2.4 Document Subsets

Some applications require the ability to create a physical representation for an XML document subset (other than the one generated by default, which can be a proper subset of the document if the comments are omitted). Implementations of XML canonicalization that are based on XPath can provide this functionality with little additional overhead by accepting a node-set as input rather than an octet stream. The processing of an element node E MUST be modified slightly when an XPath node-set is given as input and the element's parent is omitted from the node-set. This is necessary because omitted nodes SHALL not break the inheritance rules of inheritable attributes [C14N-Issues] defined in the xml namespace.

[Definition:] Simple inheritable attributes are attributes that have a value that requires at most a simple redeclaration. This redeclaration is done by supplying a new value in the child axis. The redeclaration of a simple inheritable attribute A contained in one of E's ancestors is done by supplying a value to an attribute Ae inside E with the same name. Simple inheritable attributes are xml:lang and xml:space.

The method for processing the attribute axis of an element E in the node-set is hence enhanced. All element nodes along E's ancestor axis are examined for the nearest occurrences of simple inheritable attributes in the xml namespace, such as xml:lang and xml:space (whether or not they are in the node-set). From this list of attributes, any simple inheritable attributes that are already in E's attribute axis (whether or not they are in the node-set) are removed. Then, lexicographically merge this attribute list with the nodes of E's attribute axis that are in the node-set. The result of visiting the attribute axis is computed by processing the attribute nodes in this merged attribute list.

The xml:id attribute is not a simple inheritable attribute and no processing of these attributes is performed.

The xml:base attribute is not a simple inheritable attribute and requires special processing beyond a simple redeclaration. Hence the processing of E's attribute axis needs to be enhanced further. A "join-URI-References" function is used for xml:base fix up. It incorporates xml:base attribute values from omitted xml:base attributes and updates the xml:base attribute value of the element being fixed up, as follows. 
· 
· 
· 
· 
· 
· 
An xml:base fixup is performed on an element E as follows. 
Let E be an element in the node set whose ancestor axis contains successive elements En...E1 (in reverse document order) that are omitted and E=En+1 is included. (It is important to note that En..E1 is for contiguously omitted elements, for example only e2 in the example in section 3.8.) The fix-up is only performed if at least one of E1 ... En had an xml:base attribute. In that case let X1 ... Xm be the values of the xml:base attributes on E1 ... En+1 (in document order, from outermost to innermost, m <= n+1). The sequence of values is reduced in reverse document order to a single value by first combining Xm with Xm-1, then the result with Xm-2, and so on by calling the "join-URI-References" function until the new value for E's xml:base attribute remains. The result may also be null or empty (xml:base="") in which case xml:base MUST NOT be rendered.
Note that this xml:base fixup is only performed if an element with an xml:base attribute is removed. Specifically, it is not performed if the element is present but the attribute is removed.
The join-URI-References function takes an xml:base attribute value from an omitted element and combines it with other contiguously  omitted values to create a value for an updated xml:base attribute. A simple method for doing this is similar to that found in sections 5.2.1, 5.2.2 and 5.2.4 of RFC 3986 with the following modifications:

· Perform RFC 3986 section 5.2.1. " Pre-parse the Base URI" modified as follows.

· The scheme component is not required in the base URI (Base). (i.e. Base.scheme may be null)
· Replace a trailing ".." segment with "../" segment before processing.
· 5.2.4. "Remove Dot Segments" is modified as follows:

· Keep leading "../" segments 
· Replace multiple consecutive “/” characters with a single “/” character.
· Append a “/” character to a trailing “..” segment
· Perform RFC 3986 section 5.2.2. "Transform References" modified as follows to ignore the fragment part of R

· After parsing R set R.fragment = null
· The algorithm is modified to ensure that a combination of two xml:base attribute values that include relative path components (i.e., path components that do not begin with a '/' character) results in an attribute value that is a relative path component.
Then, lexicographically merge this fixed up attribute with the nodes of E's attribute axis that are in the node-set. The result of visiting the attribute axis is computed by processing the attribute nodes in this merged attribute list.

Attributes in the XML namespace other than xml:base, xml:id, xml:lang, and xml:space MUST be processed as ordinary attributes.

3.4 Character Modifications and Character References

	Input Document
	<!DOCTYPE doc [


<!ATTLIST normNames attr NMTOKENS #IMPLIED>

]>

<doc>

   <text>First line&#x0d;&#10;Second line</text>

   <value>&#x32;</value>

   <compute><![CDATA[value>"0" && value<"10" ?"valid":"error"]]></compute>

   <compute expr='value>"0" &amp;&amp; value&lt;"10" ?"valid":"error"'>valid</compute>

   <norm attr=' &apos;   &#x20;&#13;&#xa;&#9;   &apos; '/>

   <normNames attr='   A   &#x20;&#13;&#xa;&#9;   B   '/>

   <normId xml:id=' &apos;   &#x20;&#13;&#xa;&#9;   &apos; '/>

</doc>

	Canonical Form
	<doc>

   <text>First line&#xD;

Second line</text>

   <value>2</value>

   <compute>value&gt;"0" &amp;&amp; value&lt;"10" ?"valid":"error"</compute>

   <compute expr="value>&quot;0&quot; &amp;&amp; value&lt;&quot;10&quot; ?&quot;valid&quot;:&quot;error&quot;">valid</compute>

   <norm attr=" '    &#xD;&#xA;&#x9;   ' "></norm>

   <normNames attr="A &#xD;&#xA;&#x9; B"></normNames>

   <normId xml:id="' &#xD;&#xA;&#x9; '"></normId>

</doc>


Demonstrates:

· Character reference replacement

· Attribute value delimiters set to quotation marks (double quotes)

· Attribute value normalization

· CDATA section replacement

· Encoding of special characters as character references in attribute values (&amp;, &lt;, &quot;, &#xD;, &#xA;, &#x9;)

· Encoding of special characters as character references in text (&amp;, &lt;, &gt;, &#xD;)

Note: The last element, normId, is well-formed but violates a validity constraint for attributes of type ID. For testing canonical XML implementations based on validating processors, remove the line containing this element from the input and canonical form. In general, XML consumers should be discouraged from using this feature of XML.

Note: Whitespace character references other than &#x20; are not affected by attribute value normalization [XML].

Note: In the canonical form, the value of the attribute named attr in the element norm begins with a space, an apostrophe (single quote), then four spaces before the first character reference.

Note: The expr attribute of the second compute element contains no line breaks.

3.7 Document Subsets

	Input Document
	<!DOCTYPE doc [

<!ATTLIST e2 xml:space (default|preserve) 'preserve'>


]>

<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org">

   <e1>

      <e2 xmlns="">

         <e3 xml:id="E3"/>

      </e2>

   </e1>

</doc>

	Document Subset Expression
	<!-- Evaluate with declaration xmlns:ietf="http://www.ietf.org" -->

(//. | //@* | //namespace::*)

[

   self::ietf:e1 or (parent::ietf:e1 and not(self::text() or self::e2))

   or

   count(id("E3")|ancestor-or-self::node()) = count(ancestor-or-self::node())

]

	Canonical Form
	<e1 xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org"><e3 xmlns="" xml:id="E3" xml:space="preserve"></e3></e1>


Demonstrates:

· Empty default namespace propagation from omitted parent element

· Propagation of attributes in the xml namespace in document subsets

· Persistence of omitted namespace declarations in descendants

Note: In the document subset expression, the subexpression (//. | //@* | //namespace::*) selects all nodes in the input document, subjecting each to the predicate expression in square brackets. The expression is true for e1 and its implicit namespace nodes, and it is true if the element identified by E3 is in the ancestor-or-self path of the context node (such that ancestor-or-self stays the same size under union with the element identified by E3).

Note: The canonical form contains no line delimiters.
3.8 Document Subsets and XML Attributes

	Input Document
	<!DOCTYPE doc [

<!ATTLIST e2 xml:space (default|preserve) 'preserve'>


]>

<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org" xml:base="something/else">

   <e1>

      <e2 xmlns="" xml:id="abc" xml:base="bar/">

         <e3 xml:id="E3" xml:base="foo"/>

      </e2>

   </e1>

</doc>

	Document Subset Expression
	<!-- Evaluate with declaration xmlns:ietf="http://www.ietf.org" -->

(//. | //@* | //namespace::*)

[

   self::ietf:e1 or (parent::ietf:e1 and not(self::text() or self::e2))

   or

   count(id("E3")|ancestor-or-self::node()) = count(ancestor-or-self::node())

]

	Canonical Form
	<e1 xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org" xml:base="something/else"><e3 xmlns="" xml:id="E3" xml:base="something/bar/foo" xml:space="preserve"></e3></e1>


Demonstrates:

· xml:id not inherited.
· simple inheritable XML attribute inherited (xml:space)
· xml:base fixup performed
Appendix  A

Remove text in Example A up to and including “Some Examples”, retain table.Add following text before table:
The following informative table outlines  example results of the modified Remove Dot Segments algorithm described in Section 2.4.
