3.8 Extensibility and Versioning

Web Services Policy language is an extensible language by design. The Policy, ExactlyOne, All and wsp:PolicyReference elements are extensible. The Policy element allows child element and attribute extensibility, while the ExactlyOne and All elements allow child element extensibility. The PolicyReference child element allows element and attribute extensibility. Extensions must not use the policy language XML namespace name. A consuming processor processes known attributes and elements, ignores unknown attributes and treats unknown children of the Policy, ExactlyOne, All elements as policy assertions. The child elements of wsp:PolicyReference are ignored.

The PolicyReference element allows element and attribute extensibility.

Web Services Policy language enables simple versioning practices that allow requesters to continue the use of any older policy alternatives in a backward compatible manner. This allows service providers, like Company-X, to deploy new behaviors using additional policy assertions without breaking compatibility with clients that rely on any older policy alternatives.

The example below represents a Company-X version 1 policy expression. This expression requires the use of addressing and transport-level security for protecting messages.

Example 3-11. Company-X’s Version 1 Policy Expression
<Policy>

 <ExactlyOne>

 <All>

 <wsap:UsingAddressing/>

 <sp:TransportBinding>…</sp:TransportBinding>

 </All>

 </ExactlyOne>

</Policy>

Over time, Company-X adds support for advanced behaviors: requiring the use of addressing and message-level security for protecting messages. They added this advanced support without breaking compatibility with requesters that rely on addressing and transport-level security. The example below is Company-X’s version 2 policy expression. In this version, Company-X’s adds a new policy alternative that requires the use of addressing and message-level security. The clients that rely on addressing and transport-level security may continue to interact with Company-X’s using the old policy alternative. Of course, these clients have the option to migrate from using old policy alternatives to new policy alternatives.

Example 3-12. Company-X’s Version 2 Policy Expression
<Policy>

 <ExactlyOne>

 <All>

 <wsap:UsingAddressing/>

 <sp:TransportBinding>…</sp:TransportBinding>

 </All>

 <All> <!-- - - - - - - - - - - - - - - - NEW Policy Alternative -->

 <wsap:UsingAddressing/>

 <sp:AsymmetricBinding>…</sp: AsymmetricBinding >

 </All>

 </ExactlyOne>

</Policy>

When Company-X added support for advanced behaviors, they spent time to plan for the continued support for existing clients, the smooth migration from using current to advanced behaviors, and the switch to use only the advanced behaviors in the near future (i.e. sun-setting current behaviors). In this versioning scenario, a policy expression with multiple alternatives can be used to represent current and advanced behaviors in a non-disruptive manner: no immediate changes to existing clients are required and these clients can smoothly migrate to new functionality when they choose to. This level of versioning support in a policy expression enables the same class of versioning best practices built into WSDL constructs such as service, port and binding.
Let us look at tooling for unknown policy assertions. As service providers, like Company-X, incrementally deploy advanced behaviors, some requesters may not recognize these new policy assertions. As discussed before, these requesters may continue to interact using old policy alternatives. New policy assertions will emerge to represent new behaviors and slowly become part of everyday interoperable interaction between requesters and providers. For example, most tools use a practical tolerant strategy to process new or unrecognized policy assertions. These tools consume such unrecognized assertions and designate these for user intervention. As you would recognize, there is nothing new in this practice. This is similar to how a proxy generator that generates code from WSDL creates code for all the known WSDL constructs and allows Web service developers to fill in code for custom or unknown constructs in the WSDL.

3.8.1 Ignorable and Versioning

One potential use of the wsp:Ignorable attribute is to mark versioning related information. One scenario is that a service will support a particular version of a service until a certain point in time. After that time, the service will not be supported. The expiry date and time of the service would be a new policy assertion [see Guidelines section 4], but it could be marked as ignorable. When an alternative does have an expiry, it is usually useful to convey this information to help smooth the versioning process.

Company-X could specify that the older policy alternative will expire at a certain point in time using a Company-X specific expiry assertion. The example below shows Company-X version 2 policy expression with a hypothetical ignorable EndOfLife Assertion.

Example 3-13. Company-X's Version 2 Policy Expression with hypothetical ignorable EndOfLife Assertion
<Policy>

 <ExactlyOne>

 <All>

 <company-x:EndOfLife wsp:Ignorable="true"/>Mar-31-2008</company-x:EndOfLife>

 <wsap:UsingAddressing/>

 <sp:TransportBinding>...</sp:TransportBinding>

 </All>

 <!-- NEW Policy Alternative -->

 <All>

 <company-x:EndOfLife wsp:Ignorable="true">Mar-31-2999</company-x:EndOfLife>

 <wsap:UsingAddressing/>

 <sp:AsymmetricBinding>...</sp:AsymmetricBinding>

 </All>

 </ExactlyOne>

</Policy>

In this variant of the versioning scenario, the use of ignorable allows versioning related information to be conveyed and used where understood.

In a scenario such as this, CompanyX is acting as both a policy assertion author and a policy expression author. As a policy expression author, when an assertion type is tagged as ignorable information, the use of strict or lax mode and presence or absence of the assertion type in the first version are important decisions.
If Company-X wishes clients to always be able to intersect with one alternative in a policy expression (i.e., ignore the assertion) , particularly those using strict intersection, the first policy alternative offered should not contain the EndOfLife policy assertion with an ignorable attribute. This is because an alternative with the EndOfLife assertion with or without an ignorable attribute will only intersect with a client operating in strict intersection mode, IF the client also has an EndOfLife policy assertion.
 If CompanyX adds the EndOfLife policy assertion with an ignorable attribute to an alternative, then requesters using strict mode who do not understand the EndOfLife assertion with the ignorable information will still be compatible with the older version of the alternative (i.e, the first one) as per the intersection rules.
Because the actual value is not known, a value that is roughly infinitely in the future is used. A subsequent policy alternative could refine the value and domain specific processing of the assertion can differentiate the value.

The advantage of adding the end of life information is that some clients will have a machine processable way of knowing when the alternative will no longer be supported. Without this information, the information must be conveyed in some other way or it will not be conveyed at all. This can usefully smooth the transition between versions.

