
Decentralised Programming with XML-VMs 2011-05-09

Introduction

I have been interested in decentralised social software for about 7 years. I have
been pleased in the last couple of years have seen a flurry of interest in FSW
technology. Whilst decentralisation of existing closed source data silos is a worthy
goal, opening up the data and algorithms used to process them offers a lot more
potential than simply adding privacy to existing social websites. RDF/XML has
matured as a standard, but is lacking widespread adoption in part due to the
operators of data silos economic incentive to prevent widespread use of the data
therein. FSW developers face the reverse situation, in which non-adoption of
semantic web technologies is a competitive disadvantage. I look forward to
decentralised systems which allow not only machine readable data but also
algorithms are free to flow between users.

Evolution

Since its original incarnation as a system of interlinked static pages, WWW has
undergone various evolutions such as CGI scripts, RSS feeds and web services.
While helpful, these have nevertheless stopped short of allowing a deep level of
cooperation and systems integration which might be compared to a multi-user
operating system.

My vision is that, rather than just giving one other static data, users should have
the option of entrusting one another with some or all of the resources available to
them, such as disk space, CPU cycles, installed software and even cryptographic
keys. Such extensive collaboration would obviously require agreement on
cryptographic standards to establish identity, but that alone would not be
sufficient to allow extensive collaboration, since a network of diverse computing
environments would have trouble interoperating without a common language. As
a minimum, agreement on the format of requests is needed to allow users to
exactly articulate their requests. I propose a method designed to do this whilst
making few assumptions about how their friends might choose to respond to
them or what software or hardware they might use to do so.

XML Request Processing Model

Each request is expressed as an XML element with a the function attribute
identifying the desired functionality as a URI, optional extra attributes for fine
tuning and optional contents constituting arguments. One simple example is

<f2f:servicereq function=“http://friend2friend.net/modules/demo/hello­world”/>

Friend2Friend Position Paper for W3C Federated Social Web Conference 2011-05-09 Robin Upton

http://friend2friend.net/modules/demo/hello-world

Meaning should accrue to particular URIs via a semantic web style process of
decentralised consensus, so while individual XML-VMs remain free to interpret
such requests how they see fit, in practice, requests will likely end up running
either identical or equivalent services, albeit perhaps on different data.

Requests may be nested, resulting in XML pipelines:

A set of attributes (called ‘processing directives’) are available to fine tune the
request or tweak its output. These were found invaluable to fit services together,
and are mainly xpath based modifications such as adding attributes or sorting or
discarding some of its content.

By default, requests are processed in document order, but children are processed
before their parents, though this can be modified by the f2f:escaped processing
directive, which can also allow requests to go unprocessed. The f2f:sendescaped
processing directive has a similar effect, but is decremented when sent between
different soft-systems, allowing requests to take effect on remote XML-VMs:

Friend2Friend Position Paper for W3C Federated Social Web Conference 2011-05-09 Robin Upton

XML Virtual Machine

The XML virtual machine (termed a ‘soft-system’) is a tool to simplify the
coordination of multiple computers using instructions expressed in XML. Since its
input and output are XML, it uses XML as its native data type. The XML-VM is
implemented as a set of independently addressable units (‘soft-nodes’), each of
which may have its own XML data stores and custom software, and green threads
which interpret requests, perhaps contacting other soft-nodes or soft-systems
and spawning child threads there in the process.

Soft-nodes are arranged as a tree, and
communicate by passing XML messages
up and down. All contact with the outside
world occurs via the soft-system’s root
node.

These XML messages are accessible by
filters between nodes and before and after
execution. Whilst most programmers need
not know about them, filters present a set
of hooks available for logging, intercepting
and virtualizing system operations.

The XML-VM has a set of core functions for tasks such as configuration and
interfacing with the file system, so that the XML scripting language can be used to
automate system configuration.

Modules

Core functionality can be augmented by coding of modules. Module definition (c.f.
WSDL) files define the functionality provided by the module, e.g. declaring
permissions, locating XML datastores, module scripts and XSDs. Programming of
complex modules has been tried and found difficult. The Unix philosophy of
programming small pieces and slotting them together is much more suitable.

XML Scripting Language

Module scripts are written in an extension of XSLT1, which adds the core
functions that allow transforms to have side effects, such as communication and
writing to disk. The XML scripting language was designed to abstract away details
of hardware and physical location of machines but also of the structure of soft-
systems, allowing the programmer to focus on the required semantics. Modules
could be coded in languages other than XSLT but would not be automatically
ported, so could not be automatically transferred between soft-system to another.

Friend2Friend Position Paper for W3C Federated Social Web Conference 2011-05-09 Robin Upton

Security Considerations

Each F2F server has one administrator soft-system, which has the highest level of
privilege. Other users have various restrictions such as limits on access to the file
system and F2F server internals. A filter at the root node of the soft-systems
translates between externally used keys and internally used ids. The ids form a
minimal base on which to build a more nuanced system; at the base level, access
control is by id and services have either a blacklist or a whitelist. Message filters
could form the basis of a range of security measures, such as checking for
malicious scripts, asking for user intervention or informing other soft systems of
suspicious activity.

The server is highly configurable, and whilst great flexibility and openness are
possible, it could also be provided in a locked down default state which denied
friends the option of doing anything more interesting than sending status
messages or tagging one another in photos. The philosophy of Friend2Friend has
been to make simple bottom layers and keep the design as clean as possible so
that refinements can be built on top of the core system.

A system in which users may be trusted to automatically upgrade their friends’
soft-systems offers a great deal of facility and a commensurate level of insecurity.
I would however disagree that this is a worse situation that more traditional
systems in which a relatively large number of users rely on the integrity of a
relatively small number of generally closed source providers of security products.

Current Implementations

An implementation in is available from http://friend2friend.net/docs/installation/.
This requires PHP 5.2 (not 5.3!). It is has a JS interface which is sufficient for
simple testing and basic scripting. As well as comprehensive log files, the system
throws a soft error and accompanying call stack if it encounters an exception.

The code is not suitable for extensive production use, as PHP’s XML/XSL handling
is subtly broken and unlikely ever to be definitively fixed:(. It also lacks a system
of secure communication.

Documentation

• Several presentations are available from http://altruists.org/ff
• A wiki is at http://wiki.friend2friend.net/

Friend2Friend Position Paper for W3C Federated Social Web Conference 2011-05-09 Robin Upton

http://wiki.friend2friend.net/
http://altruists.org/ff
http://friend2friend.net/docs/installation/

