
WS-Eventing Interoperability Scenario

Cetacean Tracking System

Version: 0.0.3
Date: December 6, 2010
Editor: Gilbert Pilz

Abstract
The following scenario is designed to provide a framework in which to test the interoperability
of various WS-Eventing implementations. Because this scenario and the tests defined within it
will be used to judge which features of WS-Eventing are implemented and which are not, the
feature coverage is intended to be complete.

Timeline
Start End Activity

Table of Contents
Abstract...1

Timeline...1
 1 Dependencies...2

 1.1 Scope...2
 1.2 Namespaces..2
 1.3 Preconditions...2

 2 Scenario Description...2
 2.1 Event Description...3
 2.2 Event Timing..3
 2.3 Tags..3

 3 Tests..3
 3.1 Basic Test...3
 3.2 Wrapped Notifications..4
 3.3 Duration Expiration Test...5
 3.4 Specific Time Expiration Test...6
 3.5 Best Effort Expiration Test...7
 3.6 Renew Test..8
 3.7 SubscriptionEnd Test...10
 3.8 Filter Test – XPath 1.0..11
 3.9 Filter Test – XPath 2.0...12
 3.10 Non-Addressable Event Sink Test...12

 4 WSDLs..14
 4.1 Event Source WSDL..14

mailto:gilbert.pilz@oracle.com?subject=RE:%20WS-Eventing%20Interoperability%20Scenario

 4.2 Notification WSDL..14
 5 EventDescriptions...14
 6 Schemas...14
 7 Change Log...14

 1 Dependencies

 1.1 Scope
The following specifications and technologies are in scope for this scenario:

• SOAP 1.1

• WS-Eventing

• WS-EventDescriptions

• WS-MakeConnection

• WS-Policy

• WSDL 1.1

 1.2 Namespaces
The following table defines the namespaces used in this document:

Prefix Namespace Specification
xsd http://www.w3.org/2001/XMLSchema XML Schema
wsdl http://schemas.xmlsoap.org/wsdl/ WSDL 1.1
soap11 http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1
wsoap11 http://schemas.xmlsoap.org/wsdl/soap/ WSDL 1.1
wsa http://www.w3.org/2005/08/addressing WS-Addressing 1.0
wse http://www.w3.org/2010/08/ws-evt WS-Eventing
gpx http://www.topografix.com/GPX/1/1 GPS eXchange Format

 1.3 Preconditions

 2 Scenario Description
This scenario presupposes a cetacean tracking system in which a number of animals have
been “tagged” with devices that track their location. These tags periodically communicate via
satellite to a central system. External systems can consume this information by using WS-
Eventing to subscribe to periodic notifications about the locations of the tags and, presumably,
the animals they are attached to.

http://en.wikipedia.org/wiki/Cetacea

 2.1 Event Description
The location of the tags is expressed in GPS coordinates using the GPS eXchange Format,
an XML schema designed as a common GPS data format for software applications. In
addition to the basic GPS information (latitude, longitude, elevation, and time), the
notifications include an ID that uniquely identifies the tag and, by inference, the animal that
the tag is attached to. An EventDescriptions document that describes the structure of the
event information within the notifications can be found in Section 5.

 2.2 Event Timing
While in the real world the frequency of notifications might be hourly or even daily, for the
sake of feasibility we compress time by a scale of 1/120 so that one hour in “scenario time” is
thirty seconds in real-world time. The time data contained in the notifications will reflect
scenario time.

 2.3 Tags
Again for the sake of feasibility, this scenario will only include three tags with the following
IDs:

• 13c76450-de3d-11df-85ca-0800200c9a66 (Howard)

• 234b6840-de3d-11df-85ca-0800200c9a66 (Kerry)

• 32675b90-de3d-11df-85ca-0800200c9a66 (Oscar)

 3 Tests
The following sub-sections describe tests designed to exercise all the mandatory and optional
features of WS-Eventing except for those (such as the use of EventDescriptions or
Notification WSDLs) that affect only the process of developing one or more of the
components of a WS-Eventing-based system.
Each of these sub-sections is organized into four parts:

• An overview that describes the purpose of the test and the salient features of the
messages that are exchanged.

• A sequence diagram that illustrates the sequence of events in the test.

• A list of criteria used to judge the success of the test.

• A conformance section that enumerates the conditions under which conforming
implementations are allowed to either not implement the test or fail one or more of the
success criteria.

 3.1 Basic Test
This test verifies the ability to subscribe and receive notifications. The initial Subscribe
request has the following features:

• expiration time chose by Event Source/Subscription Manager

http://en.wikipedia.org/wiki/GPS_eXchange_Format

• no EndTo EPR

• no Filters

• unwrapped notifications

Sequence
The following diagram illustrates the sequence of messages for the Basic Test.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications by the Event Sink.
4. Receipt of a valid Unsubscribe message by the Subscription Manager.
5. Receipt of a valid UnsubscribeResponse message by the Subscriber.

Conformance
Because this test involves only operations and elements that are required, there are no
allowable failure cases.
Any failure to meet the above success criteria indicates that either, or both, of the
implementations participating in the test do not conform to WS-Eventing.
An implementation that is unable to support this test does not conform to WS-Eventing.

 3.2 Wrapped Notifications
This test verifies the simple ability to subscribe and receive wrapped notifications. The initial
Subscribe request has the following features:

Subscriber Event SourceEvent Sink

Notification

One or more Notifications
originating from unspecified
source.

Subscription Manager

unspecified

Subscribe

SubscribeResponse

Unsubscribe

UnsubscribeResponse

• expiration time chosen by Event Source/Subscription Manager

• no EndTo EPR

• no Filters

• wrapped notifications

Sequence
The messaging sequence for this test is identical to that of the Basic Test.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more wrapped Notifications by the Event Sink.
4. Receipt of a valid Unsubscribe message by the Subscription Manager.
5. Receipt of a valid UnsubscribeResponse message by the Subscriber.

Conformance
Because this test involves the use of the optional wrapped delivery format, there are a
number of failure cases that fall within the boundaries of conforming behavior.
A conforming Subscriber/Event Sink MAY NOT be capable of implementing this test due to its
inability to support wrapped notifications.
A conforming Event Source MAY respond to the initial Subscribe request with a
wse:DeliveryFormatRequestUnavailable fault.

 3.3 Duration Expiration Test

This test verifies the correct implementation of the expiration feature on the Event
Source/Subscription Manager. The initial Subscribe message has the following features:

• (short) expiration time chosen by Subscriber as xs:duration

• no EndTo EPR

• no Filters

• unwrapped notifications

Sequence
The following diagram illustrates the sequence of messages for the Duration Expiration Test.
Note that the Subscriber waits until the expiration time has passed before sending the
GetStatus request.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications by the Event Sink.
4. Receipt of a valid GetStatus message by the Subscription Manager.
5. Receipt, by the Subscriber, of either the “UnknownSubscription” fault (defined by

Section 6.10 of WS-Eventing), a SOAP fault that indicates that the Subscription
Manager no longer exists, or an HTTP error (i.e. “404”) that indicates the Subscription
Manager no longer exists

Conformance
Because this test involves the use of the optional wse:Expires element, a conforming
Subscriber MAY NOT be capable of implementing this test due to its inability to support
wse:Expires.

Note that, because wse:Expires is sender-optional and support for xs:duration is required,
there are no valid reasons for a conforming Event Source/Subscription Manager
implementation to either be unable to implement this test or to fail to meet one of the defined
success criteria.

 3.4 Specific Time Expiration Test

This test verifies the correct implementation of the expiration feature on the Event
Source/Subscription Manager. The initial Subscribe request has the following features:

Subscriber Event SourceEvent Sink

Notification

One or more Notifications
originating from unspecified
source.

Subscription Manager

unspecified

Subscribe

SubscribeResponse

Subscription
expires

GetStatus

Fault or HTTP error

• (short) expiration time chosen by Subscriber as xs:dateTime

• no EndTo EPR

• no Filters

• unwrapped notifications

Sequence
The messaging sequence for this test is identical to that of the Duration Expiration Test.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications by the Event Sink.
4. Receipt of a valid GetStatus message by the Subscription Manager.
5. Receipt, by the Subscriber, of either the “UnknownSubscription” fault (defined by

Section 6.10 of WS-Eventing), a SOAP fault that indicates that the Subscription
Manager no longer exists, or an HTTP error (i.e. “404”) that indicates the Subscription
Manager no longer exists.

Conformance
Because this test involves the use of both the optional wse:Expires element and the optional
xs:dateTime type, there are a number of failure cases that fall within the boundaries of
conforming behavior.
A conforming Subscriber MAY NOT be capable of implementing this test either due to its
inability to support the wse:Expires element or the xs:dateTime type.

A conforming Event Source MAY respond to the initial Subscribe request with a
wse:UnsupportedExpirationType fault.

 3.5 Best Effort Expiration Test

This test verifies the correct implementation of the “best effort” expiration feature on the Event
Source/Subscription Manager. The initial subscription has the following features:

• expiration time chosen by Subscriber as xs:duration with @BestEffort ='true'

• no EndTo EPR

• no Filters

• unwrapped notifications

Sequence
The messaging sequence for this test is identical to that of the Duration Expiration Test.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications by the Event Sink.
4. Receipt of a valid GetStatus message by the Subscription Manager.
5. Receipt, by the Subscriber, of either the “UnknownSubscription” fault (defined by

Section 6.10 of WS-Eventing), a SOAP fault that indicates that the Subscription
Manager no longer exists, or an HTTP error (i.e. “404”) that indicates the Subscription
Manager no longer exists.

Conformance
Because this test involves the use of both the optional wse:Expires element and the optional
BestEffort attribute, there are a number of failure cases that fall within the boundaries of
conforming behavior.
A conforming Subscriber MAY NOT be capable of implementing this test either due to its
inability to support the wse:Expires element or the BestEffort attribute.

Note that, because both wse:Expires and BestEffort are sender-optional, there are no valid
reasons for a conforming Event Source/Subscription Manager implementation to either be
unable to implement this test or to fail to meet one of the defined success criteria.

 3.6 Renew Test

This test verifies the ability of a Subscriber to update the expiration time of a Subscription via
a Renew request. The initial Subscribe request has the following features:

• (short) expiration time chosen by Subscriber as xs:duration

• no EndTo EPR

• no Filters

• unwrapped notifications
The Renew request has the following features:

• (short) expiration time chosen by Subscriber as xs:duration

Sequence
The following diagram illustrates the sequence of messages for the Renew Test.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more wrapped Notifications by the Event Sink.
4. Prior to the expiration time elapsing, receipt of a valid Renew message by the

Subscription Manager.
5. Receipt of a valid RenewResponse message by the Subscriber.
6. Subsequent to the Renew/RenewResponse exchange, receipt of one or more wrapped

Notifications by the Event Sink.
7. Receipt of a valid Unsubscribe message by the Subscription Manager.
8. Receipt of a valid UnsubscribeResponse message by the Subscriber.

Conformance
Because this test involves the use of the optional wse:Expires element, a conforming
Subscriber MAY NOT be capable of implementing this test due to its inability to support
wse:Expires.

Note that, because wse:Expires is sender-optional and support for xs:duration is required,
there are no valid reasons for a conforming Event Source/Subscription Manager

Subscriber Event SourceEvent Sink

Notification

One or more Notifications
originating from unspecified
source.

Subscription Manager

unspecified

Subscribe

SubscribeResponse

Renew

RenewResponse

Notification

One or more Notifications
originating from unspecified
source.

Unsubscribe

UnsubscribeResponse

implementation to either be unable to implement this test or to fail to meet one of the defined
success criteria.

 3.7 SubscriptionEnd Test

This test verifies the correct implementation of the SubscriptionEnd feature for both the
Subscription Manager and the target of the SubscriptionEnd message. The initial Subscribe
request has the following features:

• expiration time chosen by Event Source/Subscription Manager

• EndTo EPR

• no Filters

• unwrapped notifications

Sequence
The following diagram illustrates the sequence of messages for the SubscriptionEnd Test.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by the Subscriber.
3. Receipt of one or more wrapped Notifications by the Event Sink.
4. Receipt of a valid SubscriptionEnd message by the Subscriber (or whomever is

indicated by the EndTo EPR).

Subscriber Event SourceEvent Sink

Notification

One or more Notifications
originating from unspecified
source.

Subscription Manager

unspecified

Subscribe

SubscribeResponse

SubscriptionEnd

Some event occurs that
causes the Subscription
Manager to terminate the
Subscription.

Conformance
Because this test involves the use of the optional wse:EndTo element there are a number of
failure cases that fall within the boundaries of conforming behavior.
A conforming Subscriber/Event Sink MAY NOT be capable of implementing this test due to its
inability to support the wse:EndTo element or the SubscriptionEnd message.

A conforming Event Source MAY respond to the initial Subscribe request with a
wse:EndToNotSupported fault.

 3.8 Filter Test – XPath 1.0

This test verifies the ability of the Event Source/Subscription Manager to correctly implement
XPath 1.0 filters. The initial Subscribe request has the following features:

• expiration time chosen by Event Source/Subscription Manager

• no EndTo EPR

• Filter in dialect “http://www.w3.org/2010/08/ws-evt/Dialects/XPath10” that selects those
events that apply to tag 234b6840-de3d-11df-85ca-0800200c9a66 (Kerry).
(TBD – add exact filter expression)

• unwrapped notifications

Sequence
The messaging sequence for this test is identical to that of the Basic Test. The difference
between this test and the Basic Test is that only Notifications applying to tag 234b6840-de3d-
11df-85ca-0800200c9a66 are received by the Event Sink.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications for the tag 234b6840-de3d-11df-85ca-

0800200c9a66 by the Event Sink.
4. Receipt of a valid Unsubscribe message by the Subscription Manager.
5. Receipt of a valid UnsubscribeResponse message by the Subscriber.

Conformance
Because this test involves the use of the optional wse:Filter element there are a number of
failure cases that fall within the boundaries of conforming behavior.
A conforming Subscriber/Event Sink MAY NOT be capable of implementing this test due to its
inability to support the wse:Filter element or the XPath 1.0 dialect.

A conforming Event Source MAY respond to the initial Subscribe request with either a
wse:FilteringNotSupported fault or a wse:FilteringRequestedUnavailable fault.

 3.9 Filter Test – XPath 2.0

This test verifies the ability of the Event Source/Subscription Manager to correctly implement
XPath 2.0 filters. The initial Subscribe request has the following features:

• expiration time chosen by Event Source/Subscription Manager

• no EndTo EPR

• Filter in dialect “http://www.w3.org/2010/08/ws-evt/Dialects/XPath20” that selects those
events that apply to tag 32675b90-de3d-11df-85ca-0800200c9a66 (Oscar).
(TBD – add exact filter expression)

• unwrapped notifications

Sequence
The messaging sequence for this test is identical to that of the Basic Test. The difference
between this test and the Basic Test is that only Notifications applying to tag 32675b90-de3d-
11df-85ca-0800200c9a66 are received by the Event Sink.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications for the tag 32675b90-de3d-11df-85ca-

0800200c9a66 by the Event Sink.
4. Receipt of a valid Unsubscribe message by the Subscription Manager.
5. Receipt of a valid UnsubscribeResponse message by the Subscriber.

Conformance
Because this test involves the use of the optional wse:Filter element there are a number of
failure cases that fall within the boundaries of conforming behavior.
A conforming Subscriber/Event Sink MAY NOT be capable of implementing this test due to its
inability to support the wse:Filter element or the XPath 2.0 dialect.

A conforming Event Source MAY respond to the initial Subscribe request with either a
wse:FilteringNotSupported fault or a wse:FilteringRequestedUnavailable fault.

 3.10 Non-Addressable Event Sink Test
This test verifies the ability to subscribe and receive notifications in an environment in which
the Event Sink cannot accept connections from systems outside its network (i.e. the Event
Sink is non-addressable). The facilities described by WS-MakeConnection are used by the
Event Sink to poll for Notifications from the Event Source.
The initial Subscribe request has the following features:

• expiration time chose by Event Source/Subscription Manager

• no EndTo EPR

• no Filters

• unwrapped notifications

• the value of wse:Delivery/wse:NotifyTo/wsa:Address is an instance of the
MakeConnection anonymous URI (e.g. http://docs.oasis-open.org/ws-
rx/wsmc/200702/anonymous?id=550e8400-e29b-11d4-a716-446655440000).

Sequence
The following diagram illustrates the sequence of messages for the Non-Addressable Event
Sink Test.

Note that the MakeConnection requests that follow both the Subscribe and the Unsubscribe
requests are optional. It may happen that the SubscribeResponse and UnsubscribeResponse
are both transmitted on the back-channel of their corresponding requests.

Success Criteria
1. Receipt of a valid Subscribe message by the Event Source.
2. Receipt of a valid SubscribeResponse message by Subscriber.
3. Receipt of one or more unwrapped Notifications by the Event Sink.
4. Receipt of a valid Unsubscribe message by the Subscription Manager.
5. Receipt of a valid UnsubscribeResponse message by the Subscriber.

Subscriber Event SourceEvent Sink Subscription Manager

unspecified

Subscribe

SubscribeResponse

Additional MakeConnection/Notification
exchanges between Event Sink and
Event Source.

Unsubscribe

UnsubscribeResponse

MakeConnection

MakeConnection

Notification

MakeConnection

Conformance
Because this test involves the use of WS-MakeConnection there are a number of failure
cases that fall within the boundaries of conforming behavior.
A conforming Subscriber/Event Sink MAY NOT be capable of implementing this test due to its
inability to support WS-MakeConnection.
A conforming Event Source MAY respond to the initial Subscribe request with a
wse:UnusableEPR fault. However, because WS-Eventing does not require Event Sources to
validate the NotifyTo EPR at subscribe-time, it MAY be that the Subscribe request succeeds
(although the SubscribeResponse is never delivered to the Subscriber) but Notifications are
simply not delivered to the Event Sink.
Because Event Sinks and Subscription Managers are not required to implment WS-
MakeConnection, the MakeConnection requests MAY elicit a wsa:ActionNotSupported fault
response or some other, unspecified behavior.

 4 WSDLs

 4.1 Event Source WSDL
TBD

 4.2 Notification WSDL

TBD

 5 EventDescriptions
TBD

 6 Schemas

TBD

 7 Change Log
Version Date Author Changed
Initial 2010-10-26 Gilbert Pilz Initial revision
0.0.1 2010-10-27 Gilbert Pilz Fleshed out Basic, Wrapped, and Expiration

tests; added sequence diagrams. Added stubs
for Renew and Non-Addressable Event Sink
tests.

0.0.2 2010-10-28 Gilbert Pilz Editorial fixes. Changed animal names in
honor of the Irish light-bellied Brent Geese
tracked by the WWT (http://www.wwt.org.uk/).

http://www.wwt.org.uk/

Version Date Author Changed
0.0.3 2010-12-03 Gilbert Pilz Added “Conformance” sections to each test

that describe any allowable failures. Added
sequence diagrams to Renew Test,
SubscriptionEnd Test, and Non-Addressable
Event Sink Test.

	Abstract
	Timeline

	 1 Dependencies
	 1.1 Scope
	 1.2 Namespaces
	 1.3 Preconditions

	 2 Scenario Description
	 2.1 Event Description
	 2.2 Event Timing
	 2.3 Tags

	 3 Tests
	 3.1 Basic Test
	Sequence
	Success Criteria
	Conformance

	 3.2 Wrapped Notifications
	Sequence
	Success Criteria
	Conformance

	 3.3 Duration Expiration Test
	Sequence
	Success Criteria
	Conformance

	 3.4 Specific Time Expiration Test
	Sequence
	Success Criteria
	Conformance

	 3.5 Best Effort Expiration Test
	Sequence
	Success Criteria
	Conformance

	 3.6 Renew Test
	Sequence
	Success Criteria
	Conformance

	 3.7 SubscriptionEnd Test
	Sequence
	Success Criteria
	Conformance

	 3.8 Filter Test – XPath 1.0
	Sequence
	Success Criteria
	Conformance

	 3.9 Filter Test – XPath 2.0
	Sequence
	Success Criteria
	Conformance

	 3.10 Non-Addressable Event Sink Test
	Sequence
	Success Criteria
	Conformance

	 4 WSDLs
	 4.1 Event Source WSDL
	 4.2 Notification WSDL

	 5 EventDescriptions
	 6 Schemas
	 7 Change Log

