101 903: "XML Advanced Electronic

Signatures (XAdES)", which among other ones, deals with the
issue of long-term electronic signatures. It has defined a standard
way for incorporating time-stamps to XML signatures. In addition
to the signature time-stamp, which should be generated soon after
the generation of the signature, other time-stamps may be added to
the signature structure protecting the validation material used by
the verifier. Recurrent time-stamping (with stronger algorithms and
keys) on all these items, i.e., the signature, the validation material
and previous time-stamps counters the revocation of validation
data and weaknesses of cryptographic algorithms and keys. RFC
3161 and OASIS DSS time-stamps may be incorporated in XAdES
signatures.

OASIS DSS core specifies a XML format for time-stamps based in
XML Sig. In addition DSS core and profiles allow the generation
and verification of signatures, time-stamps, and time-stamped
signatures by a centralized server.

The XAdES and DSS Timestamps should not be confused with
WSS Timestamps. Although they are both called Timestamps, the
WSS <Timestamp> is just a xsd:dateTime value added by the
signer representing the claimed time of signing. XAdES and DSS
Timestamps are full feldged signatures generated by a Time-stamp
Authority (TSA) binding together a the digest of what is being
time-stamped and a dateTime value. TSAs are trusted third parties
which operate under certain rules on procedures, software and
hardware including time accuracy ensurance mechanisms. As such,
time-stamps generated by well-operating TSAs are trusted time
indications which prove that what was time-stamped actually
existed at the time indicated, whereas any time indication inserted
by the signatory is not more than a claim made by the generator of
the signature.

2.5 Signing XML without namespace information
("legacy XML")

When creating an enveloping signature over XML without
namespace information, it may inherit the XML Signature
namespace of the Object element, which is not the intended
behavior. There are two potential workarounds:

1. Insert an xmlns="" namespace definition in the legacy
XML. However, this is not always practical.

2. Insulate it from the XML Signature namespace by defining
a namespace prefix on the XML Signature (ex: "ds").

This was also discussed in the OASIS Digital Signature Services
technical committee, see http://lists.oasis-
open.org/archives/dss/200504/msg00048.html.

3 Acknowledgments
This document records best practices related to XML Signature
from a variety of sources, including the W3C Workshop on Next
Steps for XML Signature and XML Encryption
[XMLSecNextSteps]

4 References
BradHill 

Complexity as the Enemy of Security: Position Paper for W3C 
Workshop on Next Steps for XML Signature and XML 
Encryption, Brad Hill, 25‐26 September 2007, 
http://www.w3.org/2007/xmlsec/ws/papers/04‐hill‐
isecpartners/ 

Gajek 
Towards a Semantic of XML Signature: Position Paper for W3C 
Workshop on Next Steps for XML Signature and XML 
Encryption, Sebastian Gajek, Lijun Liao, and Jörg Schwenk, 25‐

26 September 2007, 
http://www.w3.org/2007/xmlsec/ws/papers/07‐gajek‐rub/ 

McIntoshAustel 
XML signature element wrapping attacks and 
countermeasures .M. McIntosh and P. Austel. In Workshop on 
Secure Web Services, 2005. 

WSS 
Web Services Security v1.1, OASIS Standard, February 2006. 
http://www.oasis‐open.org/specs/index.php#wssv1.1 

XMLDSIG 
XML Signature Syntax and Processing, Second Edition. W3C 
Recommendation, 10 June 2008, 
http://www.w3.org/TR/xmldsig‐core/. 

XMLSecNextSteps 
Workshop Report W3C Workshop on Next Steps for XML 
Signature and XML Encryption, W3C, 25‐26 September 2007, 
http://www.w3.org/2007/xmlsec/ws/report.html 

5 XML Signature Best Practices Change
Log

Date  
Aut
hor  

Description  

200804
14 

FJH 
Created first draft based on material from Pratik Datta http://lists.w3.org/Archives/Public/public‐xmlsec‐
maintwg/2008Apr/0007.html 

200804
15 

FJH 
Added material from Hal Lockhart http://lists.w3.org/Archives/Public/public‐xmlsec‐
maintwg/2008Apr/0018.html and change log. Correction regarding possibility of XPath selecting no nodes. 
Formatting fix ups. 

200805
19 

FJH 

Added material from Hal Lockhart http://lists.w3.org/Archives/Public/public‐xmlsec‐
maintwg/2008Apr/0018.html on timestamp nonce as agreed at last WG meeting 
http://www.w3.org/2008/05/06‐xmlsec‐minutes.html#item15 (2.4.2 Make Effective use of s igning 
time and Nonces to protect against Replay Attacks). 

200805
19 

FJH 
Added material from Sean Mullan on legacy XML, see http://lists.w3.org/Archives/Public/public‐xmlsec‐
maintwg/2008Apr/0029.html, as accepted at WG meeting, see http://www.w3.org/2008/05/06‐xmlsec‐
minutes.html#item14 (2.5 Signing XML without  namespace  informat ion ("legacy XML")). Minor 

Frederick Hirsch ! 8/22/08 2:33 PM

Frederick Hirsch ! 8/22/08 2:34 PM

Frederick Hirsch ! 8/22/08 2:33 PM

Deleted: ‐

Deleted:  D. Eastlake, J. R., D. Solo, M. 
Bartel, J. Boyer , B. Fox , E. Simon

Deleted: 12 February 2002

editorial modifications, also spell check on document. Added link targets. 

200805
19 

FJH 

Added updated material from Pratik Datta regarding transforms and denial of service attacks, see 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008May/att‐0000/00‐part, as accepted at WG 
meeting, see http://www.w3.org/2008/05/06‐xmlsec‐minutes.html#item14 (2.2 For  Applications:  Check 
what is s igned  and 2.1 For Implementors:  Reduce the opportunities for  denial of  service 
attacks). Included link to OASIS DSS discussion. 

200806
07 

PD 

Reorganized the document wih information from the email exchanges between Pratik Datta and Sean Mullan, 
see http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008May/0036.html, 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008May/0037.html, 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008May/0038.html, 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008May/0039.html, 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008Jun/0002.html, 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008Jun/0004.html, 
http://lists.w3.org/Archives/Public/public‐xmlsec‐maintwg/2008Jun/0007.html 

200806
09 

PD 
Cleared the confusion between DSS timestmap and WSS timestamp. Changed WSS timestamp to "Signing time" 
or "dateTime". Added a new section on DSS XAdes Timestamps. 

200806
23 

PD 
Made the edits suggested by Sean Mullan http://lists.w3.org/Archives/Public/public‐xmlsec‐
maintwg/2008Jun/0014.html and and Juan Carlos http://lists.w3.org/Archives/Public/public‐xmlsec‐
maintwg/2008Jun/0019.html 

 

