
WFWG IFTB Notes
Skef Iterum

July 25, 2023

Hello everyone -

Today I’m talking about some Adobe work I’ve alluded to before, which might serve as a

replacement for the range request specification. The current system is a prototype and definitely

not “finished”, although the part that would be part of a specification is fairly close.

It’s easiest to explain this system in relation to the three other subsetting systems it draws

ideas from. So I’ll start with a quick review of static subsetting, the range request concept, and

then just some of the basic, lower-level technology involved in subsetting a font.

Then I’ll describe the file formats and client side of this new system, both of which are quite

simple. And then, after a comparsion of IFTB with other options, I’ll discuss the endoder and what

remains to be done in that area. I’ll end with a bit of miscellany and pointers to repositories and

branches.

Before I go on want to thank Garret for his consultation over the past week. He was particularly

helpful resolving some of my mistaken impressions of how range request IFT was supposed to

work, and his input improved many sections of this talk.

1 Static subsetting

Static subsetting is one means of achieving something like incremental font transfer. The idea is

to split a font into a collection of subset files, each of which contains the glyphs needed to render

a particular subset of unicode codepoints.

In order to use those files a client also needs a mapping from each relevant code point to its

corresponding subset file. On the web this mapping is provided using the unicode-range property

in CSS. A browser will determine which files are needed to render a page or content, and download

each file not already contained in its cache.

In order for static subsetting to be efficient, the mapping must take into account which glyphs

are likely to be needed together. By grouping glyphs that tend to be used together into the same

subsets, one reduces the number of subsets that need to be downloaded in typical cases.

1



WFWG IFTB Notes 2

So, three notes about this system, for future reference:

1. Both the glyph path data and the shaping data are subset, with corresponding reductions in

file size.

2. All processing is done up-front, resulting in normal font files which can then be compressed

at the highest levels. There is therefore no “server side” beyond some means of allowing

the files to be downloaded. As a result the system is highly compatible with CDN caching.

3. The primary disadvantage of static subsetting is that any shaping data that applies between

subsets is discarded. This fragments the font on the client side so that the overall behavior is

different than using the original font. Another disadvantage is that data downloaded is less

specific, and therefore larger, compared with a subset specific to a given page or content.

And the path data for some glyphs will be downloaded multiple times.

2 Range request

The idea of range request is to use that HTTP technology to download specific byte ranges from a

font rather than the whole file. In practice this will mean downloading all, or almost all, parts

of the file other than the glyf (and possibly gvar) tables, or all but the CharStrings data in the

case of a CFF font. After that, the client would use the shaping information together with cmap

to determine which glyph paths are needed to render a page, and those would also be retrieved

using range request, with the ranges determined by values in the loca table, subtables of gvar, or

the CFF CharStrings index.

The font file made available for this kind of incremental transfer would generally be pre-

processed to lower the total number of glyph path byte ranges to be requested. This pre-processing

would use relative frequency data similar to that used for static subsetting, but the efficiency of

the overall system is much less tied to that data: having more ranges to download has a modest

effect on the total number of bytes uploaded and downloaded.

There are a number of things I want to say about the range request concept. I’ll start with

comparisons to static subsetting.



WFWG IFTB Notes 3

1. With range request, only glyph path data is subset. The full amount of shaping data is

always downloaded.

2. Because the subsetting logic is on the client side, the font on the server side must either

be uncompressed, or would need to be uncompressed by the server in order to get the

right ranges. (Starting uncompressed is far preferable.) The data transferred can still

be compressed by the server, but only dynamically and therefore at accordingly lower

compression levels

3. Because all shaping data and all needed glyph paths are downloaded, the system does not

suffer from the behavioral fragmentation of static subsetting.

4. Although range request could be compatible with glyf-table composite glyphs, this would

substantially increase the needed number of round-trip requests needed. Composites

are therefore prohibited in the current specification. (The specification also prohibits

CFF subroutines, perhaps by analogy. This makes some sense given the overall goal of

incremental transfer, but the complete ban seems unwarranted to me. If we do move

forward with range request we should soften that.)

3 Concerns with Range Request

I have three primary worries about to range request as specified. The first concerns difficulties of

implementation. With this system the steps are:

1. Download the shaping data.

2. Feed the content to be rendered through the local shaping engine to determine the full set

of glyphs needed. (Note that shaping itself can sometimes be expensive, and that cost must

be paid before the download of glyph data starts.)

3. Download the data for the needed glyphs.

4. Use that data to finish the rendering process.



WFWG IFTB Notes 4

For this to work the shaping engine must be altered to work with a partial font file, and then

either modified to store state during the gap between shaping and rendering or shaping must be

run twice. This may be straightforward for systems that already use HarfBuzz has the shaping

engine, but other systems could require significant restructuring. It is also different work than is

needed to support the patch-subset specification.

The second worry is the number of round-trips needed. It sounds to me like a minimum of 3

are needed given current technology: One for the shaping data, one for glyph path data, and oene

before that for the CORS pre-flight that must precede a requests for multiple ranges. And if the

font has a gvar table that will almost always add another round trip.

(Just to clarify: I think there’s been some suggestion that the CORS preflight might be rolled

into the initial request. I don’t think that’s true in the narrow sense — that request will either

itself be for multiple ranges, which would need its own pre-flight, or would be for a single range,

which would not need a pre-flight but also not avoid the need for a later one.

Still, perhaps the initial request and a separate preflight preparing for a later multi-range-request

could be made in parallel – I can see how that might work.)

However, even getting down to the minimum two or three serial requests involves choosing

between of two imperfect strategies. One is to guess a length of the initial file that will include all

of the shaping data but not too much of the glyph data. The other is to start loading the font data

while monitoring the stream as it comes in, and then to close the connection when all of the data

needed has arrived. This second idea sounds attractive but the IFT specification repository has an

issue filed — seventy-four — outlining the problems with it.

So all in all, I would say that the technology is complex to adopt and has some significant

performance drawbacks.

4 Subsetting technology

I also want to briefly discuss the lower-level process of subsetting a font so that I can establish a

bit of terminology. Subsetting is often a two stage process:

1. The first stage takes a set of codepoints and layout features and determines the set of glyphs

needed to accurately render those codepoints and features.



WFWG IFTB Notes 5

2. The second stage goes back through the various tables, including shaping data and the

tables where glyph path data is stored, and reduces their contents so that only glyphs in the

first stage list are mentioned.

Note that parts of this second stage are optional. It is possible to “retain” GIDs by inserting

blank (or minimal) entries for omitted glyphs in the glyph path tables. That gives one the option

of leaving the shaping and compositing data unmodified.

However, I bring all this up in order to highlight the first stage, and the function — in something

like the mathematical sense of “function” — that it implies. This is a map from the input parameters

(a set of Unicode codepoints and a set of layout features) to a set of glyphs.

This is a simple and familiar enough idea. However, I’m not aware of a specific term for it.

As I’ll need that term later, I’m going to call it the “glyph closure function”, and call the set of

glyphs mapped by a particular combination of codepoints and features the “glyph closure” of that

combination.

5 Binned Incremental Font Transfer

With this background I can now talk about this new system, which I’ve been calling “Binned

Incremental Font Transfer” or “IFTB”.

I’ll start with a brief description of the two IFTB font file formats. Conveniently, these

are almost identical to the already existing formats they correspond to: OTF (uncompressed)

and WOFF2 (compressed). The only differences between the IFTB formats and their OpenType

counterparts are:

1. The new formats have sparse glyph path data, with some empty (with glyf, gvar, or CFF2)

or minimal (with CFF) entries for some glyphs. The other tables are taken directly from the

font, or perhaps unpacked and repacked for purposes of optimization.

2. There is an extra “IFTB” table containing various data, including a mapping from input

parameters (which as usual are a set of unicode codepoints and a set of layout features) to a

set of bin indices. I’ll talk more about bins in a moment.



WFWG IFTB Notes 6

3. The OTF version of the file is “IFTB” rather than “OTTO” or 0x00010000, in order to avoid

accidentally using one of these files without appropriate client-side processing.

4. There are some additional requirements on (and suggestions about) table and subtable

ordering.

Note that as with the OTF/TTF and WOFF2 formats, you can move between the two IFTB

font formats using woff2_decompress and (a very slightly modified, but still entirely conforming

version of) woff2_compress. Accordingly, I have been using the suffixes _iftb.otf, _iftb.ttf,

and _iftb.woff2 for these files.

6 Bins

Now, about bins:

Each GID in an IFTB-encoded font is assigned to one or more bins. There is an array of bin

indices in the IFTB table indexed by GID that encodes most of that mapping. (So that bin must

include that glyph; but other bins might also include it.)

There is also a set of per-layout-feature IFTB subtables that map bins to bins. (The specifics of

that bin-to-bin mapping are a little in flux right now, at least in my head, but I’ll talk about it in

general terms in a moment.)

It might be easiest to think of a bin as analogous to the set of glyphs in a static subset: Some

glyphs are included because they correspond to unicode codepoints that tend to get used together,

and others are included because they are substituted for the first sort under certain conditions

of shaping or “compositing” (narrowly in the sense of composite TTF glyphs, or more loosely as

with references in COLR substables).

Note that bin index 0 is special: this indicates the bin associated with the initial IFTB encoded

font. The path data for glyphs in bin 0 is always present in any valid copy or augmentation of the

font.



WFWG IFTB Notes 7

7 Chunks

Each bin other than 0 has an associated chunk file. As with the font files, there are two formats

for a chunk: The uncompressed format starts with tag “IFTC” and the compressed format starts

with tag “IFTZ”. Other than that, the only difference between the two formats is that all content

of an IFTZ chunk file after a short header is Brotli-compressed.

A Chunk file contains glyph path data for every glyph assigned to its corresponding bin. There

can be one or two subtables of path data: two in the case of a variable TTF font with both glyf

and gvar entries, one otherwise. Information in the header indicates which GIDs correspond to

which path data entries as well as the destination table or tables.

8 Client-side operation

Client-side operation with IFTB is quite simple compared with the range request system:

1. In the first stage the client downloads the initial IFTB-encoded file. This will presumably

be the woff2-like format in almost all cases. The type of file can be recognized in the OTF

version field of the woff2 header (or by the first four bytes of the uncompressed file).

2. Next the client takes its set of needed codepoints and maps these to GIDs using the cmap

table in the downloaded font file. cmap must include either a format 12 or format 4 subtable.

If both are present the format 12 subtable must be used.

3. The client then computes, in several stages, a set of bin indexes to download.

First it maps each GID added in the last step to a chunk index using the array in the IFTB

table and adds that to a “chunk set”.

Then it sorts its list of needed layout feature tags and looks for each in the list of feature-

specific IFTB subtables. When a tag is present, it uses the chunk-to-chunk mapping to add

further chunk indices to the set. (Note that there is no need to go through the feature-specific

subtables to compute a “chunk closure” — the chunk list only needs to be processed once

per feature as long as the feature tags are examined in order.)



WFWG IFTB Notes 8

Not every layout feature available in the font will have a subtable. Typically only larger,

optional features will have extra mappings. The encoder chooses whether a given layout

feature will be encoded separately.)

In the last stage the client takes the list of needed bin indices and subtracts the list of bins

that have already been added to the font. (That set has its own bitmap in the IFTB table.)

4. The list of needed chunks now in hand, the client initiates the download of each correspond-

ing chunk file. The IFTB table also contains a relative URI “template” for chunk files, stored

as a string. This template is filled in with characters corresponding to digits of the bin index

encoded as hexidecimal, producing a relative URI for a specific chunk. That URI is then

made absolute relative to the initial font’s URI, providing the download URI.

5. As downloaded chunks arrive they are uncompressed and the glyph data they contain is

staged in an intermediate data-structure. When the last chunk is unpacked that structure is

used to add the glyph data to the decompressed font image.

6. Then the chunk bitmap in the IFTB table is updated to reflect the bins that have been

integrated.

7. Finally, the OTF version is set to “OTTO” or 0x00010000, the sfnt-header checksums are

updated, and the font is ready for use.

Augmentation proceeds pretty much the same way, except of course that the file has already

been downloaded.

9 Comparisons

Before moving on I’ll point out some the features and aspects of performance of IFTB relative to

the other systems.

The compression level with IFTB is the same as with static subsetting, and better than that

of patch-subset or range request, because the files are compressed in advance. Note, however,

the impact of that level is offset by the fact that IFTB data is compressed into separate bundles



WFWG IFTB Notes 9

while the data for those systems is compressed as a single unit. (Patch-subset has the additional

advantage that it uses the previous file as a Brotli “dictionary” for the next file.)

The glyph “granularity” of IFTB is similar to that of static subsetting and can be similarly tuned.

This is coarser grained than the other systems because the encoding is not specific to a parameter

set, so a client will typically download data for more glyphs compared with patch-subset or range

request. The data for some glyphs may be downloaded multiple times.

In contrast with static subsetting, all shaping data from the original font is downloaded from

the start, making that part of the system more similar to range request than the other technologies.

Finally, in terms of client-side interface IFTB is very close to patch-subset, which seems like a

significant advantage. Supporting range-request would mean additional work over patch-subset,

with calls needed in different contexts. Except for the very first stages (downloading the initial

IFTB file or noting the CSS directive to use patch-subset) the paramterizations and upper-level

interfaces of IFTB and patch-subset are close enough to be easily integrated into a single library.

And the additional C++ code for IFTB beyond WOFF2 and Brotli decoders — which are already

present in browsers — will probably add up to less than 2000 lines. (It is around 1000 now).

10 CDN Caching

As with static subsetting there is no server-side to the system other than a network file-store. It is

therefore fully compatible with CDN caching and significantly more cachable than patch-subset,

given that the chunk files are statically computed and independently loadable.

I should probably clarify what I mean when I use “compatible with caching” as a relative term.

Any HTTP-based protocol can be compatible with CDN caching, broadly speaking, as long as it

conforms to certain restrictions (GET requests (or QUERY requests soon), a URL limit length, etc.)

What I’m getting at is the question of how likely it is that a needed content will be cached, which

(to oversimplify) depends on how many different encoded files correspond to a source font file.

With static subsetting this is the number of files initially created. With IFTB it is the number of

chunks. With range request it depends on the patterns of bytes typically downloaded and how the

CDN caches data for range requests. Of the systems discussed, patch-subset has the worst caching

profile: The number of initial files corresponds to the distinct sets of input parameters, which



WFWG IFTB Notes 10

is related to the number of distinct contents, and the number of augmentation files corresponds

to distinct combinations of current and new parameters, which is related to the browsing paths

between contents.

To again oversimplify, whether IFTB or patch-subset is a better choice for a given client will

therefore generally depend on narrowest network path between the client and the “original” server

or servers.

When the so-called “last mile” is narrow or congested, as with many phone networks, the

client will generally be better off with patch-subset, as that minimizes both round-trips and the

number of bits that need to be transmitted over that last link.

When the smallest link is earlier in the network, which choice makes more sense will likely

depend on how widely a font is used (or, in some cases, whether a provider is taking extra steps to

keep its files cached). Frequently loaded font or chunk files are likely to be cached, and there is

likely to be a CDN cache at, or closely connected to, the start of the last mile. Clients that have a

clear path to their CDN cache may be able to download many more bytes per second from it than

from a more distant server, providing an advantage to IFTB (or Range Request, for that matter).

When the needed IFTB files are not cached, the CDN must retrieve them from the original

server, which gives patch-subset the advantage in virtue of its generally smaller payload.

11 Shaping and rendering behavior

As I’ve described IFTB so far it probably sounds like the system evolved from static subsetting

more than the other technologies, although that is not how we arrived at the design. Why, then,

is this coming up now instead of in, say, 2018?

The answer has to do with an additional question, which is how IFTB is able to provide

the same behavior as the original font, as long as the client-side chunk integration process is

implemented correctly.

Note that:

• Patch-subset provides the same behavior by carefully calculating a self-consistent subset

and building the relevant tables back up around it.



WFWG IFTB Notes 11

• Range-request provides the same behavior by tracing through the relevant font tables to

arrive at the full list of needed glyphs (after downloading all the shaping data).

• And, as noted earlier, static subsetting simply doesn’t provide the same behavior.

12 The IFTB encoder

We know that with IFTB all shaping data for the font is downloaded from the start, and can assume

that each chunk file will be correctly encoded, so that it has the data for all GIDs associated with

its bin. With that in mind, the answer about behavior comes in the form of a “closure requirement”

on the encoding process. This is the core of the design:

• The set of glyphs contained in set of bins computed from the input parameters — that is,

the codepoint and layout feature sets — must be a superset of the glyph closure for those

parameters.

I hope it’s self evident that meeting this requirement ensures that the processed font will have

the same behavior as a font produced using patch-subset.

13 Encoding options

The requirement is one thing, meeting it is another. The encoder I have developed for this initial

prototype is quite primitive, although it performs fairly well with a surprising number of existing

CJK fonts. It is constructed around meeting the requirement, and it seems to do so correctly

according to one randomization test that I’ve written and tried out with some fonts, and also in

our live testing.

I’ll talk more about how and when it performs poorly in a moment.

Here are some aspects of encoding:

1. When a glyph has a Unicode codepoint but is never the product of a substitution or compo-

sition, it can just be added to whatever bin makes sense for Codepoint grouping. This is the

easiest case.



WFWG IFTB Notes 12

2. When a glyph has no codepoint and is only substituted under one circumstance, it can just

be assigned to the bin of a glyph it substitutes for. (This is usually the glyph it substitutes

for, but with a ligature substitution there can be multiple options.)

With other glyphs things are more complicated, and it is easier, for now, to talk about the

options available to an encoder. Assume an encoder that starts by forming fine-grained “proto-

bins” and then tries to resolve each circumstance in which the closure requirement will not be

met. In doing so it has these three options:

1. Merge two proto-bins into one. If a glyph is “needed” in more than one bin, merging them

together results in only needing it in one. The main disadvantages of merging are that bins

can wind up too coarse-grained, or (probably more importantly) it can wind up containing

too many unrelated codepoints, which works against the goal of grouping like-with-like.

2. Duplicate the glyph across multiple bins. This avoids the disadvantages of merging but can

(and often will) increase the number of bits that need to be downloaded in a given scenario.

3. Put the glyph in bin 0. This avoids the disadvantages of the other two alternatives at the

cost of increasing the size of the initial font file. Because many glyphs are rarely needed,

adding those to the initial file wastes bandwidth and reduces performance for many users.

However, bin 0 is an important fallback for complex cases: if some circumstance is just too

complicated for an encoder to figure out, it can always punt by putting the glyph into bin 0.

14 The prototype encoder

My current prototype encoder never duplicates a glyph. It starts by forming proto-bins informed

by glyph frequency data (provided in a config file) and does some chunk merging. Then it looks

for cases that are at all complicated and dumps glyphs into bin 0 to meet the closure requirement.

Indeed, the current version is so simple that “is substituted for another glyph and also has its own

codepoint” counts as “complicated”. These will generally wind up in bin 0.

As a result, fonts with more complicated composition or shaping patterns wind up with larger

initial files, sometimes much larger.



WFWG IFTB Notes 13

I’ve only looked at the current problems briefly, but it appears that across existing CJK fonts

the biggest sources of trouble are the aalt and nalt layout features, which can be extensive when

a font designer specifies those thoroughly. Because these are rarely used in practice (at least in

web contexts), this may allow for a sort of hack: just always duplicate the glyphs for those features

in additional bins, perhaps even just one bin per feature to make things easy. The result will be a

few extra chunks that are almost never downloaded, combined with getting those features out of

the way of the rest of the encoding analysis. I have been meaning to add the logic for this but

haven’t had an opportunity.

15 A better encoder

Based on the performance of my very simple encoder, and an understanding of the three options

(bin merging, glyph duplication, and bin 0), I am tentatively convinced that this system can work

well in almost all relevant CJK applications and probably other applications (such as Emoji fonts).

And of course the specification itself only needs to refer to the closure requirement; it need

not and probably should not explain how to meet it. So all that remains to write that specification

(as far as I can tell) is to rethink some details of the IFTB layout feature chunk-to-chunk mapping,

as I think my current design is too restrictive.

Of course, arguing for IFTB as replacement for range request and an alternative to patch-subset

would be a lot easier with a good encoder already in hand. Even if we were all convinced that

a better encoder is just a matter of putting in the work, we still face the problem of accurately

estimating IFTB performance, as estimates based on the prototype encoder won’t look great for

some fonts.

On that subject, I want to be clear today that while I was given the opportunity to develop

these ideas to this point, and I can continue to participate in discussions here and do more work on

the specification side, this is not my current project and probably will not be my primary project

in the short or mid term. In particular, I don’t expect to be directly contributing to a better encoder

implementation anytime very soon. I can talk about ideas, of course, and I do have some of those.



WFWG IFTB Notes 14

16 Preloading

One potential difficulty of the “chunk file” convention is the overhead of downloading chunk files,

as in some cases many chunks might be needed. From our initial testing this doesn’t seem like

a huge problem as long as the server implements HTTP 2. But it may be desirable to download

fewer total files in the normal case.

When I described the client-side operation of the system I noted that the IFTB table contains a

map of which chunks are already integrated. This is how we maintain state for augmentation, but

nothing about the code restricts it to that case. If the initial file already comes with chunks 8 and

12 in addition to chunk 0, the client side will never download chunks 8 and 12.

This enables what I have termed “preloading”. In addition to the more or less “blank” initial

file that results from IFTB encoding, one can also create initial files that already contain whatever

chunks one desires. One obvious desirable possibility, which Adobe has experimented with, is an

initial file with the chunks for all high-frequency codepoints of a script, such as Japanese. Creating

that file is just a matter of doing on the server-side what is normally done on the client side, and

then compressing the result. (Recall that an uncompressed IFTB font file is almost a TTF or OTF,

and that a compressed IFTB font file is just a WOFF2 encoding of that TTF or OTF.)

Preloading decreases the total number of bytes that need to be downloaded, because any

glyphs duplicated among the preloaded chunks will no longer be duplicated, and because it avoids

the overhead of chunk headers. It also means that all preloaded data is compressed together, at

the highest Brotli level, regaining some of the compression advantage relative to patch-subset.

The possibility of preloading may not look much different than just putting all those glyphs

in bin 0 in the first place, and for single-language fonts it isn’t. When a font is designed for use

with multiple scripts and/or languages, it is of course possible to IFTB-encode that font for each

relevant language separately. However, the configuration for my prototype encoder also allows

optimization for multiple scripts and/or languages simultaneously (within reason). One can then

produce preloaded and compressed initial font files with the high-frequency bins corresponding

to each language.

This saves server disk space, of course, in that the chunk set is common across all the languages.

However, far more importantly for performance, the fact that requests from the users of the various



WFWG IFTB Notes 15

scripts target the same set of chunk files, making them that much more cachable.

In any case, current statistics suggest that a thoroughly preloaded Japanese IFTB font file could

render a significant percentage of contents without loading any additional chunks, reducing the

needed number of round-trips to one. We expect the same will be true of other CJK languages.

17 Miscellany

Before moving on to the discussion, there are a few things I want to note about the current

implementation and documentation in case anyone runs into them.

1. The current prototype actually has two means of retrieving chunks to choose between. One

is downloading the chunk files as I described. The other is to download chunks from a

“range file”, which is a single file of all compressed chunks concatenated. The current draft

IFTB table also contains an array of chunk offsets into that range file, similar to loca or a

CFF index. The idea is that one could do a range request to get all chunk data from a single

file rather than downloading separate files.

I included this option because when I started the prototype I wasn’t sure which mechanism

would be best. At this point it looks like chunk files will work better. The main disadvantage

of downloading many files is overhead, but HTTP 2 mostly resolves that problem. And it

appears to be very unlikely one would run into a server that does a good job with multi-range

requests but a poor job serving multiple files. (I could be wrong about this.) We have already

discussed the CORS preflight problem with range request. The multipart-byterange

format used for multi-range-requests is also a bit hokey, although I did write parser code

for it that doesn’t need to scan through the range data and it seems to work fine.

2. The GID to chunk map in the current IFTB table is just an array of chunk indexes. This is a

design decision on my part that could be revisited.

The main way of compressing the whole table would be to reorder it to put like chunks

in sequence, but that means reordering GIDS, which would work against the reordering

typically done to optimize cmap tables, which have somewhat different constraints.



WFWG IFTB Notes 16

Short of that extreme, one could only include those GIDS with unicode mappings, as

those are the only entries that will normally be checked. I decided against this because a

“sophisticated” client might want to add particular glyphs by GID for its own reasons, so it

seemed best to provide a full mapping in the format.

3. The prototype must currently be linked against a slightly modified version of HarfBuzz.

The modifications are at https://github.com/skef/harfbuzz/tree/chunkmods and are modest.

Most have to do with enforcing IFTB table and subtable ordering requirements. I also added

an interface to retrieve the offset to the CharStrings Index of a CFF table, for my convenience.

(This branch hasn’t been touched since February and is about a thousand commits behind

the current HarfBuzz main branch, but rebasing shouldn’t be difficult.)

4. The prototype must also be linked against a slightly modified version of the WOFF2 library.

The modifications are at https://github.com/skef/woff2/tree/iftb_changes and are trivial.

The existing library always added tables in tag order when encoding and I just needed

an option to retain the ordering of the source file. The specification only imposes a few

ordering restrictions and the library’s standard decoder will happily decode my IFTB table

ordering.

18 Resources

The prototype repository is https://github.com/adobe/binned-ift-reference. I got approval to use

the W3C Software License for the public release.

The prototype handles the requirements with git subrepositories. For now it has a simple

Makefile-driven build, because higher-level stuff can get confused when you’re building against

modified versions of common libraries. The encoder can be a bit “fragile” for that reason. The

wasm code only includes standard bits of the WOFF2 and Brotli libraries and is not fragile.

The prototype also includes a browser demo with its own README. It is not sophisticated — it

doesn’t even augment — but it can probably be quickly adapted to match the current patch-subset

demo. The WASM and Javascript are included so that they don’t need to be compiled.

Ages ago I wrote up some documentation in a March fork of the IFT spec that predates the

division into the two protocols. That branch is at https://github.com/skef/IFT/tree/iftb. This

https://github.com/skef/harfbuzz/tree/chunkmods
https://github.com/skef/woff2/tree/iftb_changes
https://github.com/adobe/binned-ift-reference
https://github.com/skef/IFT/tree/iftb


WFWG IFTB Notes 17

is meant much more as a set of notes than a serious attempt at a PR, especially in its current

form. Still, I think it’s fairly accurate relative to the prototype and explains things I haven’t here,

including the IFTB table and chunk file layouts.

19 Questions/Discussion


	Static subsetting
	Range request
	Concerns with Range Request
	Subsetting technology
	Binned Incremental Font Transfer
	Bins
	Chunks
	Client-side operation
	Comparisons
	CDN Caching
	Shaping and rendering behavior
	The IFTB encoder
	Encoding options
	The prototype encoder
	A better encoder
	Preloading
	Miscellany
	Resources
	Questions/Discussion

