Notes on Reading the State Tables

The purpose of the state tables is to illustrate, via a separate means from the normative text, the allowable order and interactions of various messages and activities. The state tables are not intended to constrain implementations beyond those necessary to insure this ordering.

· States are represented as columns.

· Actions (messages, application actions, timer events) are represented as rows. Actions are annotated by their type; “[app]” – represents an application action (e.g. a user selecting a “Subscribe” menu item); “[msg]” – represents an incoming, WS-Eventing defined, message; “[timer]” – represents an internal timer event. The relevant values for a particular fault message are footnoted.
· Each cell describes the appropriate response for a given state and action. Transitions to other states are indicated by displaying the name of that state in square brackets (e.g. “[Active]”). Where the transition or activity is dependent upon other factors than the state and action (e.g. the value of a fault message), the activity is described in pseudo-code. The section of the specification that describes these activities is displayed in curly brackets (e.g. “{4.2}”). The term “generate fault” is used to indicate that the implementation must generate an implementation-specific fault.
· The Subscriber/Event Sink State Table pre-supposes a synchronous style of interaction in which the Subscriber/Event Sink is not allowed to send messages who’s response may cause a state transition if there is an outstanding request who’s response may trigger a different transition. For example, it does not allow a Subscriber/Event Sink to send a GetStatus message while there is a pending Renew or Unsubscribe operation. While it is certainly possible for a Subscriber/Event Sink to function in an asynchronous style, representing the allowable responses to asynchronous requests is overly complicated. In general a Subscriber/Event Sink should not receive responses to requests that have not been issued.
	Subscriber/Event Sink State Table

	Actions
	States

	
	Idle
	Creating
	Active
	Renewing
	Getting Status
	Unsubscribing
	End

	Create Subscription
[app]
	send wse:Subscribe
[Creating]
{4.1}
	generate fault
	generate fault
	generate fault
	generate fault
	generate fault
	generate fault

	SubscribeResponse
[msg]
	generate fault
	[Active]
{4.1}
	generate fault
	generate fault
	generate fault
	generate fault
	generate fault

	Subscribe Fault 1
[msg]
	generate fault
	[End]
{4.1}
	generate fault
	generate fault
	generate fault
	generate fault
	generate fault

	Renew
[app]
	generate fault
	generate fault
	send wse:Renew
[Renewing]
{4.2}
	generate fault
	generate fault
	generate fault
	generate fault

	RenewResponse
[msg]
	generate fault
	generate fault
	generate fault
	update expiration time
[Active]
{4.2}
	generate fault
	generate fault
	generate fault

	Renew Fault 2
[msg]
	generate fault
	generate fault
	generate fault
	[Active]
{4.2}
	generate fault
	generate fault
	generate fault

	GetStatus
[app]
	generate fault
	generate fault
	send wse:GetStatus
[Getting Status]
{4.3}
	generate fault
	generate fault
	generate fault
	generate fault

	GetStatusResponse
[msg]
	generate fault
	generate fault
	generate fault
	generate fault
	[Active]
{4.3}
	generate fault
	generate fault

	GetStatus Fault 3
[msg]
	generate fault
	generate fault
	generate fault
	generate fault
	[Active]
{4.3}
	generate fault
	generate fault

	Unsubscribe
[app]
	generate fault
	generate fault
	send wse:Unsubscribe
[Unsubscribing]
{4.4}
	generate fault
	generate fault
	generate fault
	generate fault

	UnsubscribeResponse
[msg]
	generate fault
	generate fault
	generate fault
	generate fault
	generate fault
	[End]
{4.4}
	generate fault

	Unbsubscribe Fault 4
	generate fault
	generate fault
	generate fault
	generate fault
	generate fault
	[Active]
{4.4}
	generate fault

	Expiration
[timer]
	generate fault
	generate fault
	[End]
{4.1}
	[Renewing]
{4.1}
	[End]
{4.1}
	[End]
{4.1}
	generate fault

	UnknownSubscription
[msg]
	generate fault
	generate fault
	
	[End]
{4.2}
	[End]
{4.3}
	[End]
{4.4}
	[End]
{6.10}

	Subscription End
[msg]
	generate fault
	[End]
{4.5}
	[End]
{4.5}
	[End]
{4.5}
	[End]
{4.5}
	[End]
{4.5}
	generate fault

	Notification
[msg]
	generate fault
	[Creating]
{5}
	[Active]
{5}
	[Renewing]
{5}
	[Getting Status]
{5}
	[Unsubscribing]
{5}
	generate fault

1. wse:InvalidExpirationTime, wse:ExpirationTimeExceeded, wse:UnsupportedExpirationType, wse:FilteringNotSupported, wse:FilteringRequestedUnavailable, wse:DeliveryFormatRequestedUnavailable, wse:EmptyFilter, wse:UnusableEPR, wse:EndToNotSupported
2. wse:InvalidExpirationTime, wse:ExpirationTimeExceeded, wse:UnsupportedExpirationType, (wse:UnknownSubscription described as separate action)
3. except for wse:UnknownSubscription
4. except for wse:UnknownSubscription
	Event Source/Subscription Manager State Table

	Actions
	States

	
	Idle
	Active
	End*

	Subscribe Request
[msg]
	if (EndToOK && expirationOK && deliveryOK && filterOK)
 send wse:SubscribeResponse

 [Active]
else

 generate appropriate fault
 [Idle]
{4.1}
	generate fault**
	generate fault**

	Renew Request
[msg]
	generate wse:UnknownSubscription fault
[Idle]
	if (expirationOK)

 update expiration timer
 send wse:RenewRespone
 [Active]
else
 generate appropriate fault
 [Active]
{4.2}
	generate wse:UnknownSubscription fault
[End]

	GetStatus Request
[msg]
	generate wse:UnknownSubscription fault
[Idle]
	send wse:GetStatusResponse
[Active]
{4.3}
	generate wse:UnknownSubscription fault
[End]

	Unsubscribe Request
[msg]
	generate wse:UnknownSubscription fault
[Idle])
	send wse:UnsubscribeResponse
[End]
{4.4}
	generate wse:UnknownSubscription fault
[End]

	Event
[app]
	ignore
	send Notification
[Active]
{5}
	ignore

	Expiration
[timer]
	ignore
	[End]
{4.1}
	ignore

	Shutdown/Error
[app]
	ignore
	if (EndTo engaged)

 send wse:SubscriptionEnd
[End]
{4.5}
	ignore

* Subscriptions in the “End” state may no longer have a Subscription Manager that can receive messages. The activities for this state only apply to those cases where there is a Subscription Manager to receive the message.

** The wse:Subscribe message is a component of the EventSource portType and cannot properly be sent to the SubscriptionManager for an active subscription. However, it is possible to formulate wse:Subscribe messages with the [destination] and/or [reference parameters] properties that would cause this state/action combination to be triggered.
