2.4 Document Subsets

Some applications require the ability to create a physical representation for an XML document subset (other than the one generated by default, which can be a proper subset of the document if the comments are omitted). Implementations of XML canonicalization that are based on XPath can provide this functionality with little additional overhead by accepting a node-set as input rather than an octet stream. The processing of an element node E MUST be modified slightly when an XPath node-set is given as input and element's parent is omitted from the node-set. This is necessary because omitted nodes SHALL not break the inheritance rules of inheritable attributes [C14N-Issues] defined in the xml namespace.

[Definition:] Simple inheritable attributes are attributes that have a value that requires at most a simple redeclaration. This redeclaration is done by supplying a new value in the child axis. The redeclaration of a simple inheritable attribute A contained in one of E's ancestors is done by supplying a value to an attribute Ae inside E with the same name. Simple inheritable attributes are xml:lang and xml:space.

The method for processing the attribute axis of an element E in the node-set is hence enhanced. All element nodes along E's ancestor axis are examined for the nearest occurrences of simple inheritable attributes in the xml namespace, such as xml:lang and xml:space (whether or not they are in the node-set). From this list of attributes, any simple inheritable attributes that are already in E's attribute axis (whether or not they are in the node-set) are removed. Then, lexicographically merge this attribute list with the nodes of E's attribute axis that are in the node-set. The result of visiting the attribute axis is computed by processing the attribute nodes in this merged attribute list.

The xml:id attribute is not a simple inheritable attribute and no processing of these attributes is performed.

The xml:base attribute is not a simple inheritable attribute and requires special processing beyond a simple redeclaration. Hence the processing of E's attribute axis needs to be enhanced further. A "join-URI-References" function is used for xml:base fix up. It incorporates xml:base attribute values from omitted xml:base attributes and updates the xml:base attribute value of the element being fixed up, as follows.
·
·
·
·
·
·
An xml:base fixup is performed on an element E as follows.
Let E be an element in the node set whose ancestor axis contains successive elements En...E1 (in reverse document order) that are omitted and E=En+1 is included. (It is important to note that En..E1 is for contiguously omitted elements, for example only e2 in the example in section 3.8.) The fix-up is only performed if at least one of E1 ... En had an xml:base attribute. In that case let X1 ... Xm be the values of the xml:base attributes on E1 ... En+1 (in document order, from outermost to innermost, m <= n+1). The sequence of values is reduced in reverse document order to a single value by first combining Xm with Xm-1, then the result with Xm-2, and so on by calling the "join-URI-References" function until the new value for E's xml:base attribute remains. The result may also be null or empty (xml:base="") in which case xml:base MUST NOT be rendered.
Note that this xml:base fixup is only performed if an element with an xml:base attribute is removed. Specifically, it is not performed if the element is present but the attribute is removed.
The join-URI-References function takes an xml:base attribute value from an omitted element and combines it with other contiguously omitted values to create a value for an updated xml:base attribute. A simple method for doing this is similar to that found in sections 5.2.1, 5.2.2. and 5.2.4. of RFC 3986 with the following modifications:

· Perform RFC 3986 section 5.2.1. " Pre-parse the Base URI" modified as follows.

· The scheme component is not required in the base URI (Base). (i.e. Base.scheme may be null)

· Perform RFC 3986 section 5.2.2. "Transform References" modified as follows to ignore the fragment part of R

· After parsing R set R.fragment = null

· 5.2.4. "Remove Dot Segments" is modified to keep leading "../" segments and to prevent the erroneous creation of an output that looks like a net path. (seg/.././/pseudo-netpath/seg/file.ext)
Then, lexicographically merge this fixed up attribute with the nodes of E's attribute axis that are in the node-set. The result of visiting the attribute axis is computed by processing the attribute nodes in this merged attribute list.

Attributes in the XML namespace other than xml:base, xml:id, xml:lang, and xml:space MUST be processed as ordinary attributes.

3.8 Document Subsets and XML Attributes

	Input Document
	<!DOCTYPE doc [

<!ATTLIST e2 xml:space (default|preserve) 'preserve'>

<!ATTLIST e3 id ID #IMPLIED>

]>

<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org" xml:base="something/else">

 <e1>

 <e2 xmlns="" xml:id="abc" xml:base="bar/">

 <e3 id="E3" xml:base="foo"/>

 </e2>

 </e1>

</doc>

	Document Subset Expression
	<!-- Evaluate with declaration xmlns:ietf="http://www.ietf.org" -->

(//. | //@* | //namespace::*)

[

 self::ietf:e1 or (parent::ietf:e1 and not(self::text() or self::e2))

 or

 count(id("E3")|ancestor-or-self::node()) = count(ancestor-or-self::node())

]

	Canonical Form
	<e1 xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org" xml:base="something/else"><e3 xmlns="" id="E3" xml:base="something/bar/foo" xml:space="preserve"></e3></e1>

Demonstrates:

· xml:id not inherited.
· simple inheritable XML attribute inherited (xml:space)
· xml:base fixup performed
