Ideas/Notes for W3pm

Michel Böhms, TNO; XG Chair, 28 May 2008
Introduction

The idea is have a strongly modular approach for this XG. Small, focussed and clean “Product Modelling” modules can be flexibly mixed and matched to provide specific product modelling capabilities on top of plain OWL (OWL1.0 and/or OWL2.0).

The following modules are currently foreseen:

· Quantities and Units (“Units”)

· Implicit versus explicit

· Class-level versus individual level

· Link with properties

· Quantities versus Units

· Base quantities/units versus derived quantities/units

· Multiples/Prefixes
· Higher order (than scalar) tensors (like units for matrices)

· Product Decomposition (“Decomposition”)

· Use of Qualified Cardinality Restrictions (QCR’s) as in OWL2.0

· Closures (for atoms and to constrain parts)

· partOf versus hasParts (or both/inverse)

· direct versus indirect (transitivity)

· Multiple decomposition

· Topological Relationships (“Topology”)

· Need for 0D, 1 D, 2D, 3D, 4D objects/events?

· Bound-by relationships (semantic counterpart of geometric evaluation)

· Included-by relationships (idem.)

· Product-related Archetypes

· Processes versus Products

· Functions versus Spaces versus Physical Products

· Interpretation/handling of “Features”

· Explicit Shape Representation (“Shape”)

· Compare IAI IFC/geometry part in case of construction sector
· Compare ISO STEP Part42
· Product Knowledge Rules (“Rules”)

· Assertions versus derivations (both logical and calculations)

· Link will RULE group (via Coordination/Ivan)

· Specific Variants (“Variants”)
· Use of class variables (hasValue)
· Datatype property values

· Object property values (“local occurrences/reuseable fixed BoM”)
· Default values/individuals (“Defaults”)
· Required versus Proposed versus Realized
Since we decided to first address Units, Decomposition and Topology some ideas/notions are detailed below for these. I tried not to manipulate the discussion to much although in general I have a preference for practical/limited simplicity over elegant/complete complexity….Clearly, I never pretend to be complete at any place. Hope we can extend together the lists and issues to be resolved.
Units

Implicit versus Explicit
We should realize that units is a topic that is already thought about a lot for a long time. One of the base standards here, ISO 1000 (this edition 1992-11-01) does already quite a lot of specification. So how explicit should we be? In the extreme can we just define a unit property or annotation property that is an enumeration of all (or all typically relevant/used) names or symbols described in that ISO document. Counterargument is that a bit more explcit spec would cover much more (potentially relevant) units. Example: m^2 is mentioned but m^6 is not. So, or we change the spec if we need m^6 or we can already dynamically define it when we use an exponential approach being able to specify already from the beginning all possible combinations of base units.

Class-level versus individual level
Typically units are defined on class-level being relevant per definition for all members/individuals of that class. Some approaches however define units on member/individual level so that in the ontology we just have “height” defined that can be instantiated as “3.5 m” but also “418 km” or “16 mile” on individual level. The latter being only relevant if we allow multiple units for multiple quatities (here “length”; height being a special form of length) anyway, being another issue…
Link with properties

Clearly the way we model units in the end will be influenced by the way we model specific properties of products since the value(s) of these properties are specified/measured according these units. In a pure OWL way our product properties become instances of owl:DatatypeProperty like:
<owl:DatatypeProperty rdf:ID="doorColour"/>

Some approaches start to meta-model these product properties (for instance by subclassing owl:DatatypeProperty) as a new meta-class. Clearly in the one or the other way different approach are possible or impossible to connect units to these product properties.
In the first case one could use an annotation property (like in PMO) in the second case there is more flexibility (with penalties of course) to model a unit just as a property being connected in some way to the new meta-class say “ProductProperty”.
Quantities versus Units

Quantities and units are strongly connected; often even confused. Typically there are more units than quantities (see the length example above). That’s why in general a quantity would feel a bit more abstracted and maybe easier related to the actual property involved. On the other hand, when you agree to only agree ONE unit for a certain quantity, both concepts seem to unite (well at least have a one-2-one correspondence after all. Most systems use just units, some more complex/explicit system use both.
Base quantities/units versus derived quantities/units

Base quantites (typically seven + maybe “currency” and “amount”) are easily agreed. The algebraic combinations are the harder part (EURO/m; farad^4). Typically the most relevant derived quantities/units have “own” names (like inductance in henry (H) for Wb/m^2). In more complex/flexible systems the derived ones are specified in terms of an exponent vector.
If such vector is defined by [length, mass, time, …etc.] the representation for velocity would be [1, 0, -1, 0….]. Clearly we define in such a way an infinite amount of units.

Multiples/Prefixes
A typical question would be if we have to specify (and thus agree) multiples of units say via prefixes like mili, kilo etc. To keep things simple one could also decide to leave them out since any user/software can do the transformation him/itself. At the same time avoiding quirks in the SI system like “kg” (.

Higher order (than scalar) tensors (like units for matrices)
Typically we address simple scalar properties. In many technical context it might however be necessary to address higher level tensors like matrices. Such more composite properties could be associated to more complex/composite units too. Alternatively one can leave this extra complexity “at the property side” and just associate sets of simple units. Anyway, it’s worth a discussion.
Finally I would express some “extreme opinion” that might be something to think about:

“Units are not semantic at all, they are inherently non-semantic. Therefore we should not model them in the ontology but only on the instantiation side; i.e. attach them in some way to the value”. Some very simple approach do this already by keeping the ontology free of units and then give the value “3 meter” to a height in the ontology. Clearly you need agreement on the parsing of the value to make sense but still I think this approach is worth thinking about….In simple appraches where the value-model of RDF(S)/OWL is used this might be tough to do; but in more complex approaches where we have new meta-classes like ProductProperty and ProductPropertyValue this could of course be modelled and done.
Decomposition

Use of Qualified Cardinality Restrictions (QCR’s) as in OWL2.0
OWL2.0 (formerly OWL1.1) seems to provide the perfect mechanism for a controlled/managed way of decomposition (where I mean controllable/manageable cardinalities involved). An example: a Façade has exactly one Door and at least one Window would be described as:
 <owl:Class rdf:ID="Facade">
 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.swop-

project.eu/ontologies/pmo/product.owl#hasPart_directly"/>

 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl11:onClass rdf:resource="http://www.swop-

project.eu/ontologies/d23/door.owl#Door"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.swop-

project.eu/ontologies/pmo/product.owl#hasPart_directly"/>

 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl11:onClass rdf:resource="http://www.swop-

project.eu/ontologies/d23/door.owl#Door"/>

 </owl:Restriction>

 </rdfs:subClassOf>
 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.swop-

project.eu/ontologies/pmo/product.owl#hasPart_directly"/>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl11:onClass rdf:resource="http://www.swop-

project.eu/ontologies/d23/window.owl#Window"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

See for more info also the well-known pizza example where a pizza decomposes in certain amounts of layers of certain types. For those knowing the earlier proposals by Alain Rector in the best practices group it’s clear that these QCR’s offer much more precision than just existential relationships.
Closures (for atoms and to constrain parts)
Because of the Open World Assumption (OWA) in OWL we have to explicitly model any restriction. If we want to decompose a Facde in Doors and Windows but not Cows we have to model that by saying that A Façade can only decompose in members of the union of Doors and Windows. Example:

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.swop-

project.eu/ontologies/pmo/product.owl#hasPart_directly"/>

 <owl:allValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <rdf:Description rdf:about="http://www.swop-
project.eu/ontologies/d23/window.owl#Window"/>

 <rdf:Description rdf:about="http://www.swop-
project.eu/ontologies/d23/door.owl#Door"/>

 </owl:unionOf>

 </owl:Class>

 </owl:allValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

The alternative is to assume a closed world and not specify this but this is not a clean practise.

Same is true for atomic products. You have to explicitly say such products have no parts. Example:
 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.swop-

project.eu/ontologies/pmo/product.owl#hasPart_directly"/>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

partOf versus hasParts (or both/inverse)
One could choose to model one direction or both. In the case of both it’s typically good to model also that these object properties are each others inverse (to be keep things consistent and automatic). In case of a choice one sees different camps: those that prefer hasPart and those that prefer part of typically depending on assumptions w.r.t. existence dependence.
direct versus indirect (transitivity)
Often a differentiation is made between direct and indirect parts. Often the direct version is applied to avoid “counting double or worse” in the actual functionalities making use of the data. Another reason is that the transitive version can easily be derived.

multiple decomposition

In the simple scenario one can decompose a product in a set of other products (of the same or different underlying type). In practice people have different views on the same product (like stakeholders, disciplines, in different LC phases etc.). In that case it is needed to specify multiple ways of decomposition. This might also be true in design stages where multiple solutions exist that associate to multiple/different decompositions. In that way we have non-disjunct parts and we might even have to introduce extra classes modelling such multiple decompositions. It’s an important issue how complex we have to go here.
Topology
Need for 0D, 1 D, 2D, 3D, 4D objects/events?
To do any precise/useful modelling of topological aspects for products it might be necessary to distinguish between object of different dimensionalities. Example: if we want to make use of the fact that one Room is next to another Room it might be essential to know that this Room is a 3D object and that its connection to another Room also being a 3D object is typically via a common 2D boundary, well etc.
Bound-by relationships (semantic counterpart of geometric evaluation)
We need semantic counterparts of things we can now do as evalutions/analysis of explicit geometry models i.e. involving bounding boxes, BREPs, etc.etc.

Included-by relationships (idem.)
Example: to model that a certain Component IS IN a certain Space.

