
WS-CDL and Pi-Calculus

Paul Bouché

Seminar Business Process Management II

Hasso-Plattner-Institute for Software Systems Engineering
paul.bouche@hpi.uni-potsdam.de

Abstract. With the publishing and creation of the Web Services Description

Language (WS-CDL) and the success of the Pi Calculus it has been stated that

the former is based on the latter. A well reasoned answer for or against this

claim is not to be found. Here an approach to a well reasoned answer is por-

trayed and criteria on how to evaluate this statement are presented. An investi-

gation of the relationship of Pi Calculus and WS-CDL based on these criteria is

carried out. Finally a conclusion based on the results of the investigation is

drawn.

1 Introduction

A core motivation for creating the Web Services technologies and the Service Ori-

ented Architecture (SOA) has been to fully automate business-to-business interaction

in a cost effective and reliable way. In order to achieve this goal the need for an un-

ambiguous and verifiable description of the involved interactions between the parties

arose. The Web Services Description Language (WS-CDL) [5] was developed to sat-

isfy this need.

As it has been published there has been a lot of discussion weather or not WS-CDL

is based on Pi-Calculus [6]:

• “WS-CDL Has Sound Industrial and Mathematical Foundations” [7]

• “WS-CDL, being based on the Pi-Calculus [...]” [8]

• “WS-CDL is based on a formal model” [9]

There is not a well reasoned answer to be found. We would like to contribute to a

well reasoned answer.

We will do this by first introducing the concepts of Pi Calculus and WS-CDL (sec-

tion 2). Secondly criteria for evaluating the above statements and the relationship of

WS-CDL and Pi Calculus are developed (section 3). Thirdly these are applied and

investigated in section 4. Finally from the results a conclusion is drawn in section 5.

2 Preliminaries

In this section we will give a short introduction to Pi-Calculus and WS-CDL and their

main concepts. We will first start to introduce Pi-Calculus and then shall present WS-

CDL.

2 Paul Bouché

2.1 The Pi-Calculus and its main concepts

The Pi-Calculus is a formalism that was developed by Robin Milner, Joachim Parrow

and David Walker. It was published among other papers in [6]. Milner introduces Pi-

Calculus as “a calculus of communicating systems in which one can naturally express

processes which have changing structure. Not only may the component agents of a

system be arbitrarily linked, but a communication between neighbours may carry in-

formation which changes that linkage.” [6, p.5] The motivation for creating Pi-

Calculus was to be able to express this kind of concept, i.e. the changing structure and

linkage of processes in a formal, yet simple and explicit way.

This concept is called mobility in Pi-Calculus. This mobility exists among the con-

cept of a process or an agent. A process or agent represents a computational entity.

Processes communicate names to other processes across links. A name represents a

reference to either a link between processes, a piece of data or a variable.

A name has a scope, i.e. in Pi-Calculus it can be bound or restricted to certain proc-

esses and thus only these processes “know” that name. The scope of the name is

changed when a name is sent to another process which did not know that name be-

fore. Computation is represented as the sending of names across links.

Changing linkage structure of the involved processes is formally expressed by the

reduction rules as defined in [12]. This is then called evolution, i.e. the system of the

involved processes evolves in the sense that the links and processes move in an ab-

stract space of linked processes [2, slide 3a#3]. The control structures that are part of

Pi-Calculus are parallelism, XOR-choice, recursion and if-then.

In formula 1 the Pi-Calculus grammar in its polyadic version is shown. In polyadic

Pi-Calculus several names at once can be sent. We will now explain the semantics of

this grammar informally by an example.

In figure 1 an example system of Pi-Calculus processes is depicted. This illustra-

tion is done as an informal flow graph of the processes and links. Here a process A

has a link b to process B which is only known to both of them and A has a link c to

process C. Process A will either send five to B over b or send the link b over c along

with five to C which sends it over b to B.

In Formula 2 this behaviour is written in Pi-Calculus notation. First we see a name

SYS defined as the parallelism (notated by the | operator) of A,B and C where the

name b is bound to the processes A and B.

P ::== M P P v z P ! P

M ::== 0 . P M M '

::== x y x y x y

(1)

SYS b A B C

A v five b five .0 c b , five .0

B b d .0

C c l , m . l m .0

(2)

Secondly process A is defined as generating a new name five and behaving as de-

scribed above; the choice is expressed by the + operator. Sending over a link is no-

tated as an overlined occurrence of its name. A reception over a link is notated by the

occurrence of its name.

 WS-CDL and Pi-Calculus 3

A

B

C

b

c

five
A

B

C

b

c

A

B

C

b

c
A

B

C

b

c

Evolution

EvolutionEvolution

five

fivefive

scope
of b

Fig. 1. Pi-Calculus Example of a System of Processes

2.2 WS-CDL and its main concepts

The WS-CDL specification [5] states the following summarization of WS-CDL: “The

Web Services Choreography Description Language (WS-CDL) is an XML-based lan-

guage that describes peer-to-peer collaborations of participants by defining, from a

global viewpoint, their common and complementary observable behavior; where or-

dered message exchanges result in accomplishing a common business goal.” So the

perspective of WS-CDL is a multiparty perspective where only the common and ob-

servable activities of the processes are visible. The main purpose of defining a chore-

ography is the common business goal of the involved parties in contrast to an orches-

tration where a single entity perspective is taken and only the private business goal of

the orchestrating party is important. Once a choreography has been defined and been

agreed to jointly, it can serve as a contract and a means by which each participant can

generate their orchestration stubs and verify the conformance of the resulting real in-

teractions.

In figure 2 WS-CDL and its concepts, parts and also the structure of the resulting

XML documents are shown. For XML elements a new rectangle has been drawn, at-

tributes are enumerated and parent-child relationship is visualized through rectangles

being contained in one-another. We will explain the main concepts of WS-CDL now.

A roleType abstractly represents a role a party takes in a choreography. It is an ab-

straction from concrete behavior certain entities may exhibit. A roleType is con-

strained by a relationshipType which is an abstract representation of a relationship be-

tween the involved parties. All interaction in a choreography takes place between

roleTypes. A participantType “groups together those parts of the observable behavior

that must be implemented by the same logical entity or abstract organization” [5],

represents a participant and is assigned to one or more roles. WS-CDL is typed and a

type is modeled by an informationType. InformationTypes are referenced by vari-

ables and tokens. A token denotes a reference to an instance of an informationType.

4 Paul Bouché

package

informationType – name, type

token – name, informationType

tokenLocator – tokenName, informationType

roleType – name, behavior , interface

relationshipType

roleType – typeRef, behaviour

roleType – typeRef, behaviour

participantType – name

channelType

passing – channel, action

roleType – typeRef, behavior

reference

token – name, informationType

identity

token – name, informationType

Choreography – name, root, cordination

see right diagram for details

choreography

relationshipType - type

choreography

roleType – name, behavior , interface

variableDefinitions

variable – informationType , roleType

Activity

finalizerBlock

Activity

excpetionBlock

Workunit

Seqence ActivityActivity ...

Choice ActivityActivity ...

Parallel ActivityActivity ...

Interaction

 participate – from-, toRoleType

 exchange

 send – variable

 receive - variable

Workunit – name, guard , repeat

Activity

Fig. 2. WS-CDL at a glance

Tokens are used to correlate information and provide a means of identification for

channelType instances. A variable resides at a certain roleType or is accessible by

several or all roleTypes and contains information which can either be data sent during

an interaction, a state within a roleType or a channelType instance. A channelType is

the abstract representation of a channel between two or more involved parties. Over

channels variables are sent or they are used for synchronization (where no actual val-

ues are sent). Thus channelType instances can be sent from one roleType to another.

In order to correlate information and as a means to identify a session tokens are used.

The actual possible interactions between the parties are described in the activity

part of the choreography element. An activity can either be a sequence of activities, a

parallelism of activities, a choice between activities, an interaction or a workunit.

Sequence, parallelism and choice have the usual semantics as control structures. An

interaction actually models the actual exchange of information and observable behav-

ior that takes place. During an interaction variables are exchanged or synchronization

between roleTypes takes place. A workunit contains activities that may be needed for

finalizing, rolling back, compensating or handling exceptions during a choreography.

A workunit has a guard condition attached which either enables it or disables it de-

 WS-CDL and Pi-Calculus 5

pending of the value of the variables specified in this condition1. A workunit may

have a repetition condition.

The core concepts of WS-CDL are channelTypes, variables, interactions and

guarded workunits. We will discuss these further in section 4.

3 Criteria for evaluating the relationship of Pi-Calculus and WS-

CDL

In this section we want to develop the criteria which we will use in the following sec-

tion to evaluate the statement “WS-CDL is based on Pi-Calculus” that were cited in

the introduction and to analyze the relationship between Pi-Calculus and WS-CDL.

A general description of based on in the dictionary leads to the following syno-

nyms and explanations: being founded on; to make, form or serve as a base for; built

on; executed in; grounded on; rooted in; derived from; anchored in. These give us a

general idea of the meaning of based on. More technically speaking the synonyms

“being founded on” and “derived from” seem to clarify the meaning more. The words

“derived from” allude to a software design concept: the concept of inheritance. These

two associations lead us to the following illustration depicted in figure 3.

Pi Calculus

WS-CDL

-Mobility

-Scope
-Names
-Processes

Pi Calculus

WS-CDL

Fig. 3. Pi-Calculus is the basis for WS-CDL

The left-hand illustration shows the “WS-CDL house” and its alleged foundation

the Pi-Calculus. The right-hand illustration shows a UML-class diagram where the

class WS-CDL inherits from the class Pi-Calculus.

There are different understandings for inheritance in software design; yet in all is

common that the inheriting class will inherit all functionality from the superclass but

may extend it. Especially all the attributes or properties of the superclass the subclass

is expected to have yet it may not behave exactly as the superclass.

When one thing is the foundation of another, let us call it building, it is expected

that the building is held by the foundation and that all of the building is routed in the

foundation.

Because of the statement we want to analyze we have to look from the direction of

Pi-Calculus to WS-CDL: the other direction would not help us gain information con-

cerning the given statement.

1 The evaluation of a guard conditions is called matching. The specification is unclear about when this oc-

curs. When several workunit’s guard conditions are matched to true – how this concurrency is resolved

is also left unclear unless these workunits are part of a choice ordering structure where the first workunit

which matches to true is taken.

6 Paul Bouché

These considerations lead us to the following criteria which we will further use to

evaluate the question at hand.

3.1 All concepts of Pi-Calculus should be found in WS-CDL

If WS-CDL is based on Pi-Calculus then all the concepts that are part of Pi-Calculus

should be found in WS-CDL. If there is one concept in Pi-Calculus that does not ex-

ist in WS-CDL then we can conclude that this statement is not true for WS-CDL and

Pi-Calculus.

We will investigate weather or not all the main concepts of Pi-Calculus can be ex-

pressed in WS-CDL and how concise this WS-CDL representation of a Pi-Calculus

concept is. The investigation of this statement will be by example and by general dis-

cussion.

If it is not possible to represent all concepts of Pi-Calculus in WS-CDL as a weaker

version of this criterion we will evaluate how many of the Pi-Calculus concept can be

expressed of WS-CDL and if this is less than 50% we shall conclude that the weaker

version of this criterion does not hold.

3.2 All Pi-Calculus systems of processes should be representable as WS-CDL

choreographies

If WS-CDL finds its formal grounding in Pi-Calculus then all possible Pi-Calculus

systems of processes should be representable as a WS-CDL choreography. This

amounts to defining a mapping which maps any Pi-Calculus process notation to a

WS-CDL choreography retaining if possible all of the original semantics.

Consequently to falsify this statement only one Pi-Calculus system of processes

has to be found which is not representable as a WS-CDL choreography.

To provide a complete mapping function, if it is possible to do so, is out of the

scope of this paper yet we will do partial investigation of this point.

3.3 All properties that are valid for Pi-Calculus should be valid for WS-CDL

If WS-CDL is based on Pi-Calculus then all properties and attributes that are valid for

Pi-Calculus have to be valid for WS-CDL. Such properties include but are not limited

to formulation and proveableness of bisimulation, bisimilarity, deadlock and liveness.

To show how these properties could be proved in WS-CDL or how if WS-CDL is

rooted in Pi-Calculus the proof in Pi-Calculus can be transferred to WS-CDL is out of

the scope of this paper. Yet we choose for our investigation a property of Pi-Calculus

which has been shown in our context: that in Pi-Calculus all Service Interaction Pat-

terns [3] are expressible [1]. This shall serve us as a property we want to investigate

for WS-CDL. If in WS-CDL it is possible to express all the service interaction pat-

terns then we have gained no information for the question at hand yet if there is one

pattern which cannot be expressed in WS-CDL we have falsified the statement 3.3

and thus are able to deduce a conclusion.

 WS-CDL and Pi-Calculus 7

4 Evaluation of WS-CDL with respect to Pi-Calculus

In this section we will investigate the criteria of the preceding section. In section 4.1

criterion 3.1 is evaluated by example and by further reasoning about the concepts of

Pi-Calculus. The second criterion 3.2 is assessed in section 4.2 by general discussion.

Finally in section 4.3 the last criterion from section 3 is investigated by trying to ex-

press the service interaction patterns [3] in WS-CDL.

4.1 Evaluation of the concepts of Pi-Calculus in WS-CDL

To evaluate the relationship of the concepts of Pi-Calculus and WS-CDL we will use

an example choreography specified in the Business Process Modeling Language

(BPMN) [4]. From this example we will analyze WS-CDL’s “concept inheritance”

from Pi-Calculus but will also do a general discussion of the concepts of Pi-Calculus.

We have chosen an example from the e-business domain, i.e. online hotel broking.

The BPMN diagram of the example is shown in figure 4.

C
u

s
to

m
e

r
H

o
te

l
R

o
o
m

B
ro

k
e

r
H

o
te

l

Send Room
Details

Make Offer
to Customer

Book
Room

Dispose
Offer

Receive
Booking

brokerCh

bookCh

custCh

CInit
XorS XorJ

CDone
xorJ

alt1

alt2

HBInit HBDone

HInit HDone

done

done

Fig. 4. Simple choreography example

A collaboration process is shown were each pool name represents a role a participant

can take in an instance of this overall process description. The processes depicted

represent abstract processes were only the public activities are visible. Hence this is a

choreography description.

Three roles are shown: a hotel – wanting its spare rooms rented out, a hotel broker

– broking spare hotel rooms to customers and a customer – wanting to book a room

for a good price. There are biunique names added to those BPMN artifacts which are

usually not named, e.g. “CInit", “alt1” etc. These are needed for the mapping to Pi-

Calculus according to [2].

The hotel does not know any further customers; the hotel broker knows the hotel

and the customer; the customer does not know any hotel but receives offers from the

8

hotel broker about free rooms and prices for those rooms. The interaction between the

partners are as follows:

1. The hotel sends information about available rooms and how these rooms can be

booked (how the hotel can be reached to book, i.e. booking channel – bookCh) to

the hotel broker over the broker channel (brokerCh)

2. The hotel broker constructs an offer from this information and sends it along with

the bookCh to the customer over the customer channel (custCh)

3. The customer receives the offer and either will dispose of it or will book a room at

the hotel over the bookCh

4.1.2 Example in Pi-Calculus
We have mapped this choreography description to Pi-Calculus using the method de-
veloped in [2]. All BPMN flow objects are mapped to unique Pi-Calculus processes
identifiers and each sequence flow to a unique name. The role names (Hotel, Hotel
Broker, Customer) are mapped to a Pi-Calculus process where an index i ∈ N indi-
cates a specific instance of this role.

The message flow elements (brokerCh, custCh, bookCh) are represented with the

same name but with an index specific to the implementing instance of the associated

role. The special set denotes

these names. In formula 3 the choreography is shown as a top-level Pi-Calculus

process

CH
i 1

c

Cust i
i 1

b

Brokeri
i 1

h

Hotel i

(3)

CH defines a process of c customers, b hotel room brokers and h hotels. The Hotel

generates new private names bookChi and roomInfi (available rooms and prices) and

sends it to a freely choosen broker via the free name brokerChx. The hotel processes

are shown in formula 4.

Hotel i v hInit , sendR , receiveB , bookChi , roomInf i

HInit i SendRi RecieveBi HDone i

HInit i HInit i
. hInit i .0

SendRi hInit. SendR i
. brokerChx bookChi , roomInf i . sendR.0

ReceiveBi sendR.bookChi booking . ReceiveB
i
. receiveB .0

HDone i receiveB. HDonei
.0

(4)

The broker receives the bookChz and roomInf from one of the hotels over its corre-

sponding name brokerChi. and sends the private name offer along with bookChz to

one of its customers custChy (formula 5):

Broker i v hbInit , makeO , offer HBInit i MakeOi HBDonei

HBInit i brokerChi bookChz , roomInf . HBInit
i
.hbInit i bookChz , roomInf .0

MakeOi hbInit bookChz , roomInf . MakeO i
.custCh y bookChz , offer . makeO.0

HBDone i makeO. HBDonei
.0

(5)

A customer receives the names offer and bookChz and either finishes or sends the

name booking over the name bookChz.

brokerCh x , custCh y , bookChz x , y , z

 WS-CDL and Pi-Calculus 9

Cust i vcInit , alt1 , alt2 , xorJ , booking i

CInit i XorS i XorJ i DispO i BookRi CDonei

CInit i custChi bookChz , offer . CInit i
.cInit i offer , bookChz .0

XorS i cInit offer ,bookChz . XorS i
.

alt1 offer ,bookChz .0 alt2 offer , bookChz .0

DispO i alt1 offer ,bookChz . DispO
i
.done .0

BooR alt2 offer , bookChz . BookR i
.bookChz booking .done .0

XorJ i done. XorJ i . xorJ .0

CDonei xorJ. CDonei .0

(6)

We observe the following about the Pi-Calculus choreography description: the role

names are expressed as an arbitrary indexed number of processes with the same

name2, there are associated free indexed names brokerChi, custChi and private names

bookChi whose scope is extruded [6, p.15], the private names booking, roomInfi and

offer are extruded as well, and the corelation of the “right” bookCh and roomInf are

inherent in polyadic Pi-Calculus.

4.1.3 Example in WS-CDL and discussion of Pi-Calculus concepts in WS-CDL
In this section we will express the choreography example from the previous section in

WS-CDL. Rather than to converse about the full XML document in detail, which can

be found in appendix I, we will discuss crucial points of the WS-CDL representation

of the choreography and how this relates to the concepts of Pi-Calculus.

Pool names are mapped to roleType names: Hotel, Broker and Customer. These

represent the role any involved party may act in and thus abstracts from the actual in-

volved number of parties. The indexed Pi-Calculus process names are thus repre-

sented.

The content of the exchanged messages is typed by informationTypes: RefT, Of-

ferT, BookingT, RoomInfoT. Tokens are defined for later reference and are of the type

RefT. They are used to among other things to correlate information during exchanges.

In Pi-Calculus there are no types. Information correlation is implicit in Pi-Calculus

but is made explicit in WS-CDL through tokens.

The message flow of the BPMN diagram is modeled by three channelTypes: bro-

kerChT, bookChT and custChT. In order to pass a channelType instance over another

the passing element is specified expressing which channelType is passed. Thus the

mobility concept of Pi-Calculus is represented.

Variables for channel instances and containing data (including the information a

token references to) are defined. In Pi-Calculus there is no distinction between data,

links and variables – this is all represented as a name. Thus the concept of a name is

only in part captured in WS-CDL. The roleType attribute of variable specifies where

the variables “resides”, i.e. where it is visible. This can be thought of as the represen-

tation of the Pi-Calculus scope of a name. Yet in order to express that initially a name

is private and its scope is extruded using the same syntactical name three variables

were specified in WS-CDL, i.e. the private name bookCh is expressed in the WS-

2 These processes represent all the possible potential participant that can act in any of the in-

volved roles: customer, hotel room broker and hotel.

10

CDL variables: bookCh, bookCh@Broker, bookCh@Cust. If the same name had been

used, the variable would have been in the visibility of all roles [5, §§ 5.2, 6.2.3]. In

Pi-Calculus the syntactical name in a process might be changed during evolution us-

ing substitution [6, p.10] yet in the initial specification of the processes the syntactical

name can be the same, not so in WS-CDL.

The interaction elements contain the information exchanges that may occur.

Variables are sent and received during an exchange within an interaction. The WS-

CDL specification states that several such exchanges may happen during an interac-

tion. Thus the polyadic Pi-Calculus concept of sending several names at once is only

in part captured3.

The control structures in WS-CDL are choice, parallelism, sequence, loop and if-

then. The last two are only expressible in a workunit. Therefore all of the Pi-Calculus

control structures are expressible in WS-CDL. Recursion is not directly expressible

in WS-CDL but recursion can always be transformed to one or several loops but this

might require some effort.

The exact concept of a process in Pi-Calculus cannot be captured directly, it can ei-

ther be expressed as roleType, yet this is only feasible in the case of a set of processes

which are indexed and carry the same “label”, i.e. Hoteli or as a participantType but

then for this participantType a role as to be modeled because a participantType cannot

interact in WS-CDL.

We summarize our investigation in table 1.

Table 1. Summary of the investigation of Pi-Calculus concepts in WS-CDL

Pi-Calculus concept Expressible in WS-CDL?

Process Almost fully

Name Partially

Scope of a name Partially

Mobility Fully

Control structures Almost Fully

Polyadic extension Almost fully3

4.2. Investigations on a mapping function

In this section we will investigate on a possible mapping function from a given Pi-

Calculus process to a valid WS-CDL document.

A complete mapping function would have to map the Pi-Calculus grammar to a

WS-CDL grammar or template document and in mapping to a document realize the

semantical reduction rules for Pi-Calculus [12]. Thus the syntax and the semantic of

any given Pi-Calculus process definition has to be considered.

In investigating the statement “WS-CDL is based on the Pi-Calculus” it is at first

obvious that along with such a statement the mapping function we are discussing

should be provided. A missing of such a function indicates that the statement may not

3 It is unclear from the specification of WS-CDL weather or not there can be several request-

exchange elements within one interaction element. From the WS-CDL reference implemen-

tation [4] and the examples we glean that only one is allowed, hence the conclusion.

 WS-CDL and Pi-Calculus 11

be true or not well grounded. In deed we were not able to find any public official or

unofficial document which contains a mapping function from Pi-Calculus to WS-

CDL.

We will try to informally specify a general idea on how to construct a mapping

from Pi-Calculus to WS-CDL and will indicate from the difficulties we face how pos-

sible a mapping is.

In a first step the top-level4 (let us call it level 0) process of the given process defi-

nition has to be determined. This is in our examples: SYS (section 2.1) and CH (sec-

tion 4.1.2). The name of this process can serve as the name for the root choreography

in WS-CDL.

The second step involves mapping the next level process names (those referenced

in the definition of the former), level 1, to either roleTypes and participants or just ro-

leTypes. Indexed processes names such as Hoteli map to a roleType with the name of

the process without the index such as Hotel. Unindexed enumerated process names

are mapped to new participantTypes with corresponding new roleTypes. The seman-

tics of the remaining process names (level 2,..,n) has to be analyzed to decide weather

to map them to roleType / participantTypes or not.

In a third step Pi-Calculus names have to be mapped to either data variables, chan-

nelType instances or state capturing variables. Along with these the corresponding

informationTypes, tokens and tokenLocators have to be modeled. The decision to

map a name to a data variable or channelType instance is not trivial and requires

knowledge of the “Pi-Calculus process modeler” or the intended meaning of the proc-

ess definition is known. The defined sendings and receptions of names are mapped to

interaction elements with corresponding exchange elements including the control

structures of the involved processes. The recursions have to be analyzed through re-

cursion trees etc. in order to express them in iterative form, i.e. loops which can be

expressed in WS-CDL through workunits.

We indicate that to construct a complete mapping function several issues have to

be resolved which are non-trivial, i.e. mapping 2-nd,...,n-th level processes to role-

Type etc, names to variables or channels and resolving multiple recursion into itera-

tions. In a full formal investigation it could show to be impossible to do this for cer-

tain Pi-Calculus process systems at least for the former two issues.

4.3 Investigation on the support of Service Interaction Patterns in WS-CDL

In this section we will investigate if all of the Service Interaction Patterns as described

in [3] are expressible in WS-CDL. We will use the order in which they appear in [3].

Pattern 1-3: Send, Receive, Send/Receive. These pattern are successfully expressed

through a single interaction containing an exchange element with the attribute action

set to request or respond or two exchange elements with request and respond sent

over a channel which has an identity element defined.

4 This already presupposes a structure or hierarchy of the processes where no such thing is part

of the Pi-Calculus. We note that without such a presupposition it is not possible to construct

a mapping function.

12

The next set of patterns involves an arbitrary number of parties to interact with one

transmission each: Pattern 4: Racing Incoming Messages, Pattern 5: One-to-many

send, Pattern 6: One-from-many receive and Pattern 7: One-to-many send/receive.

The support of these patterns in WS-CDL depends on how one interprets a roleType.

A roleType may stand for an arbitrary number of parties of the same “type”, i.e. for

the roleType “Hotel” the “Best Western Inn”, “Hilton” etc. or it may represent a sin-

gle party. In the case of pattern 5 our example of section 4.1 may be interpreted as an

instance of this pattern but only if for each instance of the process model the hotel

broker is the same and the customer is different. Yet in a case where a large number

of receiving parties have to be enumerated the WS-CDL document would grow larger

and larger. It is possible to express but may become unfeasible to do. In Pi Calculus

all instances of these patterns are feasible to express.

Pattern 8 to 10 are of the type where an arbitrary number of transmissions between

the parties occurs: Pattern 8: Multi-responses, Pattern 9: Contingent Requests and

Pattern 10: Atomic multicast notification. Patterns 8 and 9 are supported through

workunits with appropriate guards set. Pattern 10 is supported through the fault han-

dling and exceptionBlock workunits which realize the transactional nature of this pat-

tern.

The last set of patterns 11 to 13 is concerned with routing: Pattern 11: Request

with referral, Pattern 12: Relayed Request, Pattern 13: Dynamic Routing. Pattern 11

is successfully captured by specifying a channelType with the appropriate passing at-

tributes. Pattern 12 is expressible as well with similar constructs. The description of

pattern 13 is: “A request is required to be routed to several parties based on a routing

condition. The routing order is flexible and more than one party can be activated to

receive a request. When the parties that were issued the request have completed, the

next set of parties are passed the request.” Routing can be dynamic. “The set of par-

ties though which the request should circulate might not be known in advance. The

specification of ordering should support service/role late binding.” This pattern can-

not be expressed at all in WS-CDL because current constructs of WS-CDL cannot be

used to realize the requirements of this pattern.

We summarize out investigation in table 2.

Table 2. Support of Service Interaction Patterns [3] in WS-CDL

Pattern Expressible in WS-CDL?

Send, Receive, Send / Receive Fully

Racing Incoming Messages,

One-to-many send, One-from--

many receive, One-to-many send

/ receive

Almost Fully

Issues: all involved parties have

to be enumerated and (statically)

linked

Multi-responses, Contingent Re-

quests, Atomic multicast notifi-

cation

Fully

Request with referral, Relayed

Request

Fully

Dynamic Routing Not expressible

 WS-CDL and Pi-Calculus 13

5 Conclusion

Based on the criteria developed in this paper for evaluating the relationship of Pi Cal-

culus and WS-CDL in section 3 we conclude the following.

Not all concepts of Pi Calculus are found or are expressible in WS-CDL. The con-

cept of a name in Pi Calculus is not expressible in WS-CDL because WS-CDL differ-

entiates between data, variables and channels. The scope of a name is not expressible

in WS-CDL because for one private name whose scope is extruded representations of

it have to be specified at all receiving roleTypes.

A mapping function from Pi Calculus to WS-CDL is not specified. The missing of

it indicates that it might not be possible to state it. A mapping function involves the

non-trivial problems of mapping Pi Calculus names to either data or channel variables

and of reducing possible multiple recursion to iterations (loops).

Pi Calculus supports all service interaction patterns but WS-CDL does not support

pattern 13, dynamic routing, and may not support the multilateral5 interaction pat-

terns. The properties of provableness of deadlock, livelock etc. are not expressed in

the WS-CDL specification. No formal treatment of these properties with respect to

WS-CDL is published. We assume it does not exist at the date of this writing.

Based on these results of our investigation we conclude that the statement “WS-

CDL is based on Pi Calculus” is false, i.e. WS-CDL is not based on Pi Calculus. Pi-

Calculus and WS-CDL have connections on different levels and some concepts of

WS-CDL may have been inspired by Pi Calculus. WS-CDL and Pi Calculus are of

different abstraction levels and domains therefore a comparison seems unfitting yet

we did not associate the two but claim about the association of the two.

Concerning the statement “WS-CDL is based on a formal model” we conclude that

currently this formal model is at a very early stage in development as seen in [14, 15]

but seems not to have been there a priori. Thus WS-CDL was hardly based on a for-

mal model because this model did not exist at the time of creation of WS-CDL. It

may become based on a formal model in the future.

The statement “WS-CDL Has Sound Industrial and Mathematical Foundations” is

also false in the light of the presented results.

It remains future work on how Pi Calculus can be used to specify choreographies.

The global calculus that is suggested in [14] makes connections between parties ex-

plicit whereas in Pi Calculus these are implicit through name matching.

5 Multilateral [3] means interaction of an arbitrary number of parties greater than 2.

14

References

1. G. Decker: Formalizing Service Interactions, seminar paper BPM II, unpublished, Hasso-

Plattner-Institute, Potsdam, Germany, February 2006

2. F. Puhlmann: Introduction to the Pi-Calculus, Lecture Slides BPM II, unpublished, Hasso-

Plattner-Institute, Potsdam, Germany, February 2006

3. A. Barros, M. Dumas and A. ter Hofstede: Service Interaction Patterns: Towards a Refer-

ence Framework for Service-based Business Process Interconnection. Technical Report FIT-

TR-2005-02, Faculty of Information Technology, Queensland University of Technology,

Brisbane, Australia, March 2005.

4. S. White (Editor), Business Process Management Initiative: Business Process Modeling No-

tation, Specification Document V1.0 – May 3rd 2004, bpmi.org, May 2005

5. N. Kavantzas, D. Burdett, G. Ritzinger, et. al. (Editors), World Wide Web Consortium

(W3C): Web Services Choreography Description Language Version 1.0, W3C Candidate

Recommendation, work in progress, Nov 9th 2005

6. R. Milner, J. Parrow and D. Walker: A Calculus of Mobile Processes - Part I, LFCS Report

89-85, University of Edinburgh, June 1989

7. World Wide Web Consortium: World Wide Web Consortium Publishes First Public Work-

ing Draft of Web Services Choreography Description Language 1.0, Press Release Note,

Internet, April 2004, http://www.w3.org/2004/04/wschor-pressrelease

8. S. Ross-Talbot: Orchestration and Choreography: Standards, Tools and Technologies for

Distributed Workflows, unpublished, available at

http://www.nettab.org/2005/docs/NETTAB2005_Ross-TalbotOral.pdf, Pi-Calculus4 Tech-

nology, London, UK and W3C, Geneva, Switzerland, October 2005

9. N. Kavantzas: Aggregating Web Services: Choreography and WS-CDL, Oracle Corpora-

tion, April 2005

10. R. Milner: Communication and Concurrency, Prentice Hall, 1989

11. R. Milner, J. Parrow and D. Walker: A Calculus of Mobile Processes - Part II, LFCS Report

89-85, University of Edinburgh, June 1989

12. Davide Sangiorgi, David Walker: The pi-calculus: a Theory of Mobile Processes, INRIA

Sophia,University of Oxford, Cambridge University Press, 2001, ISBN 0-521-78177-9

13. Pi4SOA, Pi4 Technologies Ltd. : WS-CDL Tool Suite,

http://sourceforge.net/projects/pi4soa/, Nov. 2005

14. Honda, Yoshida, et. al.: A Theoretical Basis of Communication-Centred Concurrent Pro-

gramming, unpublished, W3C, University of London, work in progress, Nov 2005

http://lists.w3.org/Archives/Public/public-ws-chor/2005Nov/att-0015/part1_Nov25.pdf

15. N. Kavantzas: Aggregating Web Services: Choreography and WS-CDL, presentation, Ora-

cle, April 2004, http://www.oracle.com/technology/tech/webservices/htdocs/spec/WS-CDL-

April2004.pdf

 WS-CDL and Pi-Calculus 15

Appendix I

<?xml version="1.0" encoding="UTF-8"?>

<package xmlns="http://www.w3.org/2005/10/cdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema" au-

thor="paul.bouche" name="BMPN_Example" targetNamespace="bpt.hpi.uni-potsdam.de" version="1.0">

 <description type="documentation">

 Illustrating Example

 </description>

 <informationType name="RefT" type="xsd:string"/>

 <informationType name="OfferT" type="Offer"/>

 <informationType name="BookingT" type="Booking"/>

 <informationType name="RoomInfoT" type="RoomInfo"/>

 <token informationType="RefT" name="brokerChRef"/>

 <token informationType="RefT" name="bookChRef"/>

 <token informationType="RefT" name="custChRef"/>

 <token informationType="RefT" name="sesID"/>

 <token informationType="RefT" name="offerID"/>

 <token informationType="RefT" name="bookID"/>

 <tokenLocator informationType="BookingT" query="/BO/bookID" tokenName="bookID"/>

 <tokenLocator informationType="RoomInfoT" query="/Exp/Date" tokenName="sesID"/>

 <roleType name="Hotel">

 <behavior interface="IWebService" name="hotelBehaviour"/>

 </roleType>

 <roleType name="HotelRoomBroker">

 <behavior interface="IWebService" name="brokerBehaviour"/>

 </roleType>

 <roleType name="Customer">

 <behavior interface="IWebService" name="customerBehaviour"/>

 </roleType>

 <relationshipType name="Hotel_Broker_Rel">

 <roleType behavior="hotelBehaviour" typeRef="Hotel"/>

 <roleType behavior="brokerBehaviour" typeRef="HotelRoomBroker"/>

 </relationshipType>

 <relationshipType name="Broker_Cust_Rel">

 <roleType behavior="brokerBehaviour" typeRef="HotelRoomBroker"/>

 <roleType behavior="customerBehaviour" typeRef="Customer"/>

 </relationshipType>

 <relationshipType name="Cust_Hotel_Rel">

 <roleType behavior="customerBehaviour" typeRef="Customer"/>

 <roleType behavior="hotelBehaviour" typeRef="Hotel"/>

 </relationshipType>

 <channelType action="request" name="brokerChT">

 <passing action="request" channel="bookChT"/>

 <roleType typeRef="HotelRoomBroker"/>

 <reference>

 <token name="brokerChRef"/>

 </reference>

 <identity type="primary">

 <token name="sesID"/>

 </identity>

 </channelType>

 <channelType action="request" name="bookChT">

 <roleType typeRef="Hotel"/>

 <reference>

 <token name="brokerChRef"/>

 </reference>

 <identity type="primary">

 <token name="bookID"/>

 </identity>

 </channelType>

 <channelType action="request" name="custChT">

 <passing action="request" channel="bookChT"/>

 <roleType typeRef="Customer"/>

 <reference>

 <token name="custChRef"/>

 </reference>

 <identity type="primary">

 <token name="offerID"/>

 </identity>

 </channelType>

 <choreography name="BPMN_Example" root="true">

 <relationship type="Hotel_Broker_Rel"/>

 <relationship type="Broker_Cust_Rel"/>

 <relationship type="Cust_Hotel_Rel"/>

 <variableDefinitions>

16

 <variable informationType="RoomInfoT" name="roomInf" roleTypes="Hotel"/>

 <variable informationType="RoomInfoT" name="roomInf@Broker" roleTypes="HotelRoomBroker"/>

 <variable channelType="bookChT" name="bookCh" roleTypes="Hotel"/>

 <variable channelType="bookChT" name="bookCh@Broker" roleTypes="HotelRoomBroker"/>

 <variable channelType="bookChT" name="bookCh@Cust" roleTypes="Customer"/>

 <variable channelType="custChT" name="custCh" roleTypes="HotelRoomBroker Customer"/>

 <variable channelType="brokerChT" name="brokerCh" roleTypes="Hotel HotelRoomBroker"/>

 <variable informationType="OfferT" name="offer" roleTypes="HotelRoomBroker"/>

 <variable informationType="OfferT" name="offer@Cust" roleTypes="Customer"/>

 <variable informationType="BookingT" name="booking" roleTypes="Customer"/>

 <variable informationType="BookingT" name="booking@Hotel" roleTypes="Hotel"/>

 </variableDefinitions>

 <sequence>

 <sequence>

 <description type="documentation">

 brokerCh<bookCh,roomInf>

 </description>

 <interaction channelVariable="brokerCh" name="sendBookCh" operation="receiveBookCh">

 <participate fromRoleTypeRef="Hotel" relationshipType="Hotel_Broker_Rel" toRole-

TypeRef="HotelRoomBroker"/>

 <exchange action="request" channelType="bookChT" name="transmitCh">

 <send variable="cdl:getVariable('bookCh','','')"/>

 <receive variable="cdl:getVariable('bookCh@Broker','','')"/>

 </exchange>

 </interaction>

 <interaction channelVariable="brokerCh" name="sendRoomInf" operation="receiveRoomInf">

 <participate fromRoleTypeRef="Hotel" relationshipType="Hotel_Broker_Rel" toRole-

TypeRef="HotelRoomBroker"/>

 <exchange action="request" informationType="RoomInfoT" name="transmitRoomInf">

 <send variable="cdl:getVariable('roomInf','','')"/>

 <receive variable="cdl:getVariable('roomInf@Broker','','')"/>

 </exchange>

 </interaction>

 </sequence>

 <sequence>

 <description type="documentation">

 custCh<bookCh,offer>

 </description>

 <interaction channelVariable="custCh" name="sendBookCh" operation="receiveBookCh">

 <participate fromRoleTypeRef="HotelRoomBroker" relationshipType="Broker_Cust_Rel"

toRoleTypeRef="Customer"/>

 <exchange action="request" channelType="bookChT" name="transmitCh">

 <send variable="cdl:getVariable('bookCh@Broker','','')"/>

 <receive variable="cdl:getVariable('bookCh@Cust','','')"/>

 </exchange>

 </interaction>

 <interaction channelVariable="custCh" name="sendOffer" operation="receiveOffer">

 <participate fromRoleTypeRef="HotelRoomBroker" relationshipType="Broker_Cust_Rel"

toRoleTypeRef="Customer"/>

 <exchange action="request" name="transmitOffer">

 <send variable="cdl:getVariable('offer','','')"/>

 <receive variable="cdl:getVariable('offer@Cust','','')"/>

 </exchange>

 </interaction>

 </sequence>

 <choice>

 <noAction roleType="Customer">

 <description type="documentation">

 Dispose Offer

 </description>

 </noAction>

 <interaction channelVariable="bookCh@Cust" name="bookCh<booking>" opera-

tion="receiveBooking">

 <participate fromRoleTypeRef="Customer" relationshipType="Cust_Hotel_Rel" toRole-

TypeRef="Hotel"/>

 <exchange action="request" informationType="BookingT" name="bookRoom">

 <send variable="cdl:getVariable('booking','','')"/>

 <receive variable="cdl:getVariable('booking@Hotel','','')"/>

 </exchange>

 </interaction>

 </choice>

 </sequence>

 </choreography>

</package>

