
Annotation Summary
59 annotations on 24 pages by Adam Powers x26 x33

Web Authentication: A Web API
for accessing scoped credentials

http://w3c.github.io/webauthn/

http://www.w3.org/TR/webauthn/

Vijay Bharadwaj (Microsoft)
Hubert Le Van Gong (PayPal)
Dirk Balfanz (Google)
Alexei Czeskis (Google)
Arnar Birgisson (Google)
Jeff Hodges (PayPal)
Michael B. Jones (Microsoft)
Rolf Lindemann (Nok Nok Labs)

Copyright © 2016 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use rules apply.

This specification defines an API that enables web pages to access WebAuthn compliant strong
cryptographic credentials through browser script. Conceptually, one or more credentials are stored
on an authenticator, and each credential is scoped to a single Relying Party. Authenticators are
responsible for ensuring that no operation is performed without the user’s consent. The user agent
mediates access to credentials in order to preserve user privacy. Authenticators use attestation to
provide cryptographic proof of their properties to the relying party. This specification also describes
a functional model of a WebAuthn compliant authenticator, including its signature and attestation
functionality.

Editor’s Draft, 13 May 2016

This version:

Latest published version:

Editors:

Abstract

Status of this document

This jumps right into using jargon --
given the potential audience, do we want
to ease them into he jargon?

This jumps right into using jargon --
given the potential audience, do we want
to ease them into he jargon?

#1 p.1

This specification defines an API for web pages to access scoped credentials through JavaScript, for
the purpose of strongly authenticating a user. Scoped credentials are always scoped to a single
WebAuthn Relying Party. This scoping is enforced jointly by the User Agent implementing the Web
Authentication API and the authenticator that holds the credential, by constraining the availability
and usage of credentials. Scoped credentials created by a WebAuthn Relying Party can only be
accessed by web origins belonging to that WebAuthn Relying Party. Additionally, privacy across
WebAuthn Relying Parties must be maintained; scripts must not be able to detect any properties, or
even the existence, of scoped credentials belonging to other WebAuthn Relying Parties.

Scoped credentials are located on authenticators, which can use them to perform operations subject
to user consent. Broadly, authenticators are of two types:

Note that an external authenticator may itself contain an embedded authenticator. For example,
consider a smart phone that contains a scoped credential. The credential may be accessed by a web
browser running on the phone itself. In this case the module containing the credential is functioning
as an embedded authenticator. However, the credential may also be accessed over BLE by a user
agent on a nearby laptop. In this latter case, the phone is functioning as an external authenticator.
These modes may even be used in a single end-to-end user scenario. One such scenario is described
in the remainder of this section.

1. Embedded authenticators have their operation managed by the same computing device (e.g.,
smart phone, tablet, desktop PC) as the user agent is running on. For instance, such an
authenticator might consist of a Trusted Platform Module (TPM) or Secure Element (SE)
integrated into the computing device, along with appropriate platform software to mediate
access to this device’s functionality.

2. External authenticators operate autonomously from the device running the user agent, and
accessed over a transport such as Universal Serial Bus (USB), Bluetooth Low Energy (BLE) or
Near Field Communications (NFC).

1.1. Registration (embedded authenticator mode)

On the phone:

User goes to example.com in the browser and signs in to an existing account using
whatever method they have been using (possibly a legacy method such as a password), or
creates a new account.

The phone prompts, "Do you want to register this device with example.com?"

Safe to assume that readers are familiar with
scoped credentials?
Safe to assume that readers are familiar with
scoped credentials?

#2 p.5

This specification defines an API for web pages to access scoped credentials through JavaScript, for
the purpose of strongly authenticating a user. Scoped credentials are always scoped to a single
WebAuthn Relying Party. This scoping is enforced jointly by the User Agent implementing the Web
Authentication API and the authenticator that holds the credential, by constraining the availability
and usage of credentials. Scoped credentials created by a WebAuthn Relying Party can only be
accessed by web origins belonging to that WebAuthn Relying Party. Additionally, privacy across
WebAuthn Relying Parties must be maintained; scripts must not be able to detect any properties, or
even the existence, of scoped credentials belonging to other WebAuthn Relying Parties.

Scoped credentials are located on authenticators, which can use them to perform operations subject
to user consent. Broadly, authenticators are of two types:

Note that an external authenticator may itself contain an embedded authenticator. For example,
consider a smart phone that contains a scoped credential. The credential may be accessed by a web
browser running on the phone itself. In this case the module containing the credential is functioning
as an embedded authenticator. However, the credential may also be accessed over BLE by a user
agent on a nearby laptop. In this latter case, the phone is functioning as an external authenticator.
These modes may even be used in a single end-to-end user scenario. One such scenario is described
in the remainder of this section.

1. Embedded authenticators have their operation managed by the same computing device (e.g.,
smart phone, tablet, desktop PC) as the user agent is running on. For instance, such an
authenticator might consist of a Trusted Platform Module (TPM) or Secure Element (SE)
integrated into the computing device, along with appropriate platform software to mediate
access to this device’s functionality.

2. External authenticators operate autonomously from the device running the user agent, and
accessed over a transport such as Universal Serial Bus (USB), Bluetooth Low Energy (BLE) or
Near Field Communications (NFC).

1.1. Registration (embedded authenticator mode)§

On the phone:

User goes to example.com in the browser and signs in to an existing account using
whatever method they have been using (possibly a legacy method such as a password), or
creates a new account.

The phone prompts, "Do you want to register this device with example.com?"

Diagrams?Diagrams?

#3 p.5

This section normatively specifies the API for creating and using scoped credentials. Support for
deleting credentials is deliberately omitted; this is expected to be done through platform-specific
user interfaces rather than from a script. The basic idea is that the credentials belong to the user and
are managed by an authenticator, with which the WebAuthn Relying Party interacts through the
client (consisting of the browser and underlying OS platform). Scripts can (with the user’s consent)
request the browser to create a new credential for future use by the WebAuthn Relying Party. Scripts
can also request the user’s permission to perform authentication operations with an existing
credential. All such operations are performed in the authenticator and are mediated by the browser
and/or platform on the user’s behalf. At no point does the script get access to the credentials
themselves; it only gets information about the credentials in the form of objects.

The security properties of this API are provided by the client and the authenticator working
together. The authenticator, which holds and manages credentials, ensures that all operations are
scoped to a particular web origin, and cannot be replayed against a different origin, by incorporating
the origin in its responses. Specifically, as defined in §4.2 Signature Format, the full origin of the
requester is included, and signed over, in the attestation statement produced when a new credential
is created as well as in all assertions produced by WebAuthn credentials.

Additionally, to maintain user privacy and prevent malicious WebAuthn Relying Parties from
probing for the presence of credentials belonging to other WebAuthn Relying Parties, each
credential is also associated with a Relying Party Identifier, or RP ID. This RP ID is provided by the
client to the authenticator for all operations, and the authenticator ensures that credentials created by
a WebAuthn Relying Party can only be used in operations requested by the same RP ID. Separating
the origin from the RP ID in this way allows the API to be used in cases where a single WebAuthn
Relying Party maintains multiple web origins.

The client facilitates these security measures by providing correct web origins and RP IDs to the
authenticator for each operation. Since this is an integral part of the WebAuthn security model, user
agents SHOULD only expose this API to callers in secure contexts, as defined in [secure-contexts].

The API is defined by the following Web IDL fragment.

3. Web Authentication API

??

#4 p.8

partial interface Window {
 readonly attribute WebAuthentication webauthn;
};

interface WebAuthentication {
 Promise < ScopedCredentialInfo > makeCredential (
 Account accountInformation,
 sequence < ScopedCredentialParameters > cryptoParameters,
 BufferSource attestationChallenge,
 optional unsigned long credentialTimeoutSeconds
 optional sequence < Credential > blacklist,
 optional WebAuthnExtensions credentialExtensions
);

 Promise < WebAuthnAssertion > getAssertion (
 BufferSource assertionChallenge,
 optional unsigned long assertionTimeoutSeconds,
 optional sequence < Credential > whitelist,
 optional WebAuthnExtensions assertionExtensions
);
};

interface ScopedCredentialInfo {
 readonly attribute Credential credential;
 readonly attribute any publicKey;
 readonly attribute WebAuthnAttestation attestation;
};

dictionary Account {
 required DOMString rpDisplayName;
 required DOMString displayName;
 DOMString name;
 DOMString id;
 DOMString imageURL;
};

dictionary ScopedCredentialParameters {
 required CredentialType type;
 required AlgorithmIdentifier algorithm;
};

interface WebAuthnAssertion {
 readonly attribute Credential credential;

Is there any rhyme or reason to the order of
this WebIDL?
Is there any rhyme or reason to the order of
this WebIDL?

#5 p.9

partial interface Window {
 readonly attribute WebAuthentication webauthn;
};

interface WebAuthentication {
 Promise < ScopedCredentialInfo > makeCredential (
 Account accountInformation,
 sequence < ScopedCredentialParameters > cryptoParameters,
 BufferSource attestationChallenge,
 optional unsigned long credentialTimeoutSeconds
 optional sequence < Credential > blacklist,
 optional WebAuthnExtensions credentialExtensions
);

 Promise < WebAuthnAssertion > getAssertion (
 BufferSource assertionChallenge,
 optional unsigned long assertionTimeoutSeconds,
 optional sequence < Credential > whitelist,
 optional WebAuthnExtensions assertionExtensions
);
};

interface ScopedCredentialInfo {
 readonly attribute Credential credential;
 readonly attribute any publicKey;
 readonly attribute WebAuthnAttestation attestation;
};

dictionary Account {
 required DOMString rpDisplayName;
 required DOMString displayName;
 DOMString name;
 DOMString id;
 DOMString imageURL;
};

dictionary ScopedCredentialParameters {
 required CredentialType type;
 required AlgorithmIdentifier algorithm;
};

interface WebAuthnAssertion {
 readonly attribute Credential credential;

If attestation is null, there would
be no clientDataHash. Negative
security ramifications?

If attestation is null, there would
be no clientDataHash. Negative
security ramifications?

#6 p.9

This interface has two methods, which are described in the following subsections.

With this method, a script can request the User Agent to create a new credential of a given type and
persist it to the underlying platform, which may involve data storage managed by the browser or the
OS. The user agent will prompt the user to approve this operation. On success, the promise will be
resolved with a ScopedCredentialInfo object describing the newly created credential.

This method takes the following parameters:

 readonly attribute ArrayBuffer clientData;
 readonly attribute ArrayBuffer authenticatorData;
 readonly attribute ArrayBuffer signature;
};

dictionary WebAuthnExtensions {
};

interface WebAuthnAttestation {
 readonly attribute DOMString type;
 readonly attribute ArrayBuffer clientData;
 readonly attribute any statement;
};

enum CredentialType {
 "ScopedCred"
};

interface Credential {
 readonly attribute CredentialType type;
 readonly attribute BufferSource id;
};

3.1. WebAuthentication Interface

3.1.1. Create a new credential (makeCredential() method)

The accountInformation parameter specifies information about the user account for which the
credential is being created. This is meant for later use by the authenticator when it needs to
prompt the user to select a credential.

enum?enum?

#7 p.10This interface has two methods, which are described in the following subsections.

With this method, a script can request the User Agent to create a new credential of a given type and
persist it to the underlying platform, which may involve data storage managed by the browser or the
OS. The user agent will prompt the user to approve this operation. On success, the promise will be
resolved with a ScopedCredentialInfo object describing the newly created credential.

This method takes the following parameters:

 readonly attribute ArrayBuffer clientData;
 readonly attribute ArrayBuffer authenticatorData;
 readonly attribute ArrayBuffer signature;
};

dictionary WebAuthnExtensions {
};

interface WebAuthnAttestation {
 readonly attribute DOMString type;
 readonly attribute ArrayBuffer clientData;
 readonly attribute any statement;
};

enum CredentialType {
 "ScopedCred"
};

interface Credential {
 readonly attribute CredentialType type;
 readonly attribute BufferSource id;
};

3.1. WebAuthentication Interface

3.1.1. Create a new credential (makeCredential() method)§

The accountInformation parameter specifies information about the user account for which the
credential is being created. This is meant for later use by the authenticator when it needs to
prompt the user to select a credential.

#8 p.10

When this method is invoked, the user agent MUST execute the following algorithm:

The cryptoParameters parameter supplies information about the desired properties of the
credential to be created. The sequence is ordered from most preferred to least preferred. The
platform makes a best effort to create the most preferred credential that it can.

The attestationChallenge parameter contains a challenge intended to be used for generating
the attestation statement of the newly created credential.

The optional credentialTimeoutSeconds parameter specifies a time, in seconds, that the caller
is willing to wait for the call to complete. This is treated as a hint, and may be overridden by
the platform.

The optional blacklist parameter is intended for use by WebAuthn Relying Parties that wish to
limit the creation of multiple credentials for the same account on a single authenticator. The
platform is requested to return an error if the new credential would be created on an
authenticator that also contains one of the credentials enumerated in this parameter.

The optional credentialExtensions parameter contains additional parameters requesting
additional processing by the client and authenticator. For example, the caller may request that
only authenticators with certain capabilities be used to create the credential, or that additional
information be returned in the attestation statement. Alternatively, the caller may specify an
additional message that they would like the authenticator to display to the user. Extensions are
defined in §5 WebAuthn Extensions.

1. If credentialTimeoutSeconds was specified, check if its value lies within a reasonable range as
defined by the platform and if not, correct it to the closest value lying within that range. Set
adjustedTimeout to this adjusted value. If credentialTimeoutSeconds was not specified then set
adjustedTimeout to a platform-specific default.

2. Let promise be a new Promise. Return promise and start a timer for adjustedTimeout seconds.
Then asynchronously continue executing the following steps.

3. Set callerOrigin to the origin of the caller. Derive the RP ID from callerOrigin by computing
the "public suffix + 1" or "PS+1" (which is also referred to as the "Effective Top-Level Domain
plus One" or "eTLD+1") part of callerOrigin [PSL]. Set rpId to the RP ID.

4. Initialize issuedRequests to an empty list.

5. Process each element of cryptoParameters using the following steps, to produce a new
sequence normalizedParameters:

Let current be the currently selected element of cryptoParameters.

Additional description of what
normalization is trying to accomplish
would be helpful

Additional description of what
normalization is trying to accomplish
would be helpful

#9 p.11

If current.type does not contain a CredentialType supported by this
implementation, then stop processing current and move on to the next element in
cryptoParameters.

Let normalizedAlgorithm be the result of normalizing an algorithm using the
procedure defined in [WebCryptoAPI], with alg set to current.algorithm and op set
to 'generateKey'. If an error occurs during this procedure, then stop processing current and
move on to the next element in cryptoParameters.

Add a new object of type ScopedCredentialParameters to
normalizedParameters, with type set to current.type and algorithm set to
normalizedAlgorithm.

6. If blacklist is undefined, set it to the empty list.

7. If credentialExtensions was specified, process any extensions supported by this client platform,
to produce the extension data that needs to be sent to the authenticator. Call this data
clientExtensions.

8. For each embedded or external authenticator currently available on this platform:
asynchronously invoke the authenticatorMakeCredential operation on that authenticator with
callerOrigin, rpId, accountInformation, normalizedParameters, blacklist,
attestationChallenge and clientExtensions as parameters. Add a corresponding entry to
issuedRequests.

9. While issuedRequests is not empty, perform the following actions depending upon the
adjustedTimeout timer and responses from the authenticators:

If the adjustedTimeout timer expires, then for each entry in issuedRequests invoke the
authenticatorCancel operation on that authenticator and remove its entry from the list.

If any authenticator returns a status indicating that the user cancelled the operation, delete
that authenticator’s entry from issuedRequests. For each remaining entry in
issuedRequests invoke the authenticatorCancel operation on that authenticator and remove
its entry from the list.

If any authenticator returns an error status, delete the corresponding entry from
issuedRequests.

If any authenticator indicates success, create a new ScopedCredentialInfo object
named value and populate its fields with the values returned from the authenticator.
Resolve promise with value and terminate this algorithm.

10. Resolve promise with a DOMException whose name is "NotFoundError", and terminate this
algorithm.

The intent is that cancel on one
results in cancelling all?
The intent is that cancel on one
results in cancelling all?

#10 p.12

During the above process, the user agent SHOULD show some UI to the user to guide them in the
process of selecting and authorizing an authenticator.

This method is used to discover and use an existing scoped credential, with the user’s consent. The
script optionally specifies some criteria to indicate what credentials are acceptable to it. The user
agent and/or platform locates credentials matching the specified criteria, and guides the user to pick
one that the script should be allowed to use. The user may choose not to provide a credential even if
one is present, for example to maintain privacy.

This method takes the following parameters:

When this method is invoked, the user agent MUST execute the following algorithm:

3.1.2. Use an existing credential (getAssertion() method)§

The assertionChallenge parameter contains a challenge that the selected authenticator is
expected to sign to produce the assertion.

The optional assertionTimeoutSeconds parameter specifies a time, in seconds, that the caller is
willing to wait for the call to complete. This is treated as a hint, and may be overridden by the
platform.

The optional whitelist member contains a list of credentials acceptable to the caller, in order of
the caller’s preference.

The optional assertionExtensions parameter contains additional parameters requesting
additional processing by the client and authenticator. For example, if transaction confirmation
is sought from the user, then the prompt string would be included in an extension. Extensions
are defined in a companion specification.

1. If assertionTimeoutSeconds was specified, check if its value lies within a reasonable range as
defined by the platform and if not, correct it to the closest value lying within that range. Set
adjustedTimeout to this adjusted value. If assertionTimeoutSeconds was not specified then set
adjustedTimeout to a platform-specific default.

2. Let promise be a new Promise. Return promise and start a timer for adjustedTimeout seconds.
Then asynchronously continue executing the following steps.

3. Set callerOrigin to the origin of the caller. Derive the RP ID from callerOrigin by computing
the "public suffix + 1" or "PS+1" (which is also referred to as the "Effective Top-Level Domain
plus One" or "eTLD+1") part of callerOrigin [PSL]. Set rpId to the RP ID.

4. Initialize issuedRequests to an empty list.

...but requests are sent to all
authenticators in #8 above?
...but requests are sent to all
authenticators in #8 above?

#11 p.13

During the above process, the user agent SHOULD show some UI to the user to guide them in the
process of selecting and authorizing an authenticator with which to complete the operation.

5. If assertionExtensions was specified, process any extensions supported by this client platform,
to produce the extension data that needs to be sent to the authenticator. Call this data
clientExtensions.

6. For each embedded or external authenticator currently available on this platform, perform the
following steps:

If whitelist is undefined or empty, let credentialList be a list containing a single wildcard
entry.

If whitelist is defined and non-empty, optionally execute a platform-specific procedure to
determine which of these credentials can possibly be present on this authenticator. Set
credentialList to this filtered list. If credentialList is empty, ignore this authenticator and
do not perform any of the following per-authenticator steps.

Asynchronously invoke the authenticatorGetAssertion operation on this authenticator with
callerOrigin, rpId, assertionChallenge, credentialList, and clientExtensions as parameters.

Add an entry to issuedRequests, corresponding to this request.

7. While issuedRequests is not empty, perform the following actions depending upon the
adjustedTimeout timer and responses from the authenticators:

If the timer for adjustedTimeout expires, then for each entry in issuedRequests invoke the
authenticatorCancel operation on that authenticator and remove its entry from the list.

If any authenticator returns a status indicating that the user cancelled the operation, delete
that authenticator’s entry from issuedRequests. For each remaining entry in
issuedRequests invoke the authenticatorCancel operation on that authenticator, and
remove its entry from the list.

If any authenticator returns an error status, delete the corresponding entry from
issuedRequests.

If any authenticator returns success, create a new WebAuthnAssertion object named
value and populate its fields with the values returned from the authenticator. Resolve
promise with value and terminate this algorithm.

8. Resolve promise with a DOMException whose name is "NotFoundError", and terminate this
algorithm.

First mention of
wildcards? Where
are they defined?

First mention of
wildcards? Where
are they defined?

Implies cred id was stored
in makeCred? Maybe some
hint in makeCred?

Implies cred id was stored
in makeCred? Maybe some
hint in makeCred?

#12 p.14

This interface represents a newly-created scoped credential. It contains information about the
credential that can be used to locate it later for use, and also contains metadata that can be used by
the WebAuthn Relying Party to assess the strength of the credential during registration.

The credential attribute contains a unique identifier for the credential represented by this object.

The publicKey attribute contains the public key associated with the credential, represented as a
JsonWebKey structure as defined in Web Cryptography API §JsonWebKey-dictionary.

The attestation attribute contains a key attestation statement returned by the authenticator. This
provides information about the credential and the authenticator it is held in, such as the level of
security assurance provided by the authenticator.

This dictionary is used by the caller to specify information about the user account and WebAuthn
Relying Party with which a credential is to be associated. It is intended to help the authenticator in
providing a friendly credential selection interface for the user.

The rpDisplayName member contains the friendly name of the WebAuthn Relying Party, such as
"Acme Corporation", "Widgets Inc" or "Awesome Site".

The displayName member contains the friendly name associated with the user account by the
WebAuthn Relying Party, such as "John P. Smith".

The name member contains a detailed name for the account, such as "john.p.smith@example.com".

The id member contains an identifier for the account, stored for the use of the WebAuthn Relying
Party. This is not meant to be displayed to the user.

The imageURL member contains a URL that resolves to the user’s account image. This may be a
URL that can be used to retrieve an image containing the user’s current avatar, or a data URI that
contains the image data.

3.2. ScopedCredentialInfo Interface

3.3. User Account Information (dictionary Account)§

3.4. Parameters for Credential Generation (dictionary

ScopedCredentialParameters)

Described in section ###?Described in section ###?

#13 p.15

This interface represents a newly-created scoped credential. It contains information about the
credential that can be used to locate it later for use, and also contains metadata that can be used by
the WebAuthn Relying Party to assess the strength of the credential during registration.

The credential attribute contains a unique identifier for the credential represented by this object.

The publicKey attribute contains the public key associated with the credential, represented as a
JsonWebKey structure as defined in Web Cryptography API §JsonWebKey-dictionary.

The attestation attribute contains a key attestation statement returned by the authenticator. This
provides information about the credential and the authenticator it is held in, such as the level of
security assurance provided by the authenticator.

This dictionary is used by the caller to specify information about the user account and WebAuthn
Relying Party with which a credential is to be associated. It is intended to help the authenticator in
providing a friendly credential selection interface for the user.

The rpDisplayName member contains the friendly name of the WebAuthn Relying Party, such as
"Acme Corporation", "Widgets Inc" or "Awesome Site".

The displayName member contains the friendly name associated with the user account by the
WebAuthn Relying Party, such as "John P. Smith".

The name member contains a detailed name for the account, such as "john.p.smith@example.com".

The id member contains an identifier for the account, stored for the use of the WebAuthn Relying
Party. This is not meant to be displayed to the user.

The imageURL member contains a URL that resolves to the user’s account image. This may be a
URL that can be used to retrieve an image containing the user’s current avatar, or a data URI that
contains the image data.

3.2. ScopedCredentialInfo Interface

3.3. User Account Information (dictionary Account)

3.4. Parameters for Credential Generation (dictionary

ScopedCredentialParameters)
§

Other fields okay?Other fields okay?

#14 p.15This dictionary is used to supply additional parameters when creating a new credential.

The type member specifies the type of credential to be created.

The algorithm member specifies the cryptographic algorithm with which the newly generated
credential will be used.

Scoped credentials produce a cryptographic signature that provides proof of possession of a private
key as well as evidence of user consent to a specific transaction. The structure of these signatures is
defined as follows.

The credential member represents the credential that was used to generate this assertion.

The clientData member contains the parameters sent to the authenticator by the client, in serialized
form. See §4.2.1 Client data used in WebAuthn signatures (dictionary ClientData) for the format of
this parameter and how it is generated.

The authenticatorData member contains the serialized data returned by the authenticator. See
§4.2.2 Authenticator data.

The signature member contains the raw signature returned from the authenticator. See §4.2.3
Generating a signature.

This is a dictionary containing zero or more extensions as defined in §5 WebAuthn Extensions. An
extension is an additional parameter that can be passed to the getAssertion() method and triggers
some additional processing by the client platform and/or the authenticator.

If the caller wants to pass extensions to the platform, it SHOULD do so by adding one entry per
extension to this dictionary with the extension identifier as the key, and the extension’s value as the
value (see §4.2 Signature Format for details).

3.5. WebAuthn Assertion (interface WebAuthnAssertion)§

3.6. WebAuthn Assertion Extensions (dictionary WebAuthnExtensions)

3.7. Credential Attestation Statement (interface WebAuthnAttestation)

will = should?will = should?

#15 p.16

Authenticators also provide some form of attestation. The basic requirement is that the authenticator
can produce, for each credential public key, attestation information that can be verified by a
WebAuthn Relying Party. Typically, this information contains a signature by an attesting key over
the attested public key and a challenge, as well as a certificate or similar information providing
provenance information for the attesting key, enabling a trust decision to be made.

The type member specifies the type of attestation statement contained in this structure. This
specification defines a number of attestation types, in §4.3.2 Defined Attestation Types. Other
attestation types may be defined in later versions of this specification.

The clientData member contains the clientDataJSON (see §4.2 Signature Format). The exact JSON
encoding must be preserved as the hash (clientDataHash) has been computed over it.

The statement element contains the actual attestation statement. The structure of this object depends
on the attestation type. For more details, see §4.3 Credential Attestation Statements.

This attestation statement is delivered to the WebAuthn Relying Party by the WebAuthn Relying
Party’s script running on the client, using methods outside the scope of this specification. It contains
all the information that the WebAuthn Relying Party’s server requires to validate the statement, as
well as to decode and validate the bindings of both the client and authenticator data.

The scoped credential type uses certain data structures that are specified in supporting
specifications. These are as follows.

This enumeration defines the valid credential types. It is an extension point; values may be added to
it in the future, as more credential types are defined. The values of this enumeration are used for
versioning the WebAuthn assertion and attestation statement according to the type of the
authenticator.

Currently one credential type is defined, namely "ScopedCred".

3.8. Supporting Data Structures

3.8.1. Credential Type enumeration (enum CredentialType)

3.8.2. Unique Identifier for Credential (interface Credential)

may?may?

#16 p.17
isolation between sessions. It may do this by only allowing one session to exist at any particular
time, or by providing more complicated session management.

The following operations can be invoked by the client in an authenticator session.

This operation must be invoked in an authenticator session which has no other operations in
progress. It takes the following input parameters:

When this operation is invoked, the authenticator obtains user consent for creating a new credential.
The prompt for obtaining this consent is shown by the authenticator if it has its own output
capability, or by the user agent otherwise. Once user consent is obtained, the authenticator generates
the appropriate cryptographic keys and creates a new credential. It also generates an identifier for
the credential, such that this identifier is globally unique with high probability across all credentials
with the same type across all authenticators. It then associates the credential with the specified RP
ID such that it will be able to retrieve the RP ID later, given the credential ID.

On successful completion of this operation, the authenticator returns the type and unique identifier
of this new credential to the user agent.

4.1.1. The authenticatorMakeCredential operation§

The web origin of the script on whose behalf the operation is being initiated, as determined by
the user agent and the client.

The RP ID corresponding to the above web origin, as determined by the user agent and the
client.

The Account information provided by the WebAuthn Relying Party.

The CredentialType requested by the WebAuthn Relying Party.

The cryptographic parameters requested by the WebAuthn Relying Party, with the
cryptographic algorithms normalized as per the procedure in Web Cryptography API
§algorithm-normalization-normalize-an-algorithm.

A list of Credential objects provided by the WebAuthn Relying Party with the intention
that, if any of these are known to the authenticator, it should not create a new credential.

A challenge provided by the WebAuthn Relying Party to assure freshness of the attestation
statement of the new credential.

Extension data created by the client based on the extensions requested by the WebAuthn
Relying Party.

Should clientDataHash be passed
in, or is this assuming that the
authn calculates it?

Should clientDataHash be passed
in, or is this assuming that the
authn calculates it?

#17 p.19

isolation between sessions. It may do this by only allowing one session to exist at any particular
time, or by providing more complicated session management.

The following operations can be invoked by the client in an authenticator session.

This operation must be invoked in an authenticator session which has no other operations in
progress. It takes the following input parameters:

When this operation is invoked, the authenticator obtains user consent for creating a new credential.
The prompt for obtaining this consent is shown by the authenticator if it has its own output
capability, or by the user agent otherwise. Once user consent is obtained, the authenticator generates
the appropriate cryptographic keys and creates a new credential. It also generates an identifier for
the credential, such that this identifier is globally unique with high probability across all credentials
with the same type across all authenticators. It then associates the credential with the specified RP
ID such that it will be able to retrieve the RP ID later, given the credential ID.

On successful completion of this operation, the authenticator returns the type and unique identifier
of this new credential to the user agent.

4.1.1. The authenticatorMakeCredential operation

The web origin of the script on whose behalf the operation is being initiated, as determined by
the user agent and the client.

The RP ID corresponding to the above web origin, as determined by the user agent and the
client.

The Account information provided by the WebAuthn Relying Party.

The CredentialType requested by the WebAuthn Relying Party.

The cryptographic parameters requested by the WebAuthn Relying Party, with the
cryptographic algorithms normalized as per the procedure in Web Cryptography API
§algorithm-normalization-normalize-an-algorithm.

A list of Credential objects provided by the WebAuthn Relying Party with the intention
that, if any of these are known to the authenticator, it should not create a new credential.

A challenge provided by the WebAuthn Relying Party to assure freshness of the attestation
statement of the new credential.

Extension data created by the client based on the extensions requested by the WebAuthn
Relying Party.

Doesn't mention creating an attestation or processing extensions?Doesn't mention creating an attestation or processing extensions?

#18 p.19

If the user refuses consent, the authenticator returns an appropriate error status to the client.

This operation must be invoked in an authenticator session which has no other operations in
progress. It takes the following input parameters:

When this method is invoked, the authenticator allows the user to select a credential from among the
credentials associated with that WebAuthn Relying Party and matching the specified criteria, then
obtains user consent for using that credential. The prompt for obtaining this consent may be shown
by the authenticator if it has its own output capability, or by the user agent otherwise. Once a
credential is selected and user consent is obtained, the authenticator computes a cryptographic
signature using the credential’s private key and constructs an assertion as specified in §4.2 Signature
Format. It then returns this assertion to the user agent.

If the authenticator cannot find any credential corresponding to the specified WebAuthn Relying
Party that matches the specified criteria, it terminates the operation and returns an error.

If the user refuses consent, the authenticator returns an appropriate error status to the client.

This operation takes no input parameters and returns no result.

When this operation is invoked by the client in an authenticator session, it has the effect of
terminating any authenticatorMakeCredential or authenticatorGetAssertion operation currently in
progress in that authenticator session. The authenticator stops prompting for, or accepting, any user

4.1.2. The authenticatorGetAssertion operation§

The web origin of the script on whose behalf the operation is being initiated, as determined by
the user agent and the client.

The RP ID corresponding to the above web origin, as determined by the user agent and the
client.

A challenge provided by the WebAuthn Relying Party to assure freshness of the assertion
produced.

A list of credentials acceptable to the WebAuthn Relying Party (possibly filtered by the client).

Extension data created by the client based on the extensions requested by the WebAuthn
Relying Party.

4.1.3. The authenticatorCancel operation

Really vague. I assume that's okay?Really vague. I assume that's okay?

#19 p.20input related to authorizing the canceled operation. The client ignores any further responses from
the authenticator for the canceled operation.

This operation is ignored if it is invoked in an authenticator session which does not have an
authenticatorMakeCredential or authenticatorGetAssertion operation currently in progress.

WebAuthn signatures are bound to various contextual data. These data are observed, and added at
different levels of the stack as a signature request passes from the server to the authenticator. In
verifying a signature, the server checks these bindings against expected values.

The components of a system using WebAuthn can be divided into three layers:

This specification defines the common signature format shared by all the above layers. This includes
how the different contextual bindings are encoded, signed over, and delivered to the RP.

The goals of this design can be summarized as follows.

4.2. Signature Format§

1. The WebAuthn Relying Party (RP), which uses the WebAuthn services. The RP consists of a
server component and a web-application running in a browser.

2. The WebAuthn Client platform, which consists of the User Agent and the OS and device on
which it executes.

3. The Authenticator itself, which provides key management and cryptographic signatures. This
may be embedded in the WebAuthn client, or houesd in a separate device entirely. In the latter
case, the interface between the WebAuthn client and the authenticator is a separately-defined
protocol.

The scheme for generating signatures should accommodate cases where the link between the
client platform and authenticator is very limited, in bandwidth and/or latency. Examples
include Bluetooth Low Energy and Near-Field Communication.

The data processed by the authenticator should be small and easy to interpret in low-level code.
In particular, authenticators should not have to parse high-level encodings such as JSON.

Both the client platform and the authenticator should have the flexibility to add contextual
bindings as needed.

The design aims to reuse as much as possible of existing encoding formats in order to aid
adoption and implementation.

Any considerations for rolling back state? (counters, keys, etc.)Any considerations for rolling back state? (counters, keys, etc.)

#20 p.21

input related to authorizing the canceled operation. The client ignores any further responses from
the authenticator for the canceled operation.

This operation is ignored if it is invoked in an authenticator session which does not have an
authenticatorMakeCredential or authenticatorGetAssertion operation currently in progress.

WebAuthn signatures are bound to various contextual data. These data are observed, and added at
different levels of the stack as a signature request passes from the server to the authenticator. In
verifying a signature, the server checks these bindings against expected values.

The components of a system using WebAuthn can be divided into three layers:

This specification defines the common signature format shared by all the above layers. This includes
how the different contextual bindings are encoded, signed over, and delivered to the RP.

The goals of this design can be summarized as follows.

4.2. Signature Format

1. The WebAuthn Relying Party (RP), which uses the WebAuthn services. The RP consists of a
server component and a web-application running in a browser.

2. The WebAuthn Client platform, which consists of the User Agent and the OS and device on
which it executes.

3. The Authenticator itself, which provides key management and cryptographic signatures. This
may be embedded in the WebAuthn client, or houesd in a separate device entirely. In the latter
case, the interface between the WebAuthn client and the authenticator is a separately-defined
protocol.

The scheme for generating signatures should accommodate cases where the link between the
client platform and authenticator is very limited, in bandwidth and/or latency. Examples
include Bluetooth Low Energy and Near-Field Communication.

The data processed by the authenticator should be small and easy to interpret in low-level code.
In particular, authenticators should not have to parse high-level encodings such as JSON.

Both the client platform and the authenticator should have the flexibility to add contextual
bindings as needed.

The design aims to reuse as much as possible of existing encoding formats in order to aid
adoption and implementation.

Refs?Refs?

#21 p.21

The contextual bindings are divided in two: Those added by the RP or the client platform, referred
to as client data; and those added by the authenticator, referred to as the authenticator data. The
client data must be signed over, but an authenticator is otherwise not interested in its contents. To
save bandwidth and processing requirements on the authenticator, the client platform hashes the
client data and sends only the result to the authenticator. The authenticator signs over the
combination of this hash, and its own authenticator data.

The client data represents the contextual bindings of both the WebAuthn Relying Party and the
client platform. It is a key-value mapping with string-valued keys. Values may be any type that has a
valid encoding in JSON. Its structure is defined by the following Web IDL.

dictionary ClientData {
 required DOMString challenge;
 required DOMString facet;
 required AlgorithmIdentifier hashAlg;
 JsonWebKey tokenBinding;
 WebAuthnExtensions extensions;
};

The challenge member contains the base64url encoding of the challenge provided by the RP.

The facet member contains the fully qualified web origin of the requester, as provided to the
authenticator by the client, in the syntax defined by [RFC6454].

The hashAlg member specifies the hash algorithm used to compute clientDataHash (see §4.2.3
Generating a signature). Use "S256" for SHA-256, "S384" for SHA384, "S512" for SHA512, and
"SM3" for SM3 (see §7 IANA Considerations).

The tokenBinding member contains a JsonWebKey object as defined by Web Cryptography API
§JsonWebKey-dictionary describing the public key that this client uses for the Token Binding
protocol when communicating with the WebAuthn Relying Party. This can be omitted if no Token
Binding has been negotiated between the client and the WebAuthn Relying Party.

The optional extensions member contains additional parameters generated by processing the
extensions passed in by the WebAuthn Relying Party. WebAuthn extensions are detailed in Section
§5 WebAuthn Extensions.

4.2.1. Client data used in WebAuthn signatures (dictionary ClientData)

ArrayBuffer?ArrayBuffer?

#22 p.22

The authenticator data encodes contextual bindings made by the authenticator itself. The
authenticator data has a compact but extensible encoding. This is desired since authenticators can be
devices with limited capabilities and low power requirements, with much simpler software stacks
than the client platform components.

The encoding of authenticator data is a byte array of 5 bytes or more, as follows.

Byte
index

Description

0

Flags (bit 0 is the least significant bit):

1-4 Signature counter (signCount), 32-bit unsigned big-endian integer.

5-
Extension-defined authenticator data. This is a CBOR [RFC7049] map with
extension identifiers as keys, and extension authenticator data values as values. See
§5 WebAuthn Extensions for details.

The TUP flag SHALL be set if and only if the authenticator detected a user through an authenticator
specific gesture. The RFU bits in the flags byte SHALL be set to zero.

If the authenticator does not include any extension data, it MUST set the ED flag in the first byte to
zero, and to one if extension data is included.

The figure below shows a visual representation of the authenticator data structure.

4.2.2. Authenticator data

Bit 0: Test of User Presence (TUP) result.

Bits 1-6: Reserved for future use (RFU).

Bit 7: Extension data included (ED). Indicates if the authenticator data has
extensions.

first mention of CBOR. Remove, add
some clarifying text, or a pointer to
the extensions section?

first mention of CBOR. Remove, add
some clarifying text, or a pointer to
the extensions section?

#23 p.23

FLAGS

0 0 0 0 00ED TUP

COUNTER EXTENSIONS

1 byte 4 bytes (big-endian uint32) variable length (CBOR)

07

authenticatorData layout.

Before making a request to an authenticator, the client platform layer SHALL perform the following
steps.

The clientDataHash value is delivered to the authenticator.

The hash algorithm hashAlg used to compute clientDataHash is included in the ClientData
object. This way it is available to the WebAuthn Relying Party and it is also hashed over when
computing clientDataHash and hence anchored in the signature itself.

A raw cryptographic signature must assert the integrity of both the client data and the authenticator
data. Thus, an authenticator SHALL compute a signature over the concatenation of the
authenticatorData and the clientDataHash.

Note: The signatureData describes its own length: If the ED flag is not set, it is always 5
bytes long. If the ED flag is set, it is 5 bytes plus the CBOR map that follows.

4.2.3. Generating a signature§

1. Represent the parameters passed in by the RP in the form of a ClientData structure.

2. Let clientDataJSON be the UTF-8 encoded JSON serialization [RFC7159] of this ClientData
dictionary.

3. Let clientDataHash be the hash (computed using hashAlg) of clientDataJSON, as an array.

What is the relationship between this and
authenticatorMake
What is the relationship between this and
authenticatorMake

#24 p.24

FLAGS

0 0 0 0 00ED TUP

COUNTER EXTENSIONS

1 byte 4 bytes (big-endian uint32) variable length (CBOR)

07

authenticatorData layout.

Before making a request to an authenticator, the client platform layer SHALL perform the following
steps.

The clientDataHash value is delivered to the authenticator.

The hash algorithm hashAlg used to compute clientDataHash is included in the ClientData
object. This way it is available to the WebAuthn Relying Party and it is also hashed over when
computing clientDataHash and hence anchored in the signature itself.

A raw cryptographic signature must assert the integrity of both the client data and the authenticator
data. Thus, an authenticator SHALL compute a signature over the concatenation of the
authenticatorData and the clientDataHash.

Note: The signatureData describes its own length: If the ED flag is not set, it is always 5
bytes long. If the ED flag is set, it is 5 bytes plus the CBOR map that follows.

4.2.3. Generating a signature

1. Represent the parameters passed in by the RP in the form of a ClientData structure.

2. Let clientDataJSON be the UTF-8 encoded JSON serialization [RFC7159] of this ClientData
dictionary.

3. Let clientDataHash be the hash (computed using hashAlg) of clientDataJSON, as an array.

There's no mention of incrementing
the counter? Also, should
authenticatorMakeCredential mention
storing / retrieving it?

There's no mention of incrementing
the counter? Also, should
authenticatorMakeCredential mention
storing / retrieving it?

#25 p.24

authenticatorData clientDataHash

Generated by authenticator Received from client

||

SIGNATURE

SignPrivate key

Generating a signature on the authenticator.

The authenticator MUST return both the authenticatorData and the raw signature back to the client.
The client, in turn, MUST return clientDataJSON, authenticatorData and the signature to the RP.
The clientDataJSON is returned in the clientData member of the WebAuthnAssertion and
AttestationStatement structures.

An attestation statement is a specific type of signature, which contains statements about a credential
itself and the authenticator that holds it. Therefore, the procedures for generating attestation
statements closely parallel those for generating WebAuthn assertions as described in §4.2 Signature
Format, though the semantics of the contextual bindings are quite different.

This specification defines a number of attestation types, i.e., ways to serialize the data being attested
to by the Authenticator. The reason is to be able to support existing devices like TPMs and other
platform-specific formats. Each attestation type provides the ability to cryptographically attest to a
public key, the authenticator model, and contextual data to a remote party. They differ in the details
of how the attestation statement is laid out, and how its components are computed. The different
attestation types are defined in §4.3.2 Defined Attestation Types.

This specification also defines a number of attestation models. These define how a WebAuthn
Relying Party establishes trust in a particular attestation statement, after verifying that it is

Note: A simple, undelimited concatenation is safe to use here because the authenticatorData
describes its own length. The clientDataHash (which potentially has a variable length) is always
the last element.

4.3. Credential Attestation Statements§
Thinking ahead to future attestation
formats, is there a requirement that they
MUST sign over clientDataHash?

Thinking ahead to future attestation
formats, is there a requirement that they
MUST sign over clientDataHash?

WebAuthnAttestation?WebAuthnAttestation?

#26 p.25

cryptographically valid.

Attestation types are orthogonal to attestation models, i.e. attestation types in general are not
restricted to a single attestation model. Broadly speaking, attestation types pertain to the syntax of
the attestation statement, while attestation models pertain to the semantics.

WebAuthn supports multiple attestation models:

In the case of full basic attestation [UAFProtocol], the Authenticator’s attestation private key is
specific to an Authenticator model. That means that an Authenticator of the same model
typically shares the same attestation private key. This model is also used for FIDO UAF 1.0
and FIDO U2F 1.0.

In the case of surrogate basic attestation [UAFProtocol], the Authenticator doesn’t have any
specific attestation key. Instead it uses the authentication key to (self-)sign the (surrogate)
attestation message. Authenticators without meaningful protection measures for an attestation
private key typically use this attestation model.

In this case, the Authenticator owns an authenticator-specific (endorsement) key. This key is
used to securely communicate with a trusted third party, the Privacy CA. The Authenticator
can generate multiple attestation key pairs and asks the Privacy CA to issue an attestation
certificate for it. Using this approach, the Authenticator can limit the exposure of the
endorsement key (which is a global correlation handle) to Privacy CA(s). Attestation keys can
be requested for each scoped credential individually.

In this case, the Authenticator receives DAA credentials from a single DAA-Issuer. These
DAA credentials are used along with blinding to sign the attestation data. The concept of
blinding avoids the DAA credentials being misused as global correlation handle. WebAuthn
supports DAA using elliptic curve cryptography and bilinear pairings, called ECDAA (see
[FIDOEcdaaAlgorithm]) in this specification.

4.3.1. Attestation Models§

Full Basic Attestation

Surrogate Basic Attestation

Privacy CA

Note: This concept typically leads to multiple attestation certificates. The attestation
certificate requested most recently is called "active".

Direct Anonymous Attestation (DAA)

Maybe a concrete example?Maybe a concrete example?

#27 p.26

cryptographically valid.

Attestation types are orthogonal to attestation models, i.e. attestation types in general are not
restricted to a single attestation model. Broadly speaking, attestation types pertain to the syntax of
the attestation statement, while attestation models pertain to the semantics.

WebAuthn supports multiple attestation models:

In the case of full basic attestation [UAFProtocol], the Authenticator’s attestation private key is
specific to an Authenticator model. That means that an Authenticator of the same model
typically shares the same attestation private key. This model is also used for FIDO UAF 1.0
and FIDO U2F 1.0.

In the case of surrogate basic attestation [UAFProtocol], the Authenticator doesn’t have any
specific attestation key. Instead it uses the authentication key to (self-)sign the (surrogate)
attestation message. Authenticators without meaningful protection measures for an attestation
private key typically use this attestation model.

In this case, the Authenticator owns an authenticator-specific (endorsement) key. This key is
used to securely communicate with a trusted third party, the Privacy CA. The Authenticator
can generate multiple attestation key pairs and asks the Privacy CA to issue an attestation
certificate for it. Using this approach, the Authenticator can limit the exposure of the
endorsement key (which is a global correlation handle) to Privacy CA(s). Attestation keys can
be requested for each scoped credential individually.

In this case, the Authenticator receives DAA credentials from a single DAA-Issuer. These
DAA credentials are used along with blinding to sign the attestation data. The concept of
blinding avoids the DAA credentials being misused as global correlation handle. WebAuthn
supports DAA using elliptic curve cryptography and bilinear pairings, called ECDAA (see
[FIDOEcdaaAlgorithm]) in this specification.

4.3.1. Attestation Models

Full Basic Attestation

Surrogate Basic Attestation

Privacy CA

Note: This concept typically leads to multiple attestation certificates. The attestation
certificate requested most recently is called "active".

Direct Anonymous Attestation (DAA)

Refs or kill?Refs or kill?

#28 p.26

When an intermediate CA or a root CA used for issuing attestation certificates is compromised,
WebAuthn Authenticator attestation keys are still safe although their certificates can no longer be
trusted. A WebAuthn Authenticator manufacturer that has recorded the public attestation keys for
their devices can issue new attestation certificates for these keys from a new intermediate CA or
from a new root CA. If the root CA changes, the WebAuthn Relying Parties must update their
trusted root certificates accordingly.

A WebAuthn Authenticator attestation certificate must be revoked by the issuing CA if its key has
been compromised. A WebAuthn Authenticator manufacturer may need to ship a firmware update
and inject new attestation keys and certificates into already manufactured WebAuthn Authenticators,
if the exposure was due to a firmware flaw. (The process by which this happens is out of scope for
this specification.) No further valid attestation statements can be made by the affected WebAuthn
Authenticators unless the WebAuthn Authenticator manufacturer has this capability.

If attestation certificate validation fails due to a revoked intermediate attestation CA certificate, and
the WebAuthn Relying Party’s policy requires rejecting the registration/authentication request in
these situations, then it is recommended that the WebAuthn Relying Party also un-registers (or
marks as "surrogate attestation" (see §4.3.1 Attestation Models), policy permitting) scoped
credentials that were registered post the CA compromise date using an attestation certificate
chaining up to the same intermediate CA. It is thus recommended that WebAuthn Relying Parties
remember intermediate attestation CA certificates during Authenticator registration in order to un-
register related Scoped Credentials if the registration was performed after revocation of such
certificates.

If a DAA attestation key has been compromised, it can be added to the RogueList (i.e., the list of
revoked authenticators) maintained by the related DAA-Issuer. The WebAuthn Relying Party should
verify whether an authenticator belongs to the RogueList when performing DAA-Verify. The FIDO
Metadata Service [FIDOMetadataService] provides an easy way to access such information.

example, a WebAuthn Authenticator can ship with a master attestation key (and certificate),
and combined with a cloud operated privacy CA, can dynamically generate per origin
attestation keys and attestation certificates.

A WebAuthn Authenticator can implement direct anonymous attestation (see
[FIDOEcdaaAlgorithm]). Using this scheme, the authenticator generates a blinded attestation
signature. This allows the WebAuthn Relying Party to verify the signature using the DAA root
key, but the attestation signature doesn’t serve as a global correlation handle.

4.3.4.2. Attestation Certificate and Attestation Certificate CA Compromise

??

#29 p.37

A 3 tier hierarchy for attestation certificates is recommended (i.e., Attestation Root, Attestation
Issuing CA, Attestation Certificate). It is also recommended that for each WebAuthn Authenticator
device line (i.e., model), a separate issuing CA is used to help facilitate isolating problems with a
specific version of a device.

If the attestation root certificate is not dedicated to a single WebAuthn Authenticator device line
(i.e., AAGUID), the AAGUID must be specified either in the attestation certificate itself or as an
extension in the rawData.

The mechanism for generating scoped credentials, as well as requesting and generating WebAuthn
assertions, as defined in §3 Web Authentication API, can be extended to suit particular use cases.
Each case is addressed by defining a registration extension and/or a signature extension. Extensions
can define additions to the following steps and data:

When requesting an assertion for a scoped credential, a WebAuthn Relying Party can list a set of
extensions to be used, if they are supported by the client and/or the authenticator. It sends the
request parameters for each extension in the getAssertion() call (for signature extensions) or
makeCredential() call (for registration extensions) to the client platform. The client platform
performs additional processing for each extension that it supports, and augments ClientData as
required by the extension. For extensions that the client platform does not support, it passes the
request parameters on to the authenticator when possible (criteria defined below). This allows one to
define extensions that affect the authenticator only.

Similarly, the authenticator performs additional processing for the extensions that it supports, and
augments authenticatorData as specified by the extension.

Extensions that are not supported are ignored.

4.3.4.3. Attestation Certificate Hierarchy

5. WebAuthn Extensions

makeCredential() request parameters for registration extension.

getAssertion() request parameters for signature extensions.

Client processing, and the ClientData structure, for registration extensions and signature
extensions.

Authenticator processing, and the authenticatorData structure, for signature extensions.

Or the authn may spontaneously create extensionsOr the authn may spontaneously create extensions

#30 p.38

Extension definitions MUST specify the valid values for their client argument. Clients are free to
ignore extensions with an invalid client argument. Specifying an authenticator argument is optional,
since some extensions may only affect client processing.

A WebAuthn Relying Party simultaneously requests the use of an extension and sets its client
argument by including an entry in the credentialExtensions or assertionExtensions dictionary
parameters to the makeCredential() or getAssertion() call. The entry key MUST be the
extension identifier, and the value MUST be the client argument.

Extensions that affect the behavior of the client platform can define their argument to be any set of
values that can be encoded in JSON. Such an extension will in general (but not always) specify
additional values to the ClientData structure (see below). It may also specify an authenticator
argument that platforms implementing the extension are expected to send to the authenticator. The
authenticator argument should be a byte string.

For extensions that specify additional authenticator processing only, it is desirable that the platform
need not know the extension. To support this, platforms SHOULD pass the client argument of
unknown extension as the authenticator argument unchanged, under the same extension identifier.
The authenticator argument should be the CBOR encoding of the client argument, as specified in
Section 4.2 of [RFC7049]. Clients SHOULD silently drop unknown extensions whose client
argument cannot be encoded as a CBOR structure.

EXAMPLE 1
var assertionPromise = credentials.getAssertion(..., /* extensions */ {
 "com.example.webauthn.foobar": 42
});

Note: Extensions should aim to define authenticator arguments that are as small as possible.
Some authenticators communicate over low-bandwidth links such as Bluetooth Low-Energy or
NFC.

Note: Extensions that do not need to pass any particular argument value, must still define a
client argument. It is recommended that the argument be defined as the constant value true in
this case.

5.4. Extending client processing

caps?caps?

#31 p.40

Algorithm Analysis Document(s) N/A

This section is not normative.

In this section, we walk through some events in the lifecycle of a scoped credential, along with the
corresponding sample code for using this API. Note that this is an example flow, and does not limit
the scope of how the API can be used.

As was the case in earlier sections, this flow focuses on a use case involving an external first-factor
authenticator with its own display. One example of such an authenticator would be a smart phone.
Other authenticator types are also supported by this API, subject to implementation by the platform.
For instance, this flow also works without modification for the case of an authenticator that is
embedded in the client platform. The flow also works for the case of an external authenticator
without its own display (similar to a smart card) subject to specific implementation considerations.
Specifically, the client platform needs to display any prompts that would otherwise be shown by the
authenticator, and the authenticator needs to allow the client platform to enumerate all the
authenticator’s credentials so that the client can have information to show appropriate prompts.

This is the first time flow, when a new credential is created and registered with the server.

8. Sample scenarios§

8.1. Registration

1. The user visits example.com, which serves up a script. At this point, the user must already be
logged in using a legacy username and password, or additional authenticator, or other means
acceptable to the WebAuthn Relying Party.

2. The WebAuthn Relying Party script runs the code snippet below.

3. The client platform searches for and locates the external authenticator.

4. The client platform connects to the external authenticator, performing any pairing actions if
necessary.

5. The external authenticator shows appropriate UI for the user to select the authenticator on
which the new credential will be created, and obtains a biometric or other authorization gesture
from the user.

Why aren't these in the use cases section?Why aren't these in the use cases section?

#32 p.49

Web Authentication: A Web API
for accessing scoped credentials

http://w3c.github.io/webauthn/

http://www.w3.org/TR/webauthn/

Vijay Bharadwaj (Microsoft)
Hubert Le Van Gong (PayPal)
Dirk Balfanz (Google)
Alexei Czeskis (Google)
Arnar Birgisson (Google)
Jeff Hodges (PayPal)
Michael B. Jones (Microsoft)
Rolf Lindemann (Nok Nok Labs)

Copyright © 2016 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use rules apply.

This specification defines an API that enables web pages to access WebAuthn compliant strong
cryptographic credentials through browser script. Conceptually, one or more credentials are stored
on an authenticator, and each credential is scoped to a single Relying Party. Authenticators are
responsible for ensuring that no operation is performed without the user’s consent. The user agent
mediates access to credentials in order to preserve user privacy. Authenticators use attestation to
provide cryptographic proof of their properties to the relying party. This specification also describes
a functional model of a WebAuthn compliant authenticator, including its signature and attestation
functionality.

Editor’s Draft, 13 May 2016

This version:

Latest published version:

Editors:

Abstract

Status of this document

This jumps right into using jargon --
given the potential audience, do we want
to ease them into he jargon?

This jumps right into using jargon --
given the potential audience, do we want
to ease them into he jargon?

https://www.w3.org/
http://w3c.github.io/webauthn/
http://www.w3.org/TR/webauthn/
mailto:vijay.bharadwaj@microsoft.com
mailto:hlevangong@paypal.com
mailto:balfanz@google.com
mailto:aczeskis@google.com
mailto:arnarb@google.com
mailto:Jeff.Hodges@paypal.com
mailto:mbj@microsoft.com
mailto:rolf@noknok.com
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

This section describes the status of this document at the time of its publication. Other documents
may supersede this document. A list of current W3C publications and the latest revision of this
technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document was published by the Web Authentication Working Group as an Editors' Draft. This
document is intended to become a W3C Recommendation. Feedback and comments on this
specification are welcome. Please use Github issues. Discussions may also be found in the public-
webauthn@w3.org archives.

Publication as an Editors' Draft does not imply endorsement by the W3C Membership. This is a
draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy.
W3C maintains a public list of any patent disclosures made in connection with the deliverables of
the group; that page also includes instructions for disclosing a patent. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the
information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 1 September 2015 W3C Process Document.

Table of Contents

1 Use Cases
1.1 Registration (embedded authenticator mode)
1.2 Authentication (external authenticator mode)
1.3 Other configurations

2 Conformance
2.1 Dependencies

3 Web Authentication API
3.1 WebAuthentication Interface
3.1.1 Create a new credential (makeCredential() method)
3.1.2 Use an existing credential (getAssertion() method)
3.2 ScopedCredentialInfo Interface
3.3 User Account Information (dictionary Account)
3.4 Parameters for Credential Generation (dictionary ScopedCredentialParameters)
3.5 WebAuthn Assertion (interface WebAuthnAssertion)

http://www.w3.org/TR/
https://www.w3.org/webauthn/
https://github.com/w3c/reporting/issues
http://lists.w3.org/Archives/Public/public-webauthn/
http://www.w3.org/Consortium/Patent-Policy-20040205/
https://www.w3.org/2004/01/pp-impl/87227/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/2015/Process-20150901/

3.6 WebAuthn Assertion Extensions (dictionary WebAuthnExtensions)
3.7 Credential Attestation Statement (interface WebAuthnAttestation)
3.8 Supporting Data Structures
3.8.1 Credential Type enumeration (enum CredentialType)
3.8.2 Unique Identifier for Credential (interface Credential)
3.8.3 Cryptographic Algorithm Identifier (type AlgorithmIdentifier)

4 WebAuthn Authenticator model
4.1 Authenticator operations
4.1.1 The authenticatorMakeCredential operation
4.1.2 The authenticatorGetAssertion operation
4.1.3 The authenticatorCancel operation
4.2 Signature Format
4.2.1 Client data used in WebAuthn signatures (dictionary ClientData)
4.2.2 Authenticator data
4.2.3 Generating a signature
4.3 Credential Attestation Statements
4.3.1 Attestation Models
4.3.2 Defined Attestation Types
4.3.2.1 Packed Attestation (type="packed")
4.3.2.1.1 Attestation rawData

4.3.2.1.2 Signature

4.3.2.1.3 Packed attestation statement certificate requirements

4.3.2.2 TPM Attestation (type="tpm")
4.3.2.2.1 Attestation rawData

4.3.2.2.2 Signature

4.3.2.2.3 TPM attestation statement certificate requirements

4.3.2.3 Android Attestation (type="android")
4.3.2.3.1 Signature

4.3.2.3.2 Verifying AndroidClientData specific contextual bindings

4.3.3 Verifying an Attestation Statement
4.3.4 Security Considerations
4.3.4.1 Privacy
4.3.4.2 Attestation Certificate and Attestation Certificate CA Compromise
4.3.4.3 Attestation Certificate Hierarchy

5 WebAuthn Extensions
5.1 Extension identifiers

This section is not normative.

5.2 Defining extensions
5.3 Extending request parameters
5.4 Extending client processing
5.5 Extending authenticator processing with signature extensions
5.6 Example extension

6 Pre-defined extensions
6.1 Transaction authorization
6.2 Authenticator Selection Extension
6.3 AAGUID Extension
6.4 SupportedExtensions Extension
6.5 User Verification Index (UVI) Extension

7 IANA Considerations

8 Sample scenarios
8.1 Registration
8.2 Authentication
8.3 Decommissioning

9 Terminology

10 Acknowledgements

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

IDL Index

1. Use Cases§

This specification defines an API for web pages to access scoped credentials through JavaScript, for
the purpose of strongly authenticating a user. Scoped credentials are always scoped to a single
WebAuthn Relying Party. This scoping is enforced jointly by the User Agent implementing the Web
Authentication API and the authenticator that holds the credential, by constraining the availability
and usage of credentials. Scoped credentials created by a WebAuthn Relying Party can only be
accessed by web origins belonging to that WebAuthn Relying Party. Additionally, privacy across
WebAuthn Relying Parties must be maintained; scripts must not be able to detect any properties, or
even the existence, of scoped credentials belonging to other WebAuthn Relying Parties.

Scoped credentials are located on authenticators, which can use them to perform operations subject
to user consent. Broadly, authenticators are of two types:

Note that an external authenticator may itself contain an embedded authenticator. For example,
consider a smart phone that contains a scoped credential. The credential may be accessed by a web
browser running on the phone itself. In this case the module containing the credential is functioning
as an embedded authenticator. However, the credential may also be accessed over BLE by a user
agent on a nearby laptop. In this latter case, the phone is functioning as an external authenticator.
These modes may even be used in a single end-to-end user scenario. One such scenario is described
in the remainder of this section.

1. Embedded authenticators have their operation managed by the same computing device (e.g.,
smart phone, tablet, desktop PC) as the user agent is running on. For instance, such an
authenticator might consist of a Trusted Platform Module (TPM) or Secure Element (SE)
integrated into the computing device, along with appropriate platform software to mediate
access to this device’s functionality.

2. External authenticators operate autonomously from the device running the user agent, and
accessed over a transport such as Universal Serial Bus (USB), Bluetooth Low Energy (BLE) or
Near Field Communications (NFC).

1.1. Registration (embedded authenticator mode)§

On the phone:

User goes to example.com in the browser and signs in to an existing account using
whatever method they have been using (possibly a legacy method such as a password), or
creates a new account.

The phone prompts, "Do you want to register this device with example.com?"

Safe to assume that readers are familiar with
scoped credentials?
Safe to assume that readers are familiar with
scoped credentials?

Diagrams?Diagrams?

A variety of additional use cases and configurations are also possible, including (but not limited to):

User agrees.

The phone prompts the user for a previously configured authorization gesture (PIN,
biometric, etc.); the user provides this.

Website shows message, "Registration complete."

1.2. Authentication (external authenticator mode)§

On the laptop:

User goes to example.com in browser, sees an option "Sign in with your phone."

User chooses this option and gets a message from the browser, "Please complete this
action on your phone."

Next, on the phone:

User sees a discreet prompt or notification, "Sign in to example.com."

User selects this prompt / notification.

User is shown a list of their example.com identities, e.g., "Sign in as Alice / Sign in as
Bob."

User picks an identity, is prompted for an authorization gesture (PIN, biometric, etc.) and
provides this.

Now, on the laptop:

Web page shows that the selected user is signed in, and navigates to the signed-in page.

1.3. Other configurations§

User goes to example.com on their laptop, is guided through a flow to create and register a
credential on their phone.

User employs a scoped credential as described above to authorize a single transaction, such as
a payment or other financial transaction.

2. Conformance§

This specification defines criteria for a Conforming User Agent. A User Agent MUST behave as
described in this specification in order to be considered conformant. User Agents MAY implement
algorithms given in this specification in any way desired, so long as the end result is
indistinguishable from the result that would be obtained by the specification’s algorithms. A
conforming Web Authentication API User Agent MUST also be a conforming implementation of
the IDL fragments of this specification, as described in the “Web IDL” specification. [WebIDL-1]

This specification also defines a model of a Web Authentication compliant authenticator. This is a
set of functional and security requirements for an authenticator to be usable by a User Agent that
implements the Web Authentication API. As described in §1 Use Cases, the authenticator itself may
be implemented in the operating system underlying the User Agent, or in external hardware, or a
combination of both.

This specification relies on several other underlying specifications.

The concept of origin and the Window interface are defined in [HTML5].

Many of the interface definitions and all of the IDL in this specification depend on
[WebIDL-1]. This updated version of the Web IDL standard adds support for Promises, which
are now the preferred mechanism for asynchronous interaction in all new web APIs.

DOMException and the DOMException values used in this specification are defined in
[DOM4].

The AlgorithmIdentifier type and the method for normalizing an algorithm are defined in Web
Cryptography API §algorithm-dictionary.

The JsonWebKey dictionary for representing cryptographic keys is defined in Web
Cryptography API §JsonWebKey-dictionary.

The term Base64url Encoding refers to the base64 encoding using the URL- and filename-safe
character set defined in Section 5 of [RFC4648], with all trailing '=' characters omitted (as
permitted by Section 3.2) and without the inclusion of any line breaks, whitespace, or other
additional characters. This is the same encoding as used by JSON Web Signature (JWS)
[RFC7515].

2.1. Dependencies§

HTML5

Web IDL

DOM

Web Cryptography API

Base64url encoding

https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html#algorithm-dictionary
https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html#JsonWebKey-dictionary

This section normatively specifies the API for creating and using scoped credentials. Support for
deleting credentials is deliberately omitted; this is expected to be done through platform-specific
user interfaces rather than from a script. The basic idea is that the credentials belong to the user and
are managed by an authenticator, with which the WebAuthn Relying Party interacts through the
client (consisting of the browser and underlying OS platform). Scripts can (with the user’s consent)
request the browser to create a new credential for future use by the WebAuthn Relying Party. Scripts
can also request the user’s permission to perform authentication operations with an existing
credential. All such operations are performed in the authenticator and are mediated by the browser
and/or platform on the user’s behalf. At no point does the script get access to the credentials
themselves; it only gets information about the credentials in the form of objects.

The security properties of this API are provided by the client and the authenticator working
together. The authenticator, which holds and manages credentials, ensures that all operations are
scoped to a particular web origin, and cannot be replayed against a different origin, by incorporating
the origin in its responses. Specifically, as defined in §4.2 Signature Format, the full origin of the
requester is included, and signed over, in the attestation statement produced when a new credential
is created as well as in all assertions produced by WebAuthn credentials.

Additionally, to maintain user privacy and prevent malicious WebAuthn Relying Parties from
probing for the presence of credentials belonging to other WebAuthn Relying Parties, each
credential is also associated with a Relying Party Identifier, or RP ID. This RP ID is provided by the
client to the authenticator for all operations, and the authenticator ensures that credentials created by
a WebAuthn Relying Party can only be used in operations requested by the same RP ID. Separating
the origin from the RP ID in this way allows the API to be used in cases where a single WebAuthn
Relying Party maintains multiple web origins.

The client facilitates these security measures by providing correct web origins and RP IDs to the
authenticator for each operation. Since this is an integral part of the WebAuthn security model, user
agents SHOULD only expose this API to callers in secure contexts, as defined in [secure-contexts].

The API is defined by the following Web IDL fragment.

3. Web Authentication API§

??

partial interface Window {
 readonly attribute WebAuthentication webauthn;
};

interface WebAuthentication {
 Promise < ScopedCredentialInfo > makeCredential (
 Account accountInformation,
 sequence < ScopedCredentialParameters > cryptoParameters,
 BufferSource attestationChallenge,
 optional unsigned long credentialTimeoutSeconds
 optional sequence < Credential > blacklist,
 optional WebAuthnExtensions credentialExtensions
);

 Promise < WebAuthnAssertion > getAssertion (
 BufferSource assertionChallenge,
 optional unsigned long assertionTimeoutSeconds,
 optional sequence < Credential > whitelist,
 optional WebAuthnExtensions assertionExtensions
);
};

interface ScopedCredentialInfo {
 readonly attribute Credential credential;
 readonly attribute any publicKey;
 readonly attribute WebAuthnAttestation attestation;
};

dictionary Account {
 required DOMString rpDisplayName;
 required DOMString displayName;
 DOMString name;
 DOMString id;
 DOMString imageURL;
};

dictionary ScopedCredentialParameters {
 required CredentialType type;
 required AlgorithmIdentifier algorithm;
};

interface WebAuthnAssertion {
 readonly attribute Credential credential;

If attestation is null, there would
be no clientDataHash. Negative
security ramifications?

If attestation is null, there would
be no clientDataHash. Negative
security ramifications?

Is there any rhyme or reason to the order of
this WebIDL?
Is there any rhyme or reason to the order of
this WebIDL?

https://html.spec.whatwg.org/multipage/browsers.html#window
https://heycam.github.io/webidl/#BufferSource
https://heycam.github.io/webidl/#BufferSource

This interface has two methods, which are described in the following subsections.

With this method, a script can request the User Agent to create a new credential of a given type and
persist it to the underlying platform, which may involve data storage managed by the browser or the
OS. The user agent will prompt the user to approve this operation. On success, the promise will be
resolved with a ScopedCredentialInfo object describing the newly created credential.

This method takes the following parameters:

 readonly attribute ArrayBuffer clientData;
 readonly attribute ArrayBuffer authenticatorData;
 readonly attribute ArrayBuffer signature;
};

dictionary WebAuthnExtensions {
};

interface WebAuthnAttestation {
 readonly attribute DOMString type;
 readonly attribute ArrayBuffer clientData;
 readonly attribute any statement;
};

enum CredentialType {
 "ScopedCred"
};

interface Credential {
 readonly attribute CredentialType type;
 readonly attribute BufferSource id;
};

3.1. WebAuthentication Interface§

3.1.1. Create a new credential (makeCredential() method)§

The accountInformation parameter specifies information about the user account for which the
credential is being created. This is meant for later use by the authenticator when it needs to
prompt the user to select a credential.

enum?enum?

https://heycam.github.io/webidl/#BufferSource

When this method is invoked, the user agent MUST execute the following algorithm:

The cryptoParameters parameter supplies information about the desired properties of the
credential to be created. The sequence is ordered from most preferred to least preferred. The
platform makes a best effort to create the most preferred credential that it can.

The attestationChallenge parameter contains a challenge intended to be used for generating
the attestation statement of the newly created credential.

The optional credentialTimeoutSeconds parameter specifies a time, in seconds, that the caller
is willing to wait for the call to complete. This is treated as a hint, and may be overridden by
the platform.

The optional blacklist parameter is intended for use by WebAuthn Relying Parties that wish to
limit the creation of multiple credentials for the same account on a single authenticator. The
platform is requested to return an error if the new credential would be created on an
authenticator that also contains one of the credentials enumerated in this parameter.

The optional credentialExtensions parameter contains additional parameters requesting
additional processing by the client and authenticator. For example, the caller may request that
only authenticators with certain capabilities be used to create the credential, or that additional
information be returned in the attestation statement. Alternatively, the caller may specify an
additional message that they would like the authenticator to display to the user. Extensions are
defined in §5 WebAuthn Extensions.

1. If credentialTimeoutSeconds was specified, check if its value lies within a reasonable range as
defined by the platform and if not, correct it to the closest value lying within that range. Set
adjustedTimeout to this adjusted value. If credentialTimeoutSeconds was not specified then set
adjustedTimeout to a platform-specific default.

2. Let promise be a new Promise. Return promise and start a timer for adjustedTimeout seconds.
Then asynchronously continue executing the following steps.

3. Set callerOrigin to the origin of the caller. Derive the RP ID from callerOrigin by computing
the "public suffix + 1" or "PS+1" (which is also referred to as the "Effective Top-Level Domain
plus One" or "eTLD+1") part of callerOrigin [PSL]. Set rpId to the RP ID.

4. Initialize issuedRequests to an empty list.

5. Process each element of cryptoParameters using the following steps, to produce a new
sequence normalizedParameters:

Let current be the currently selected element of cryptoParameters.

Additional description of what
normalization is trying to accomplish
would be helpful

Additional description of what
normalization is trying to accomplish
would be helpful

If current.type does not contain a CredentialType supported by this
implementation, then stop processing current and move on to the next element in
cryptoParameters.

Let normalizedAlgorithm be the result of normalizing an algorithm using the
procedure defined in [WebCryptoAPI], with alg set to current.algorithm and op set
to 'generateKey'. If an error occurs during this procedure, then stop processing current and
move on to the next element in cryptoParameters.

Add a new object of type ScopedCredentialParameters to
normalizedParameters, with type set to current.type and algorithm set to
normalizedAlgorithm.

6. If blacklist is undefined, set it to the empty list.

7. If credentialExtensions was specified, process any extensions supported by this client platform,
to produce the extension data that needs to be sent to the authenticator. Call this data
clientExtensions.

8. For each embedded or external authenticator currently available on this platform:
asynchronously invoke the authenticatorMakeCredential operation on that authenticator with
callerOrigin, rpId, accountInformation, normalizedParameters, blacklist,
attestationChallenge and clientExtensions as parameters. Add a corresponding entry to
issuedRequests.

9. While issuedRequests is not empty, perform the following actions depending upon the
adjustedTimeout timer and responses from the authenticators:

If the adjustedTimeout timer expires, then for each entry in issuedRequests invoke the
authenticatorCancel operation on that authenticator and remove its entry from the list.

If any authenticator returns a status indicating that the user cancelled the operation, delete
that authenticator’s entry from issuedRequests. For each remaining entry in
issuedRequests invoke the authenticatorCancel operation on that authenticator and remove
its entry from the list.

If any authenticator returns an error status, delete the corresponding entry from
issuedRequests.

If any authenticator indicates success, create a new ScopedCredentialInfo object
named value and populate its fields with the values returned from the authenticator.
Resolve promise with value and terminate this algorithm.

10. Resolve promise with a DOMException whose name is "NotFoundError", and terminate this
algorithm.

The intent is that cancel on one
results in cancelling all?
The intent is that cancel on one
results in cancelling all?

During the above process, the user agent SHOULD show some UI to the user to guide them in the
process of selecting and authorizing an authenticator.

This method is used to discover and use an existing scoped credential, with the user’s consent. The
script optionally specifies some criteria to indicate what credentials are acceptable to it. The user
agent and/or platform locates credentials matching the specified criteria, and guides the user to pick
one that the script should be allowed to use. The user may choose not to provide a credential even if
one is present, for example to maintain privacy.

This method takes the following parameters:

When this method is invoked, the user agent MUST execute the following algorithm:

3.1.2. Use an existing credential (getAssertion() method)§

The assertionChallenge parameter contains a challenge that the selected authenticator is
expected to sign to produce the assertion.

The optional assertionTimeoutSeconds parameter specifies a time, in seconds, that the caller is
willing to wait for the call to complete. This is treated as a hint, and may be overridden by the
platform.

The optional whitelist member contains a list of credentials acceptable to the caller, in order of
the caller’s preference.

The optional assertionExtensions parameter contains additional parameters requesting
additional processing by the client and authenticator. For example, if transaction confirmation
is sought from the user, then the prompt string would be included in an extension. Extensions
are defined in a companion specification.

1. If assertionTimeoutSeconds was specified, check if its value lies within a reasonable range as
defined by the platform and if not, correct it to the closest value lying within that range. Set
adjustedTimeout to this adjusted value. If assertionTimeoutSeconds was not specified then set
adjustedTimeout to a platform-specific default.

2. Let promise be a new Promise. Return promise and start a timer for adjustedTimeout seconds.
Then asynchronously continue executing the following steps.

3. Set callerOrigin to the origin of the caller. Derive the RP ID from callerOrigin by computing
the "public suffix + 1" or "PS+1" (which is also referred to as the "Effective Top-Level Domain
plus One" or "eTLD+1") part of callerOrigin [PSL]. Set rpId to the RP ID.

4. Initialize issuedRequests to an empty list.

...but requests are sent to all
authenticators in #8 above?
...but requests are sent to all
authenticators in #8 above?

During the above process, the user agent SHOULD show some UI to the user to guide them in the
process of selecting and authorizing an authenticator with which to complete the operation.

5. If assertionExtensions was specified, process any extensions supported by this client platform,
to produce the extension data that needs to be sent to the authenticator. Call this data
clientExtensions.

6. For each embedded or external authenticator currently available on this platform, perform the
following steps:

If whitelist is undefined or empty, let credentialList be a list containing a single wildcard
entry.

If whitelist is defined and non-empty, optionally execute a platform-specific procedure to
determine which of these credentials can possibly be present on this authenticator. Set
credentialList to this filtered list. If credentialList is empty, ignore this authenticator and
do not perform any of the following per-authenticator steps.

Asynchronously invoke the authenticatorGetAssertion operation on this authenticator with
callerOrigin, rpId, assertionChallenge, credentialList, and clientExtensions as parameters.

Add an entry to issuedRequests, corresponding to this request.

7. While issuedRequests is not empty, perform the following actions depending upon the
adjustedTimeout timer and responses from the authenticators:

If the timer for adjustedTimeout expires, then for each entry in issuedRequests invoke the
authenticatorCancel operation on that authenticator and remove its entry from the list.

If any authenticator returns a status indicating that the user cancelled the operation, delete
that authenticator’s entry from issuedRequests. For each remaining entry in
issuedRequests invoke the authenticatorCancel operation on that authenticator, and
remove its entry from the list.

If any authenticator returns an error status, delete the corresponding entry from
issuedRequests.

If any authenticator returns success, create a new WebAuthnAssertion object named
value and populate its fields with the values returned from the authenticator. Resolve
promise with value and terminate this algorithm.

8. Resolve promise with a DOMException whose name is "NotFoundError", and terminate this
algorithm.

First mention of
wildcards? Where
are they defined?

First mention of
wildcards? Where
are they defined?

Implies cred id was stored
in makeCred? Maybe some
hint in makeCred?

Implies cred id was stored
in makeCred? Maybe some
hint in makeCred?

This interface represents a newly-created scoped credential. It contains information about the
credential that can be used to locate it later for use, and also contains metadata that can be used by
the WebAuthn Relying Party to assess the strength of the credential during registration.

The credential attribute contains a unique identifier for the credential represented by this object.

The publicKey attribute contains the public key associated with the credential, represented as a
JsonWebKey structure as defined in Web Cryptography API §JsonWebKey-dictionary.

The attestation attribute contains a key attestation statement returned by the authenticator. This
provides information about the credential and the authenticator it is held in, such as the level of
security assurance provided by the authenticator.

This dictionary is used by the caller to specify information about the user account and WebAuthn
Relying Party with which a credential is to be associated. It is intended to help the authenticator in
providing a friendly credential selection interface for the user.

The rpDisplayName member contains the friendly name of the WebAuthn Relying Party, such as
"Acme Corporation", "Widgets Inc" or "Awesome Site".

The displayName member contains the friendly name associated with the user account by the
WebAuthn Relying Party, such as "John P. Smith".

The name member contains a detailed name for the account, such as "john.p.smith@example.com".

The id member contains an identifier for the account, stored for the use of the WebAuthn Relying
Party. This is not meant to be displayed to the user.

The imageURL member contains a URL that resolves to the user’s account image. This may be a
URL that can be used to retrieve an image containing the user’s current avatar, or a data URI that
contains the image data.

3.2. ScopedCredentialInfo Interface§

3.3. User Account Information (dictionary Account)§

3.4. Parameters for Credential Generation (dictionary
ScopedCredentialParameters)

§

Described in section ###?Described in section ###?

Other fields okay?Other fields okay?

https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html#JsonWebKey-dictionary

This dictionary is used to supply additional parameters when creating a new credential.

The type member specifies the type of credential to be created.

The algorithm member specifies the cryptographic algorithm with which the newly generated
credential will be used.

Scoped credentials produce a cryptographic signature that provides proof of possession of a private
key as well as evidence of user consent to a specific transaction. The structure of these signatures is
defined as follows.

The credential member represents the credential that was used to generate this assertion.

The clientData member contains the parameters sent to the authenticator by the client, in serialized
form. See §4.2.1 Client data used in WebAuthn signatures (dictionary ClientData) for the format of
this parameter and how it is generated.

The authenticatorData member contains the serialized data returned by the authenticator. See
§4.2.2 Authenticator data.

The signature member contains the raw signature returned from the authenticator. See §4.2.3
Generating a signature.

This is a dictionary containing zero or more extensions as defined in §5 WebAuthn Extensions. An
extension is an additional parameter that can be passed to the getAssertion() method and triggers
some additional processing by the client platform and/or the authenticator.

If the caller wants to pass extensions to the platform, it SHOULD do so by adding one entry per
extension to this dictionary with the extension identifier as the key, and the extension’s value as the
value (see §4.2 Signature Format for details).

3.5. WebAuthn Assertion (interface WebAuthnAssertion)§

3.6. WebAuthn Assertion Extensions (dictionary WebAuthnExtensions)§

3.7. Credential Attestation Statement (interface WebAuthnAttestation)§

will = should?will = should?

Authenticators also provide some form of attestation. The basic requirement is that the authenticator
can produce, for each credential public key, attestation information that can be verified by a
WebAuthn Relying Party. Typically, this information contains a signature by an attesting key over
the attested public key and a challenge, as well as a certificate or similar information providing
provenance information for the attesting key, enabling a trust decision to be made.

The type member specifies the type of attestation statement contained in this structure. This
specification defines a number of attestation types, in §4.3.2 Defined Attestation Types. Other
attestation types may be defined in later versions of this specification.

The clientData member contains the clientDataJSON (see §4.2 Signature Format). The exact JSON
encoding must be preserved as the hash (clientDataHash) has been computed over it.

The statement element contains the actual attestation statement. The structure of this object depends
on the attestation type. For more details, see §4.3 Credential Attestation Statements.

This attestation statement is delivered to the WebAuthn Relying Party by the WebAuthn Relying
Party’s script running on the client, using methods outside the scope of this specification. It contains
all the information that the WebAuthn Relying Party’s server requires to validate the statement, as
well as to decode and validate the bindings of both the client and authenticator data.

The scoped credential type uses certain data structures that are specified in supporting
specifications. These are as follows.

This enumeration defines the valid credential types. It is an extension point; values may be added to
it in the future, as more credential types are defined. The values of this enumeration are used for
versioning the WebAuthn assertion and attestation statement according to the type of the
authenticator.

Currently one credential type is defined, namely "ScopedCred".

3.8. Supporting Data Structures§

3.8.1. Credential Type enumeration (enum CredentialType)§

3.8.2. Unique Identifier for Credential (interface Credential)§

may?may?

This interface contains the attributes that are returned to the caller when a new credential is created,
and can be used later by the caller to select a credential for use.

The type attribute contains a value of type CredentialType, indicating the specification and
version that this credential conforms to.

The id attribute contains an identifier for the credential, chosen by the platform with help from the
authenticator. This identifier is used to look up credentials for use, and is therefore expected to be
globally unique with high probability across all credentials of the same type, across all
authenticators. This API does not constrain the format or length of this identifier, except that it must
be sufficient for the platform to uniquely select a key. For example, an authenticator without on-
board storage may create identifiers that consist of the key material wrapped with a key that is
burned into the authenticator.

A string or dictionary identifying a cryptographic algorithm and optionally a set of parameters for
that algorithm. This type is defined in [WebCryptoAPI].

The API defined in this specification implies a specific abstract functional model for an
authenticator. This section describes the authenticator model. Client platforms may implement and
expose this abstract model in any way desired. However, the behavior of the client’s Web
Authentication API implementation, when operating on the embedded and external authenticators
supported by that platform, MUST be indistinguishable from the behavior specified in §3 Web
Authentication API.

In this abstract model, each authenticator stores some number of scoped credentials. Each scoped
credential has an identifier which is unique (or extremely unlikely to be duplicated) among all
scoped credentials. Each credential is also associated with a WebAuthn Relying Party, whose
identity is represented by a Relying Party Identifier (RP ID).

A client must connect to an authenticator in order to invoke any of the operations of that
authenticator. This connection defines an authenticator session. An authenticator must maintain

3.8.3. Cryptographic Algorithm Identifier (type AlgorithmIdentifier)§

4. WebAuthn Authenticator model§

4.1. Authenticator operations§

isolation between sessions. It may do this by only allowing one session to exist at any particular
time, or by providing more complicated session management.

The following operations can be invoked by the client in an authenticator session.

This operation must be invoked in an authenticator session which has no other operations in
progress. It takes the following input parameters:

When this operation is invoked, the authenticator obtains user consent for creating a new credential.
The prompt for obtaining this consent is shown by the authenticator if it has its own output
capability, or by the user agent otherwise. Once user consent is obtained, the authenticator generates
the appropriate cryptographic keys and creates a new credential. It also generates an identifier for
the credential, such that this identifier is globally unique with high probability across all credentials
with the same type across all authenticators. It then associates the credential with the specified RP
ID such that it will be able to retrieve the RP ID later, given the credential ID.

On successful completion of this operation, the authenticator returns the type and unique identifier
of this new credential to the user agent.

4.1.1. The authenticatorMakeCredential operation§

The web origin of the script on whose behalf the operation is being initiated, as determined by
the user agent and the client.

The RP ID corresponding to the above web origin, as determined by the user agent and the
client.

The Account information provided by the WebAuthn Relying Party.

The CredentialType requested by the WebAuthn Relying Party.

The cryptographic parameters requested by the WebAuthn Relying Party, with the
cryptographic algorithms normalized as per the procedure in Web Cryptography API
§algorithm-normalization-normalize-an-algorithm.

A list of Credential objects provided by the WebAuthn Relying Party with the intention
that, if any of these are known to the authenticator, it should not create a new credential.

A challenge provided by the WebAuthn Relying Party to assure freshness of the attestation
statement of the new credential.

Extension data created by the client based on the extensions requested by the WebAuthn
Relying Party.

Should clientDataHash be passed
in, or is this assuming that the
authn calculates it?

Should clientDataHash be passed
in, or is this assuming that the
authn calculates it?

Doesn't mention creating an attestation or processing extensions?Doesn't mention creating an attestation or processing extensions?

https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html#algorithm-normalization-normalize-an-algorithm

If the user refuses consent, the authenticator returns an appropriate error status to the client.

This operation must be invoked in an authenticator session which has no other operations in
progress. It takes the following input parameters:

When this method is invoked, the authenticator allows the user to select a credential from among the
credentials associated with that WebAuthn Relying Party and matching the specified criteria, then
obtains user consent for using that credential. The prompt for obtaining this consent may be shown
by the authenticator if it has its own output capability, or by the user agent otherwise. Once a
credential is selected and user consent is obtained, the authenticator computes a cryptographic
signature using the credential’s private key and constructs an assertion as specified in §4.2 Signature
Format. It then returns this assertion to the user agent.

If the authenticator cannot find any credential corresponding to the specified WebAuthn Relying
Party that matches the specified criteria, it terminates the operation and returns an error.

If the user refuses consent, the authenticator returns an appropriate error status to the client.

This operation takes no input parameters and returns no result.

When this operation is invoked by the client in an authenticator session, it has the effect of
terminating any authenticatorMakeCredential or authenticatorGetAssertion operation currently in
progress in that authenticator session. The authenticator stops prompting for, or accepting, any user

4.1.2. The authenticatorGetAssertion operation§

The web origin of the script on whose behalf the operation is being initiated, as determined by
the user agent and the client.

The RP ID corresponding to the above web origin, as determined by the user agent and the
client.

A challenge provided by the WebAuthn Relying Party to assure freshness of the assertion
produced.

A list of credentials acceptable to the WebAuthn Relying Party (possibly filtered by the client).

Extension data created by the client based on the extensions requested by the WebAuthn
Relying Party.

4.1.3. The authenticatorCancel operation§

Really vague. I assume that's okay?Really vague. I assume that's okay?

input related to authorizing the canceled operation. The client ignores any further responses from
the authenticator for the canceled operation.

This operation is ignored if it is invoked in an authenticator session which does not have an
authenticatorMakeCredential or authenticatorGetAssertion operation currently in progress.

WebAuthn signatures are bound to various contextual data. These data are observed, and added at
different levels of the stack as a signature request passes from the server to the authenticator. In
verifying a signature, the server checks these bindings against expected values.

The components of a system using WebAuthn can be divided into three layers:

This specification defines the common signature format shared by all the above layers. This includes
how the different contextual bindings are encoded, signed over, and delivered to the RP.

The goals of this design can be summarized as follows.

4.2. Signature Format§

1. The WebAuthn Relying Party (RP), which uses the WebAuthn services. The RP consists of a
server component and a web-application running in a browser.

2. The WebAuthn Client platform, which consists of the User Agent and the OS and device on
which it executes.

3. The Authenticator itself, which provides key management and cryptographic signatures. This
may be embedded in the WebAuthn client, or houesd in a separate device entirely. In the latter
case, the interface between the WebAuthn client and the authenticator is a separately-defined
protocol.

The scheme for generating signatures should accommodate cases where the link between the
client platform and authenticator is very limited, in bandwidth and/or latency. Examples
include Bluetooth Low Energy and Near-Field Communication.

The data processed by the authenticator should be small and easy to interpret in low-level code.
In particular, authenticators should not have to parse high-level encodings such as JSON.

Both the client platform and the authenticator should have the flexibility to add contextual
bindings as needed.

The design aims to reuse as much as possible of existing encoding formats in order to aid
adoption and implementation.

Refs?Refs?

Any considerations for rolling back state? (counters, keys, etc.)Any considerations for rolling back state? (counters, keys, etc.)

The contextual bindings are divided in two: Those added by the RP or the client platform, referred
to as client data; and those added by the authenticator, referred to as the authenticator data. The
client data must be signed over, but an authenticator is otherwise not interested in its contents. To
save bandwidth and processing requirements on the authenticator, the client platform hashes the
client data and sends only the result to the authenticator. The authenticator signs over the
combination of this hash, and its own authenticator data.

The client data represents the contextual bindings of both the WebAuthn Relying Party and the
client platform. It is a key-value mapping with string-valued keys. Values may be any type that has a
valid encoding in JSON. Its structure is defined by the following Web IDL.

dictionary ClientData {
 required DOMString challenge;
 required DOMString facet;
 required AlgorithmIdentifier hashAlg;
 JsonWebKey tokenBinding;
 WebAuthnExtensions extensions;
};

The challenge member contains the base64url encoding of the challenge provided by the RP.

The facet member contains the fully qualified web origin of the requester, as provided to the
authenticator by the client, in the syntax defined by [RFC6454].

The hashAlg member specifies the hash algorithm used to compute clientDataHash (see §4.2.3
Generating a signature). Use "S256" for SHA-256, "S384" for SHA384, "S512" for SHA512, and
"SM3" for SM3 (see §7 IANA Considerations).

The tokenBinding member contains a JsonWebKey object as defined by Web Cryptography API
§JsonWebKey-dictionary describing the public key that this client uses for the Token Binding
protocol when communicating with the WebAuthn Relying Party. This can be omitted if no Token
Binding has been negotiated between the client and the WebAuthn Relying Party.

The optional extensions member contains additional parameters generated by processing the
extensions passed in by the WebAuthn Relying Party. WebAuthn extensions are detailed in Section
§5 WebAuthn Extensions.

4.2.1. Client data used in WebAuthn signatures (dictionary ClientData)§

ArrayBuffer?ArrayBuffer?

https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html#JsonWebKey-dictionary

The authenticator data encodes contextual bindings made by the authenticator itself. The
authenticator data has a compact but extensible encoding. This is desired since authenticators can be
devices with limited capabilities and low power requirements, with much simpler software stacks
than the client platform components.

The encoding of authenticator data is a byte array of 5 bytes or more, as follows.

Byte
index

Description

0

Flags (bit 0 is the least significant bit):

1-4 Signature counter (signCount), 32-bit unsigned big-endian integer.

5-
Extension-defined authenticator data. This is a CBOR [RFC7049] map with
extension identifiers as keys, and extension authenticator data values as values. See
§5 WebAuthn Extensions for details.

The TUP flag SHALL be set if and only if the authenticator detected a user through an authenticator
specific gesture. The RFU bits in the flags byte SHALL be set to zero.

If the authenticator does not include any extension data, it MUST set the ED flag in the first byte to
zero, and to one if extension data is included.

The figure below shows a visual representation of the authenticator data structure.

4.2.2. Authenticator data§

Bit 0: Test of User Presence (TUP) result.

Bits 1-6: Reserved for future use (RFU).

Bit 7: Extension data included (ED). Indicates if the authenticator data has
extensions.

first mention of CBOR. Remove, add
some clarifying text, or a pointer to
the extensions section?

first mention of CBOR. Remove, add
some clarifying text, or a pointer to
the extensions section?

FLAGS

0 0 0 0 00ED TUP

COUNTER EXTENSIONS

1 byte 4 bytes (big-endian uint32) variable length (CBOR)

07

authenticatorData layout.

Before making a request to an authenticator, the client platform layer SHALL perform the following
steps.

The clientDataHash value is delivered to the authenticator.

The hash algorithm hashAlg used to compute clientDataHash is included in the ClientData
object. This way it is available to the WebAuthn Relying Party and it is also hashed over when
computing clientDataHash and hence anchored in the signature itself.

A raw cryptographic signature must assert the integrity of both the client data and the authenticator
data. Thus, an authenticator SHALL compute a signature over the concatenation of the
authenticatorData and the clientDataHash.

Note: The signatureData describes its own length: If the ED flag is not set, it is always 5
bytes long. If the ED flag is set, it is 5 bytes plus the CBOR map that follows.

4.2.3. Generating a signature§

1. Represent the parameters passed in by the RP in the form of a ClientData structure.

2. Let clientDataJSON be the UTF-8 encoded JSON serialization [RFC7159] of this ClientData
dictionary.

3. Let clientDataHash be the hash (computed using hashAlg) of clientDataJSON, as an array.

What is the relationship between this and
authenticatorMake
What is the relationship between this and
authenticatorMake

There's no mention of incrementing
the counter? Also, should
authenticatorMakeCredential mention
storing / retrieving it?

There's no mention of incrementing
the counter? Also, should
authenticatorMakeCredential mention
storing / retrieving it?

authenticatorData clientDataHash

Generated by authenticator Received from client

||

SIGNATURE

SignPrivate key

Generating a signature on the authenticator.

The authenticator MUST return both the authenticatorData and the raw signature back to the client.
The client, in turn, MUST return clientDataJSON, authenticatorData and the signature to the RP.
The clientDataJSON is returned in the clientData member of the WebAuthnAssertion and
AttestationStatement structures.

An attestation statement is a specific type of signature, which contains statements about a credential
itself and the authenticator that holds it. Therefore, the procedures for generating attestation
statements closely parallel those for generating WebAuthn assertions as described in §4.2 Signature
Format, though the semantics of the contextual bindings are quite different.

This specification defines a number of attestation types, i.e., ways to serialize the data being attested
to by the Authenticator. The reason is to be able to support existing devices like TPMs and other
platform-specific formats. Each attestation type provides the ability to cryptographically attest to a
public key, the authenticator model, and contextual data to a remote party. They differ in the details
of how the attestation statement is laid out, and how its components are computed. The different
attestation types are defined in §4.3.2 Defined Attestation Types.

This specification also defines a number of attestation models. These define how a WebAuthn
Relying Party establishes trust in a particular attestation statement, after verifying that it is

Note: A simple, undelimited concatenation is safe to use here because the authenticatorData
describes its own length. The clientDataHash (which potentially has a variable length) is always
the last element.

4.3. Credential Attestation Statements§
Thinking ahead to future attestation
formats, is there a requirement that they
MUST sign over clientDataHash?

Thinking ahead to future attestation
formats, is there a requirement that they
MUST sign over clientDataHash?

WebAuthnAttestation?WebAuthnAttestation?

cryptographically valid.

Attestation types are orthogonal to attestation models, i.e. attestation types in general are not
restricted to a single attestation model. Broadly speaking, attestation types pertain to the syntax of
the attestation statement, while attestation models pertain to the semantics.

WebAuthn supports multiple attestation models:

In the case of full basic attestation [UAFProtocol], the Authenticator’s attestation private key is
specific to an Authenticator model. That means that an Authenticator of the same model
typically shares the same attestation private key. This model is also used for FIDO UAF 1.0
and FIDO U2F 1.0.

In the case of surrogate basic attestation [UAFProtocol], the Authenticator doesn’t have any
specific attestation key. Instead it uses the authentication key to (self-)sign the (surrogate)
attestation message. Authenticators without meaningful protection measures for an attestation
private key typically use this attestation model.

In this case, the Authenticator owns an authenticator-specific (endorsement) key. This key is
used to securely communicate with a trusted third party, the Privacy CA. The Authenticator
can generate multiple attestation key pairs and asks the Privacy CA to issue an attestation
certificate for it. Using this approach, the Authenticator can limit the exposure of the
endorsement key (which is a global correlation handle) to Privacy CA(s). Attestation keys can
be requested for each scoped credential individually.

In this case, the Authenticator receives DAA credentials from a single DAA-Issuer. These
DAA credentials are used along with blinding to sign the attestation data. The concept of
blinding avoids the DAA credentials being misused as global correlation handle. WebAuthn
supports DAA using elliptic curve cryptography and bilinear pairings, called ECDAA (see
[FIDOEcdaaAlgorithm]) in this specification.

4.3.1. Attestation Models§

Full Basic Attestation

Surrogate Basic Attestation

Privacy CA

Note: This concept typically leads to multiple attestation certificates. The attestation
certificate requested most recently is called "active".

Direct Anonymous Attestation (DAA)

Maybe a concrete example?Maybe a concrete example?

Refs or kill?Refs or kill?

Compliant servers MUST support all attestation models. Authenticators can choose what attestation
model to implement.

WebAuthn supports pluggable attestation data types. This allows support of TPM generated
attestation data as well as support of other WebAuthn authenticators. As mentioned in §4.3
Credential Attestation Statements, these differ in how the attestation statement is computed and
formatted. This section defines these details.

The contents of the attestation data must be controlled (i.e., generated or at least verified) by the
authenticator itself.

Packed attestation is a WebAuthn optimized format of attestation data. It uses a very compact but
still extensible encoding method. Encoding this format can even be implemented by authenticators
with very limited resources (e.g., secure elements).

A Packed Attestation statement has the following format:

interface AttestationStatement {
 readonly attribute unsigned long version;
 readonly attribute ArrayBuffer claimedAAGUID;
 readonly attribute DOMString[] x5c;
 readonly attribute DOMString alg;
 readonly attribute ArrayBuffer rawData;
 readonly attribute ArrayBuffer signature;
};

The version member specifies the version number of the rawData object. Only version="1" is
defined at this time.

The claimedAAGUID element contains the claimed Authenticator Attestation GUID (a version 4
GUID, see [RFC4122]). This value is used by the WebAuthn Relying Party to look up the trust

Note: WebAuthn Relying Parties can always decide what attestation models are acceptable to
them by policy.

4.3.2. Defined Attestation Types§

4.3.2.1. Packed Attestation (type="packed")§

anchor for verifying the following signature. If the verification succeeds, the AAGUID related to the
trust anchor is trusted. This field MUST be present, if either no attestation certificates are used (e.g.,
DAA) or if the attestation certificate doesn’t contain the AAGUID value in an extension.

The x5c attribute contains the attestation certificate and its certificate chain as described in
[RFC7515] section 4.1.6.

The alg element contains the name of the algorithm used to generate the attestation signature
according to [RFC7518] section 3.1.

The rawData object contains the attested public key and the clientDataHash. See §4.3.2.1.1
Attestation rawData for details.

The signature element contains the attestation signature. See §4.3.2.1.2 Signature for details.

The attestation data encodes contextual bindings made by the authenticator itself. Unlike client data,
the authenticator data has a compact but extensible encoding. This is desired since authenticators
can be devices with limited capabilities and low power requirements, with much simpler software
stacks than the client platform components.

The field rawData for this type is a byte array of 45 bytes + length of public key + length of
KeyHandle + potentially more extensions. The first bytes before the extensions have a fixed layout
as follows:

Length
(in

bytes)
Description

2
0xF1D0, fixed big-endian TAG to make sure this object won’t be confused with
other (non-WebAuthn) binary objects.

1

Flags (bit 0 is the least significant bit):

4.3.2.1.1. ATTESTATION RAWDATA§

Bit 0: Test of User Presence (TUP) result.

Bits 1-6: Reserved for future use (RFU).

4 Signature counter (signCount), 32-bit unsigned big-endian integer.

2

Public key algorithm and encoding (16-bit big-endian value). Allowed values
are:

2
Byte length m of following public key bytes (16 bit value with most significant
byte first).

(length) The public key (m bytes) according to the encoding denoted before.

2 Byte length l of KeyHandle

(length) KeyHandle (l bytes)

2 Byte length n of clientDataHash

n
clientDataHash (see §4.2.3 Generating a signature). This is the hash of
clientDataJSON. The hash algorithm itself is stored in the clientData
object §4.2 Signature Format.

Bit 7: Extension data included (ED). Indicates whether the authenticator
added extensions (see below).

1. 0x0100. This is raw ANSI X9.62 formatted Elliptic Curve public key
[SEC1], i.e., [0x04, X (n bytes), Y (n bytes)], where the byte
0x04 denotes the uncompressed point compression method and n denotes
the key length in bytes.

2. 0x0102. Raw encoded RSA PKCS1 or RSASSA-PSS public key
[RFC3447]. In the case of RSASSA-PSS, the default parameters according
to [RFC4055] MUST be assumed, i.e.,

That is, [modulus (256 bytes), e (m-n bytes)], where m is the
total length of the field. This total length should be taken from the object
containing this key

Mask Generation Algorithm MGF1 with SHA256

Salt Length of 32 bytes, i.e., the length of a SHA256 hash value.

Trailer Field value of 1, which represents the trailer field with
hexadecimal value 0xBC.

As
defined
by the

extension
map

Extension-defined authenticator data. This is a CBOR [RFC7049] map with
extension identifiers as keys, and extension authenticator data values as values.
See §5 WebAuthn Extensions for a description of the extension mechanism. See
§6 Pre-defined extensions for pre-defined extensions.

The TUP flag SHALL be set if and only if the authenticator detected a user through an authenticator-
specific gesture. The RFU bits in the flags byte SHALL be cleared (i.e., zeroed).

If the authenticator does not wish to add extensions, it MUST clear the ED flag in the third byte.

The signature is computed over the rawData field. The following algorithms must be
implemented by servers:

Authenticators can choose which algorithm(s) to implement. WebAuthn Relying Parties must
implement all the algorithms implemented by the authenticators that they support.

The attestation certificate MUST have the following fields/extensions:

4.3.2.1.2. SIGNATURE§

1. "ES256" [RFC7518]

2. "RS256" [RFC7518]

3. "PS256" [RFC7518]

4. "ED256" [FIDOEcdaaAlgorithm]

4.3.2.1.3. PACKED ATTESTATION STATEMENT CERTIFICATE REQUIREMENTS§

Note: In the case of DAA attestation [FIDOEcdaaAlgorithm] no attestation certificate is used.

Version must be set to 3.

Subject field MUST be set to:

Country where the Authenticator vendor is incorporated
Subject-C

This attestation type returns an attestation statement in the same format as defined in §4.3.2.1
Packed Attestation (type="packed"). However the rawData and signature fields are computed
differently, as described below.

The value of rawData is either a TPM_CERTIFY_INFO or a TPM_CERTIFY_INFO2 structure
[TPMv1-2-Part2] sections 11.1 and 11.2, if version equals 1. Else, if version equals 2, it MUST
be a TPMS_ATTEST structure as defined in [TPMv2-Part2] section 10.12.9.

The field "extraData" (in the case of TPMS_ATTEST) or the field "data" (in the case of
TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2) MUST contain the clientDataHash (see
[[#signature-format]).

If version equals 1, (i.e., for TPM 1.2), RSASSA-PKCS1-v1_5 signature algorithm (section 8.2 of
[RFC3447]) can be used by WebAuthn Authenticators (i.e., alg="RS256").

Legal name of the Authenticator vendor

Authenticator Attestation

No stipulation.

Subject-O

Subject-OU

Subject-CN

If the related attestation root certificate is used for multiple authenticator models, the Extension
OID 1 3 6 1 4 1 45724 1 1 4 (id-fido-gen-ce-aaguid) MUST be present, containing the
AAGUID as value.

The Basic Constraints extension MUST have the CA component set to false

An Authority Information Access (AIA) extension with entry id-ad-ocsp and a CRL
Distribution Point extension [RFC5280] are both optional as the status of attestation certificates
is available through the FIDO Metadata Service [FIDOMetadataService].

4.3.2.2. TPM Attestation (type="tpm")§

4.3.2.2.1. ATTESTATION RAWDATA§

4.3.2.2.2. SIGNATURE§

If version equals 2, the following algorithms can be used by WebAuthn Authenticators:

WebAuthn Relying Parties must implement all the algorithms implemented by the authenticators
that they support.

The signature is computed over the rawData field.

TPM attestation certificate MUST have the following fields/extensions:

When the Authenticator in question is a platform-provided Authenticator on the Android platform,
the attestation statement is based on the SafetyNet API.

1. TPM_ALG_RSASSA (0x14). This is the same algorithm RSASSA-PKCS1-v1_5 as for
version 1 but for use with TPMv2. alg="RS256".

2. TPM_ALG_RSAPSS (0x16); alg="PS256".

3. TPM_ALG_ECDSA (0x18); alg="ES256".

4. TPM_ALG_ECDAA (0x1A); alg="ED256".

5. TPM_ALG_SM2 (0x1B); alg="SM256".

4.3.2.2.3. TPM ATTESTATION STATEMENT CERTIFICATE REQUIREMENTS§

Version must be set to 3.

Subject field MUST be set to empty.

The Subject Alternative Name extension must be set as defined in [TPMv2-EK-Profile] section
3.2.9 if "version" equals 2 and [TPMv1-2-Credential-Profiles] section 3.2.9 if "version" equals
1.

The Extended Key Usage extension MUST contain the "joint-iso-itu-t(2)
internationalorganizations(23) 133 tcg-kp(8) tcg-kp-AIKCertificate(3)" OID.

The Basic Constraints extension MUST have the CA component set to false

An Authority Information Access (AIA) extension with entry id-ad-ocsp and a CRL
Distribution Point extension [RFC5280] are both optional as the status of attestation certificates
is available through the FIDO Metadata Service [FIDOMetadataService].

4.3.2.3. Android Attestation (type="android")§

https://developer.android.com/training/safetynet/index.html#compat-check-response

This type of attestation statement is formatted as follows:

interface AndroidAttestation {
 readonly attribute unsigned long version;
 readonly attribute DOMString safetyNetResponse;
};

The version element is set to the version number of Google Play Services responsible for providing
the SafetyNet API.

The safetyNetResponse element contains the value returned by the above SafetyNet API. This value
is a JWS [RFC7515] object (see SafetyNet online documentation) in Compact Serialization.

For this attestation type, the ClientData dictionary is extended in the following way:

The public key generated by the Authenticator, as a JsonWebKey object (see Web
Cryptography API §JsonWebKey-dictionary).

true if the key resides inside secure hardware (e.g., Trusted Execution Environment (TEE) or
Secure Element (SE)).

One of "none", "keyguard", or "fingerprint".

dictionary AndroidAttestationClientData : ClientData {
 JsonWebKey publicKey;
 boolean isInsideSecureHardware;
 DOMString userAuthentication;
 unsigned long userAuthenticationValidityDurationSeconds; // optional
};

4.3.2.3.1. SIGNATURE§

JsonWebKey publicKey

boolean isInsideSecureHardware

DOMString userAuthentication

"none" means that the user has not enrolled a fingerprint, or set up a secure lock screen,
and that therefore the key has not been linked to user authentication.

"keyguard" means that the generated key only be used after the user unlocks a secure lock
screen.

https://developer.android.com/training/safetynet/index.html#compat-check-response
https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html#JsonWebKey-dictionary

If the userAuthentication is set to "keyguard", then this parameter specifies the duration of
time (seconds) for which this key is authorized to be used after the user is successfully
authenticated.

In order to generate an attestation statement, the client MUST create clientDataJSON by UTF8-
encoding a structure of type AndroidAttestationClientData, and compute clientDataHash as the hash
of clientDataJSON. It must then provide clientDataHash as the Nonce value when requesting the
SafetyNet attestation.

A WebAuthn Relying Party shall verify the clientData contextual bindings (see step 4 in §4.3.3
Verifying an Attestation Statement) as follows:

"fingerprint" means that each operation involving the generated key must be individually
authorized by the user by presenting a fingerprint.

optional unsigned long userAuthenticationValidityDurationSeconds

4.3.2.3.2. VERIFYING ANDROIDCLIENTDATA SPECIFIC CONTEXTUAL BINDINGS§

Check that AndroidAttestationClientData.challenge equals the attestationChallenge
that was passed into the makeCredential() call.

Check that the facet and tokenBinding parameters in the
AndroidAttestationClientData match the WebAuthn Relying Party App.

Check that AndroidAttestationClientData.publicKey is the same key as the one
returned in the ScopedCredentialInfo by the makeCredential call.

Check that the hash of the clientDataJSON matches the nonce attribute in the payload of the
safetynetResponse JWS.

Check that the ctsProfileMatch attribute in the payload of the safetynetResponse is
true.

Check that the apkPackageName attribute in the payload of the safetynetResponse
matches package name of the application calling SafetyNet API.

Check that the apkDigestSha256 attribute in the payload of the safetynetResponse
matches the package hash of the application calling SafetyNet API.

Check that the apkCertificateDigestSha256 attribute in the payload of the
safetynetResponse matches the hash of the signing certificate of the application calling
SafetyNet API.

This section outlines the recommended algorithm for verifying an attestation statement, independent
of attestation type.

Upon receiving an attestation statement, the WebAuthn Relying Party shall:

4.3.3. Verifying an Attestation Statement§

1. Verify that the attestation statement is properly formatted.

2. If alg is not ECDAA (e.g., not "ED256" and not "ED512"):

Look up the attestation root certificate from a trusted source. The FIDO Metadata Service
[FIDOMetadataService] provides an easy way to access such information. The
claimedAAGUID can be used for this lookup.

Verify that the attestation certificate chain is valid and chains up to a trusted root
(following [RFC5280]).

Verify that the attestation certificate has the right Extended Key Usage (EKU) based on
the WebAuthn Authenticator type (as denoted by the type member). In case of a
type="tpm", this EKU shall be OID "2.23.133.8.3".

If the attestation type is "android", verify that the attestation certificate is issued to the
hostname "attest.android.com" (see SafetyNet online documentation).

Verify that all issuing CA certificates in the chain are valid and not revoked.

Verify the signature on rawData using the attestation certificate public key and
algorithm as identified by alg.

Verify rawData syntax and that it doesn’t contradict the signing algorithm specified in
alg.

If the attestation certificate contains an extension with OID 1 3 6 1 4 1 45724 1 1
4 (id-fido-gen-ce-aaguid) verify that the value of this extension matches
claimedAAGUID. This identifies the Authenticator model.

If such extension doesn’t exist, the attestation root certificate is dedicated to a single
Authenticator model.

3. If alg is ECDAA (e.g., "ED256", "ED512"):

Look up the DAA root key from a trusted source. The FIDO Metadata Service
[FIDOMetadataService] provides an easy way to access such information. The
claimedAAGUID can be used for this lookup.

Perform DAA-Verify on signature for rawData (see [FIDOEcdaaAlgorithm]).

https://developer.android.com/training/safetynet/index.html#compat-check-response

The WebAuthn Relying Party MAY take any of the below actions when verification of an attestation
statement fails:

Verification of attestation statements requires that the relying party trusts the root of the attestation
certificate chain. Also, the WebAuthn Relying Party must have access to certificate status
information for the intermediate CA certificates. The relying party must also be able to build the
attestation certificate chain if the client didn’t provide this chain in the attestation information.

Attestation keys may be used to track users or link various online identities of the same user
together. This may be mitigated in several ways, including:

Verify rawData syntax and that it doesn’t contradict the signing algorithm specified in
alg.

The DAA root key is dedicated to a single Authenticator model.

4. Verify the contextual bindings (e.g., channel binding) from the clientData (see §4.2.3
Generating a signature).

5. Verify that user verification method and other authenticator characteristics related to this
authenticator model, match the WebAuthn Relying Party policy. The FIDO Metadata Service
[FIDOMetadataService] provides an easy way to access the authenticator characteristics.

Reject the request, such as a registration request, associated with the attestation statement.

Accept the request associated with the attestation statement but treat the attested Scoped
Credential as one with surrogate basic attestation (see §4.3.1 Attestation Models), if policy
allows it. If doing so, there is no cryptographic proof that the Scoped Credential has been
generated by a particular Authenticator model. See [FIDOSecRef] and [UAFProtocol] for more
details on the relevance on attestation.

4.3.4. Security Considerations§

4.3.4.1. Privacy§

A WebAuthn Authenticator manufacturer may choose to ship all of their devices with the same
(or a fixed number of) attestation key(s) (called Full Basic Attestation). This will anonymize
the user at the risk of not being able to revoke a particular attestation key should its WebAuthn
Authenticator be compromised.

A WebAuthn Authenticator may be capable of dynamically generating different attestation
keys (and requesting related certificates) per origin (following the Privacy CA model). For

When an intermediate CA or a root CA used for issuing attestation certificates is compromised,
WebAuthn Authenticator attestation keys are still safe although their certificates can no longer be
trusted. A WebAuthn Authenticator manufacturer that has recorded the public attestation keys for
their devices can issue new attestation certificates for these keys from a new intermediate CA or
from a new root CA. If the root CA changes, the WebAuthn Relying Parties must update their
trusted root certificates accordingly.

A WebAuthn Authenticator attestation certificate must be revoked by the issuing CA if its key has
been compromised. A WebAuthn Authenticator manufacturer may need to ship a firmware update
and inject new attestation keys and certificates into already manufactured WebAuthn Authenticators,
if the exposure was due to a firmware flaw. (The process by which this happens is out of scope for
this specification.) No further valid attestation statements can be made by the affected WebAuthn
Authenticators unless the WebAuthn Authenticator manufacturer has this capability.

If attestation certificate validation fails due to a revoked intermediate attestation CA certificate, and
the WebAuthn Relying Party’s policy requires rejecting the registration/authentication request in
these situations, then it is recommended that the WebAuthn Relying Party also un-registers (or
marks as "surrogate attestation" (see §4.3.1 Attestation Models), policy permitting) scoped
credentials that were registered post the CA compromise date using an attestation certificate
chaining up to the same intermediate CA. It is thus recommended that WebAuthn Relying Parties
remember intermediate attestation CA certificates during Authenticator registration in order to un-
register related Scoped Credentials if the registration was performed after revocation of such
certificates.

If a DAA attestation key has been compromised, it can be added to the RogueList (i.e., the list of
revoked authenticators) maintained by the related DAA-Issuer. The WebAuthn Relying Party should
verify whether an authenticator belongs to the RogueList when performing DAA-Verify. The FIDO
Metadata Service [FIDOMetadataService] provides an easy way to access such information.

example, a WebAuthn Authenticator can ship with a master attestation key (and certificate),
and combined with a cloud operated privacy CA, can dynamically generate per origin
attestation keys and attestation certificates.

A WebAuthn Authenticator can implement direct anonymous attestation (see
[FIDOEcdaaAlgorithm]). Using this scheme, the authenticator generates a blinded attestation
signature. This allows the WebAuthn Relying Party to verify the signature using the DAA root
key, but the attestation signature doesn’t serve as a global correlation handle.

4.3.4.2. Attestation Certificate and Attestation Certificate CA Compromise§

??

A 3 tier hierarchy for attestation certificates is recommended (i.e., Attestation Root, Attestation
Issuing CA, Attestation Certificate). It is also recommended that for each WebAuthn Authenticator
device line (i.e., model), a separate issuing CA is used to help facilitate isolating problems with a
specific version of a device.

If the attestation root certificate is not dedicated to a single WebAuthn Authenticator device line
(i.e., AAGUID), the AAGUID must be specified either in the attestation certificate itself or as an
extension in the rawData.

The mechanism for generating scoped credentials, as well as requesting and generating WebAuthn
assertions, as defined in §3 Web Authentication API, can be extended to suit particular use cases.
Each case is addressed by defining a registration extension and/or a signature extension. Extensions
can define additions to the following steps and data:

When requesting an assertion for a scoped credential, a WebAuthn Relying Party can list a set of
extensions to be used, if they are supported by the client and/or the authenticator. It sends the
request parameters for each extension in the getAssertion() call (for signature extensions) or
makeCredential() call (for registration extensions) to the client platform. The client platform
performs additional processing for each extension that it supports, and augments ClientData as
required by the extension. For extensions that the client platform does not support, it passes the
request parameters on to the authenticator when possible (criteria defined below). This allows one to
define extensions that affect the authenticator only.

Similarly, the authenticator performs additional processing for the extensions that it supports, and
augments authenticatorData as specified by the extension.

Extensions that are not supported are ignored.

4.3.4.3. Attestation Certificate Hierarchy§

5. WebAuthn Extensions§

makeCredential() request parameters for registration extension.

getAssertion() request parameters for signature extensions.

Client processing, and the ClientData structure, for registration extensions and signature
extensions.

Authenticator processing, and the authenticatorData structure, for signature extensions.

Or the authn may spontaneously create extensionsOr the authn may spontaneously create extensions

All WebAuthn extensions are optional for both clients and authenticators. Thus, any extensions
requested by a WebAuthn Relying Party may be ignored by the client browser or OS and not passed
to the authenticator at all, or they may be ignored by the authenticator. Ignoring an extension is
never considered a failure in the WebAuthn API, so when WebAuthn Relying Parties include
extensions with any API calls, they must be prepared to handle cases where some or all of those
extensions are ignored.

Extensions are identified by a string, chosen by the extension author. Extension identifiers should
aim to be globally unique, e.g., by using reverse domain-name of the defining entity such as
com.example.webauthn.myextension.

Extensions that may exist in multiple versions should take care to include a version in their
identifier. In effect, different versions are thus treated as different extensions.

Extensions defined in this specification use a fixed prefix of webauthn for the extension identifiers.
This prefix should not be used for extensions not defined by the W3C.

A definition of an extension must specify, at minimum, an extension identifier and an extension
client argument sent via the getAssertion() or makeCredential() call (see below).
Additionally, extensions may specify additional values in ClientData, authenticatorData (in
the case of signature extensions), or both.

An extension defines two request arguments. The client argument is passed from the WebAuthn
Relying Party to the client in the getAssertion() or makeCredential() call, while the
authenticator argument is passed from the client to the authenticator during the processing of these
calls.

5.1. Extension identifiers§

5.2. Defining extensions§

Note: An extension that does not define additions to ClientData nor authenticatorData
is possible, but should be avoided. In such cases, the WebAuthn Relying Party would have no
indication whether the extension was supported or processed by the client and/or authenticator.

5.3. Extending request parameters§

Extension definitions MUST specify the valid values for their client argument. Clients are free to
ignore extensions with an invalid client argument. Specifying an authenticator argument is optional,
since some extensions may only affect client processing.

A WebAuthn Relying Party simultaneously requests the use of an extension and sets its client
argument by including an entry in the credentialExtensions or assertionExtensions dictionary
parameters to the makeCredential() or getAssertion() call. The entry key MUST be the
extension identifier, and the value MUST be the client argument.

Extensions that affect the behavior of the client platform can define their argument to be any set of
values that can be encoded in JSON. Such an extension will in general (but not always) specify
additional values to the ClientData structure (see below). It may also specify an authenticator
argument that platforms implementing the extension are expected to send to the authenticator. The
authenticator argument should be a byte string.

For extensions that specify additional authenticator processing only, it is desirable that the platform
need not know the extension. To support this, platforms SHOULD pass the client argument of
unknown extension as the authenticator argument unchanged, under the same extension identifier.
The authenticator argument should be the CBOR encoding of the client argument, as specified in
Section 4.2 of [RFC7049]. Clients SHOULD silently drop unknown extensions whose client
argument cannot be encoded as a CBOR structure.

EXAMPLE 1
var assertionPromise = credentials.getAssertion(..., /* extensions */ {
 "com.example.webauthn.foobar": 42
});

Note: Extensions should aim to define authenticator arguments that are as small as possible.
Some authenticators communicate over low-bandwidth links such as Bluetooth Low-Energy or
NFC.

Note: Extensions that do not need to pass any particular argument value, must still define a
client argument. It is recommended that the argument be defined as the constant value true in
this case.

5.4. Extending client processing§

caps?caps?

Extensions may define additional processing requirements on the client platform during the creation
of credentials or the generation of an assertion. In order for the WebAuthn Relying Party to verify
the processing took place, or if the processing has a result value that the WebAuthn Relying Party
needs to be aware of, the extension should specify a client data value to be included in the
ClientData structure.

The value may be any value that can be encoded as a JSON value. If any extension processed by a
client defines such a value, the client SHOULD include a dictionary in ClientData with the key
extensions. For each such extension, the client SHOULD add an entry to this dictionary with the
extension identifier as the key, and the extension’s client data value.

Signature extensions that define additional authenticator processing should similarly define an
authenticator data value. The value may be any data that can be encoded as a CBOR value. An
authenticator that processes a signature extension that defines such a value must include it in the
authenticatorData.

As specified in §4.2.2 Authenticator data, the authenticator data value of each processed extension is
included in the extended data part of the authenticatorData. This part is a CBOR map, with
extension identifiers as keys, and the authenticator data value of each extension as the value.

This section is not normative.

To illustrate the requirements above, consider a hypothetical extension "Geo". This extension, if
supported, lets both clients and authenticators embed their geolocation in signatures.

The extension identifier is chosen as com.example.webauthn.geo. The client argument is the
constant value true, since the extension does not require the WebAuthn Relying Party to pass any
particular information to the client, other than that it requests the use of the extension. The
WebAuthn Relying Party sets this value in its request for an assertion:

var assertionPromise =
 credentials.getAssertion("SGFuIFNvbG8gc2hvdCBmaXJzdC4",
 {}, /* Empty filter */
 { 'com.example.webauthn.geo': true });

5.5. Extending authenticator processing with signature extensions§

5.6. Example extension§

The extension defines the additional client data to be the client’s location, if known, as a GeoJSON
[GeoJSON] point. The client constructs the following client data:

{
 ...,
 'extensions': {
 'com.example.webauthn.geo': {
 'type': 'Point',
 'coordinates': [65.059962, -13.993041]
 }
 }
}

The extension also requires the client to set the authenticator parameter to the fixed value 1.

Finally, the extension requires the authenticator to specify its geolocation in the authenticator data,
if known. The extension e.g. specifies that the location shall be encoded as a two-element array of
floating point numbers, encoded with CBOR. An authenticator does this by including it in the
authenticatorData. As an example, authenticator data may be as follows (notation taken from
[RFC7049]):

This section defines an initial set of extensions.

This signature extension allows for a simple form of transaction authorization. A WebAuthn
Relying Party can specify a prompt string, intended for display on a trusted device on the
authenticator.

81 (hex) -- Flags, ED and TUP both set.
20 05 58 1F -- Signature counter
A1 -- CBOR map of one element
 6C -- Key 1: CBOR text string of 12 bytes
 77 65 62 61 75 74 68 6E 2E 67 65 6F -- "webauthn.geo" UTF-8 string
 82 -- Value 1: CBOR array of two elements
 FA 42 82 1E B3 -- Element 1: Latitude as CBOR encoded float
 FA C1 5F E3 7F -- Element 2: Longitude as CBOR encoded float

6. Pre-defined extensions§

6.1. Transaction authorization§

webauthn.txauth.simple

A single UTF-8 encoded string prompt.

None, except default forwarding of client argument to authenticator argument.

The client argument encoded as a CBOR text string (major type 3).

The authenticator MUST display the prompt to the user before performing the user verification
/ test of user presence. The authenticator may insert line breaks if needed.

A single UTF-8 string, representing the prompt as displayed (including any eventual line
breaks).

The generic version of this extension allows images to be used as prompts as well. This allows
authenticators without a font rendering engine to be used and also supports a richer visual
appearance.

webauthn.txauth.generic

A CBOR map with one pair of data items (CBOR tagged as 0xa1). The pair of data items
consists of

None, except default forwarding of client argument to authenticator argument.

The client argument encoded as a CBOR map.

The authenticator MUST display the content to the user before performing the user verification
/ test of user presence. The authenticator may add other information below the content. No
changes are allowed to the content itself, i.e., inside content boundary box.

Extension identifier

Client argument

Client processing

Authenticator argument

Authenticator processing

Authenticator data

Extension identifier

Client argument

1. one UTF-8 encoded string contentType, containing the MIME-Type of the content, e.g.
"image/png"

2. and the content itself, encoded as CBOR byte array.

Client processing

Authenticator argument

Authenticator processing

Authenticator data

The hash value of the content which was displayed. The authenticator MUST use the same
hash algorithm as it uses for the signature itself.

This registration extension allows a WebAuthn Relying Party to guide the selection of the
authenticator that will be leveraged when creating the credential. It is intended primarily for
WebAuthn Relying Parties that wish to tightly control the experience around credential creation.

webauthn.authn-sel

A sequence of AAGUIDs:

typedef sequence < AAGUID > AuthenticatorSelectionList;

Each AAGUID corresponds to an authenticator attestation that is acceptable to the WebAuthn
Relying Party for this credential creation. The list is ordered by decreasing preference.

An AAGUID is defined as an array containing the globally unique identifier of the
authenticator attestation being sought.

typedef BufferSource AAGUID;

This extension can only be used during makeCredential(). If the client supports the
Authenticator Selection Extension, it MUST use the first available authenticator whose
AAGUID is present in the AuthenticatorSelectionList. If none of the available authenticators
match a provided AAGUID, the client MUST select an authenticator from among the available
authenticators to generate the credential.

There is no authenticator argument.

None.

6.2. Authenticator Selection Extension§

Extension identifier

Client argument

Client processing

Authenticator argument

Authenticator processing

6.3. AAGUID Extension§

Extension identifier

https://heycam.github.io/webidl/#BufferSource

webauthn.aaguid

N/A

N/A

N/A

This extension is added automatically by the authenticator. This extension can be added to
attestation statements and signatures.

A 128-bit Authenticator Attestation GUID encoded as a CBOR text string (major type 3). This
AAGUID is used to identify the Authenticator model (Authenticator Attestation GUID).

webauthn.exts

N/A

N/A

Client argument

Client processing

Authenticator argument

Authenticator processing

Authenticator data

Note: The authenticator model (identified by the AAGUID) can be derived from

In the case of DAA there is no need for an X.509 attestation certificate hierarchy. Instead
the trust anchor being known to the WebAuthn Relying Party is the DAA root key (i.e.,
ECPoint2 X, Y). This root key must be dedicated to a single authenticator model.

here, or

from the attestation certificate (if we have an authenticator specific or authenticator
model specific attestation certificate), or

from the claimed AAGUID in the client encoded attestation statement (if we have one
attestation root certificate per authenticator model).

6.4. SupportedExtensions Extension§

Extension identifier

Client argument

Client processing

Authenticator argument

N/A

This extension is added automatically by the authenticator. This extension can be added to
attestation statements.

The SupportedExtensions extension is a list (CBOR array) of extension identifiers encoded as
UTF-8 Strings.

webauthn.uvi

N/A

N/A

N/A

This extension is added automatically by the authenticator. This extension can be added to
attestation statements and signatures.

The user verification index (UVI) is a value uniquely identifying a user verification data record.
The UVI is encoded as CBOR byte string (type 0x58). Each UVI value MUST be specific to
the related key (in order to provide unlinkability). It also must contain sufficient entropy that
makes guessing impractical. UVI values MUST NOT be reused by the Authenticator (for other
biometric data or users).

The UVI data can be used by servers to understand whether an authentication was authorized
by the exact same biometric data as the initial key generation. This allows the detection and
prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)), where
the rawUVI reflects (a) the biometric reference data, (b) the related OS level user ID and (c) an
identifier which changes whenever a factory reset is performed for the device, e.g. rawUVI =
biometricReferenceData | OSLevelUserID | FactoryResetCounter.

Authenticator processing

Authenticator data

6.5. User Verification Index (UVI) Extension§

Extension identifier

Client argument

Client processing

Authenticator argument

Authenticator processing

Authenticator data

Servers supporting UVI extensions MUST support a length of up to 32 bytes for the UVI
value.

Example for rawData containing one UVI extension

This specification registers the algorithm names "S256", "S384", "S512", and "SM3" with the IANA
JSON Web Algorithms registry as defined in section "Cryptographic Algorithms for Digital
Signatures and MACs" in [RFC7518].

These names follow the naming strategy in draft-ietf-oauth-spop-15.

Algorithm Name "S256"

Algorithm Description The SHA256 hash algorithm.

Algorithm Usage Location(s) "alg", i.e., used with JWS.

JOSE Implementation Requirements Optional+

Change Controller FIDO Alliance

Specification Documents [FIPS-180-4]

Algorithm Analysis Document(s) [SP800-107r1]

F1 D0 -- This is a WebAuthn packed rawData object
81 -- TUP and ED set
00 00 00 01 -- (initial) signature counter
... -- all public key alg etc.
A1 -- extension: CBOR map of one element
 6C -- Key 1: CBOR text string of 12 bytes
 77 65 62 61 75 74 68 6E 2E 75 76 69 -- "webauthn.uvi" UTF-8 string
 58 20 -- Value 1: CBOR byte string with 0x20 bytes
 00 43 B8 E3 BE 27 95 8C -- the UVI value itself
 28 D5 74 BF 46 8A 85 CF
 46 9A 14 F0 E5 16 69 31
 DA 4B CF FF C1 BB 11 32
 82

7. IANA Considerations§

https://tools.ietf.org/html/draft-ietf-oauth-spop-15
https://fidoalliance.org/contact/

Algorithm Name "S384"

Algorithm Description The SHA384 hash algorithm.

Algorithm Usage Location(s) "alg", i.e., used with JWS.

JOSE Implementation Requirements Optional

Change Controller FIDO Alliance

Specification Documents [FIPS-180-4]

Algorithm Analysis Document(s) [SP800-107r1]

Algorithm Name "S512"

Algorithm Description The SHA512 hash algorithm.

Algorithm Usage Location(s) "alg", i.e., used with JWS.

JOSE Implementation Requirements Optional+

Change Controller FIDO Alliance

Specification Documents [FIPS-180-4]

Algorithm Analysis Document(s) [SP800-107r1]

Algorithm Name "SM3"

Algorithm Description The SM3 hash algorithm.

Algorithm Usage Location(s) "alg", i.e., used with JWS.

JOSE Implementation Requirements Optional

Change Controller FIDO Alliance

Specification Documents [OSCCA-SM3]

https://fidoalliance.org/contact/
https://fidoalliance.org/contact/
https://fidoalliance.org/contact/

Algorithm Analysis Document(s) N/A

This section is not normative.

In this section, we walk through some events in the lifecycle of a scoped credential, along with the
corresponding sample code for using this API. Note that this is an example flow, and does not limit
the scope of how the API can be used.

As was the case in earlier sections, this flow focuses on a use case involving an external first-factor
authenticator with its own display. One example of such an authenticator would be a smart phone.
Other authenticator types are also supported by this API, subject to implementation by the platform.
For instance, this flow also works without modification for the case of an authenticator that is
embedded in the client platform. The flow also works for the case of an external authenticator
without its own display (similar to a smart card) subject to specific implementation considerations.
Specifically, the client platform needs to display any prompts that would otherwise be shown by the
authenticator, and the authenticator needs to allow the client platform to enumerate all the
authenticator’s credentials so that the client can have information to show appropriate prompts.

This is the first time flow, when a new credential is created and registered with the server.

8. Sample scenarios§

8.1. Registration§

1. The user visits example.com, which serves up a script. At this point, the user must already be
logged in using a legacy username and password, or additional authenticator, or other means
acceptable to the WebAuthn Relying Party.

2. The WebAuthn Relying Party script runs the code snippet below.

3. The client platform searches for and locates the external authenticator.

4. The client platform connects to the external authenticator, performing any pairing actions if
necessary.

5. The external authenticator shows appropriate UI for the user to select the authenticator on
which the new credential will be created, and obtains a biometric or other authorization gesture
from the user.

Why aren't these in the use cases section?Why aren't these in the use cases section?

The sample code for generating and registering a new key follows:

6. The external authenticator returns a response to the client platform, which in turn returns a
response to the WebAuthn Relying Party script. If the user declined to select an authenticator
or provide authorization, an appropriate error is returned.

7. If a new credential was created,

The WebAuthn Relying Party script sends the newly generated public key to the server,
along with additional information about public key such as attestation that it is held in
trusted hardware.

The server stores the public key in its database and associates it with the user as well as
with the strength of authentication indicated by attestation, also storing a friendly name
for later use.

The script may store data such as the credential ID in local storage, to improve future UX
by narrowing the choice of credential for the user.

EXAMPLE 2
var webauthnAPI = window.webauthn;

if (!webauthnAPI) { /* Platform not capable. Handle error. */ }

var userAccountInformation = {
 rpDisplayName: "Acme",
 displayName: "John P. Smith",
 name: "johnpsmith@example.com",
 id: "1098237235409872",
 imageURL: "https://pics.acme.com/00/p/aBjjjpqPb.png"
};

// This Relying Party will accept either an ES256 or RS256 credential, but
// prefers an ES256 credential.
var cryptoParams = [
 {
 type: "ScopedCred",
 algorithm: "ES256"
 },
 {
 type: "ScopedCred",
 algorithm: "RS256"
 }
];
var challenge = "Y2xpbWIgYSBtb3VudGFpbg";
var timeoutSeconds = 300; // 5 minutes
var blacklist = []; // No blacklist
var extensions = {"webauthn.location": true}; // Include location information
 // in attestation

// Note: The following call will cause the authenticator to display UI.
webauthnAPI.makeCredential(userAccountInformation, cryptoParams, challenge,
 timeoutSeconds, blacklist, extensions)
 .then(function (newCredentialInfo) {
 // Send new credential info to server for verification and registration.
}).catch(function (err) {
 // No acceptable authenticator or user refused consent. Handle appropriately.
});

8.2. Authentication§

This is the flow when a user with an already registered credential visits a website and wants to
authenticate using the credential.

If the WebAuthn Relying Party script does not have any hints available (e.g., from locally stored
data) to help it narrow the list of credentials, then the sample code for performing such an
authentication might look like this:

1. The user visits example.com, which serves up a script.

2. The script asks the client platform for a WebAuthn identity assertion, providing as much
information as possible to narrow the choice of acceptable credentials for the user. This may be
obtained from the data that was stored locally after registration, or by other means such as
prompting the user for a username.

3. The WebAuthn Relying Party script runs one of the code snippets below.

4. The client platform searches for and locates the external authenticator.

5. The client platform connects to the external authenticator, performing any pairing actions if
necessary.

6. The external authenticator presents the user with a notification that their attention is required.
On opening the notification, the user is shown a friendly selection menu of acceptable
credentials using the account information provided when creating the credentials, along with
some information on the origin that is requesting these keys.

7. The authenticator obtains a biometric or other authorization gesture from the user.

8. The external authenticator returns a response to the client platform, which in turn returns a
response to the WebAuthn Relying Party script. If the user declined to select a credential or
provide an authorization, an appropriate error is returned.

9. If an assertion was successfully generated and returned,

The script sends the assertion to the server.

The server examines the assertion and validates that it was correctly generated. If so, it
looks up the identity associated with the associated public key; that identity is now
authenticated. If the public key is not recognized by the server (e.g., deregistered by
server due to inactivity) then the authentication has failed; each WebAuthn Relying Party
will handle this in its own way.

The server now does whatever it would otherwise do upon successful authentication --
return a success page, set authentication cookies, etc.

On the other hand, if the WebAuthn Relying Party script has some hints to help it narrow the list of
credentials, then the sample code for performing such an authentication might look like the
following. Note that this sample also demonstrates how to use the extension for transaction
authorization.

EXAMPLE 3
var webauthnAPI = window.webauthn;

if (!webauthnAPI) { /* Platform not capable. Handle error. */ }

var challenge = "Y2xpbWIgYSBtb3VudGFpbg";
var timeoutSeconds = 300; // 5 minutes
var whitelist = [{ type: "ScopedCred" }];

webauthnAPI.getAssertion(challenge, timeoutSeconds, whitelist)
 .then(function (assertion) {
 // Send assertion to server for verification
}).catch(function (err) {
 // No acceptable credential or user refused consent. Handle appropriately.
});

The following are possible situations in which decommissioning a credential might be desired. Note
that all of these are handled on the server side and do not need support from the API specified here.

EXAMPLE 4
var webauthnAPI = window.webauthn;

if (!webauthnAPI) { /* Platform not capable. Handle error. */ }

var challenge = "Y2xpbWIgYSBtb3VudGFpbg";
var timeoutSeconds = 300; // 5 minutes
var acceptableCredential1 = {
 type: "ScopedCred",
 id: "ISEhISEhIWhpIHRoZXJlISEhISEhIQo="
};
var acceptableCredential2 = {
 type: "ScopedCred",
 id: "cm9zZXMgYXJlIHJlZCwgdmlvbGV0cyBhcmUgYmx1ZQo="
};
var whitelist = [acceptableCredential1, acceptableCredential2];
var extensions = { 'webauthn.txauth.simple':
 "Wave your hands in the air like you just don’t care" };

webauthnAPI.getAssertion(challenge, timeoutSeconds, whitelist, extensions)
 .then(function (assertion) {
 // Send assertion to server for verification
}).catch(function (err) {
 // No acceptable credential or user refused consent. Handle appropriately.
});

8.3. Decommissioning§

Possibility #1 -- user reports the credential as lost.

User goes to server.example.net, authenticates and follows a link to report a lost/stolen
device.

Server returns a page showing the list of registered credentials with friendly names as
configured during registration.

User selects a credential and the server deletes it from its database.

A X.509 Certificate for a key pair used by an Authenticator to attest to its manufacture and
capabilities.

The device used by the user agent to authenticate with the WebAuthn Relying Party. These can
be Embedded Authenticators or External Authenticators.

See Conforming User Agent.

A user agent which implements algorithms given in this specification, and handles
communication between the Authenticator and the WebAuthn Relying Party.

The effective top-level domain, plus the first label. Also known as a Registered Domain. See
[PSL].

The entity which needs to rely in the authentication provided by the WebAuthn specification.
When registration concludes, the WebAuthn Relying Party has the public key that was created
by the Authenticator.

In future, the WebAuthn Relying Party script does not specify this credential in any list of
acceptable credentials, and assertions signed by this credential are rejected.

Possibility #2 -- server deregisters the credential due to inactivity.

Server deletes credential from its database during maintenance activity.

In the future, the WebAuthn Relying Party script does not specify this credential in any
list of acceptable credentials, and assertions signed by this credential are rejected.

Possibility #3 -- user deletes the credential from the device.

User employs a device-specific method (e.g., device settings UI) to delete a credential
from their device.

From this point on, this credential will not appear in any selection prompts, and no
assertions can be generated with it.

Sometime later, the server deregisters this credential due to inactivity.

9. Terminology§

Attestation Certificate

Authenticator

Client
WebAuthn Client

Conforming User Agent

eTLD+1

WebAuthn Relying Party

We would like to thank the following for their contributions to, and thorough review of, this
specification: Jing Jin.

10. Acknowledgements§

Index§

Terms defined by this specification§

AAGUID, in §6.2

Account, in §3.3

accountInformation, in §3.1.1

alg
attribute for AttestationStatement, in §4.3.2.1

dfn for AttestationStatement, in §4.3.2.1

algorithm
dict-member for ScopedCredentialParameters,
in §3

dfn for ScopedCredentialParameters, in §3.4

AlgorithmIdentifier, in §2.1

AndroidAttestation, in §4.3.2.3

AndroidAttestationClientData, in §4.3.2.3.1

assertionChallenge, in §3.1.2

assertionExtensions, in §3.1.2

assertionTimeoutSeconds, in §3.1.2

attestation
attribute for ScopedCredentialInfo, in §3

dfn for ScopedCredentialInfo, in §3.2

Attestation Certificate, in §9

attestationChallenge, in §3.1.1

AttestationStatement, in §4.3.2.1

Authenticator, in §9

authenticator argument, in §5.3

authenticatorCancel, in §4.1.3

authenticatorData
attribute for WebAuthnAssertion, in §3

definition of, in §4.2.2

authenticatorGetAssertion, in §4.1.2

authenticatorMakeCredential, in §4.1.1

AuthenticatorSelectionList
(typedef), in §6.2

definition of, in §6.2

Base64url Encoding, in §2.1

blacklist, in §3.1.1

challenge
dict-member for ClientData, in §4.2.1

dfn for ClientData, in §4.2.1

claimedAAGUID
attribute for AttestationStatement, in §4.3.2.1

dfn for AttestationStatement, in §4.3.2.1

Client, in §9

client argument, in §5.3

clientData
attribute for WebAuthnAssertion, in §3

attribute for WebAuthnAttestation, in §3

dfn for WebAuthnAssertion, in §3.5

dfn for WebAuthnAttestation, in §3.7

ClientData, in §4.2.1

clientDataHash, in §4.2.3

clientDataJSON, in §4.2.3

Conforming User Agent, in §9

content, in §6.1

contentType, in §6.1

Credential, in §3.8.2

credential
attribute for ScopedCredentialInfo, in §3

attribute for WebAuthnAssertion, in §3

dfn for ScopedCredentialInfo, in §3.2

dfn for WebAuthnAssertion, in §3.5

credentialExtensions, in §3.1.1

credentialTimeoutSeconds, in §3.1.1

CredentialType, in §3.8.1

cryptoParameters, in §3.1.1

displayName
dict-member for Account, in §3

dfn for Account, in §3.3

DOMException, in §2.1

Embedded authenticators, in §1

eTLD+1, in §9

extensions
dict-member for ClientData, in §4.2.1

dfn for ClientData, in §4.2.1

External authenticators, in §1

facet
dict-member for ClientData, in §4.2.1

dfn for ClientData, in §4.2.1

getAssertion(assertionChallenge), in §3.1.2

getAssertion(assertionChallenge,
assertionTimeoutSeconds), in §3.1.2

getAssertion(assertionChallenge,
assertionTimeoutSeconds, whitelist), in §3.1.2

getAssertion(assertionChallenge,
assertionTimeoutSeconds, whitelist,
assertionExtensions), in §3.1.2

hashAlg
dict-member for ClientData, in §4.2.1

dfn for ClientData, in §4.2.1

id
dict-member for Account, in §3

attribute for Credential, in §3

dfn for Account, in §3.3

dfn for Credential, in §3.8.2

imageURL
dict-member for Account, in §3

dfn for Account, in §3.3

isInsideSecureHardware
dict-member for AndroidAttestationClientData,
in §4.3.2.3.1

dfn for AndroidAttestationClientData, in
§4.3.2.3.1

JsonWebKey, in §2.1

makeCredential(accountInformation,
cryptoParameters, attestationChallenge), in
§3.1.1

makeCredential(accountInformation,
cryptoParameters, attestationChallenge,
credentialTimeoutSeconds), in §3.1.1

makeCredential(accountInformation,
cryptoParameters, attestationChallenge,
credentialTimeoutSeconds, blacklist), in
§3.1.1

makeCredential(accountInformation,
cryptoParameters, attestationChallenge,
credentialTimeoutSeconds, blacklist,
credentialExtensions), in §3.1.1

name
dict-member for Account, in §3

dfn for Account, in §3.3

origin, in §2.1

Promises, in §2.1

publicKey
attribute for ScopedCredentialInfo, in §3

dfn for ScopedCredentialInfo, in §3.2

dict-member for AndroidAttestationClientData,
in §4.3.2.3.1

dfn for AndroidAttestationClientData, in
§4.3.2.3.1

rawData
attribute for AttestationStatement, in §4.3.2.1

dfn for AttestationStatement, in §4.3.2.1

Relying Party Identifier, in §4

rpDisplayName
dict-member for Account, in §3

dfn for Account, in §3.3

safetyNetResponse
attribute for AndroidAttestation, in §4.3.2.3

dfn for AndroidAttestation, in §4.3.2.3

ScopedCred
enum-value for CredentialType, in §3

dfn for CredentialType, in §3.8.1

"ScopedCred", in §3

ScopedCredentialInfo, in §3.2

ScopedCredentialParameters, in §3.4

secure contexts, in §3

signature
attribute for WebAuthnAssertion, in §3

dfn for WebAuthnAssertion, in §3.5

attribute for AttestationStatement, in §4.3.2.1

dfn for AttestationStatement, in §4.3.2.1

statement
attribute for WebAuthnAttestation, in §3

dfn for WebAuthnAttestation, in §3.7

tokenBinding
dict-member for ClientData, in §4.2.1

dfn for ClientData, in §4.2.1

type
dict-member for ScopedCredentialParameters,
in §3

attribute for WebAuthnAttestation, in §3

attribute for Credential, in §3

dfn for ScopedCredentialParameters, in §3.4

dfn for WebAuthnAttestation, in §3.7

dfn for Credential, in §3.8.2

userAuthentication
dict-member for AndroidAttestationClientData,
in §4.3.2.3.1

dfn for AndroidAttestationClientData, in
§4.3.2.3.1

userAuthenticationValidityDurationSeconds
dict-member for AndroidAttestationClientData,
in §4.3.2.3.1

dfn for AndroidAttestationClientData, in
§4.3.2.3.1

Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

R. Lindemann; A. Edgington; R. Urian. FIDO ECDAA Algorithm. FIDO Alliance Proposed
Standard (To Be Published).

FIPS PUB 180-4 Secure Hash Standard. URL:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Ian Hickson. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org/multipage/

Ian Hickson; et al. HTML5. 28 October 2014. REC. URL: http://www.w3.org/TR/html5/

SM3 Cryptographic Hash Algorithm. December 2010. URL:
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

version
attribute for AttestationStatement, in §4.3.2.1

dfn for AttestationStatement, in §4.3.2.1

attribute for AndroidAttestation, in §4.3.2.3

dfn for AndroidAttestation, in §4.3.2.3

WebAuthentication, in §3.1

webauthn, in §3

WebAuthnAssertion, in §3.5

WebAuthnAttestation, in §3.7

WebAuthn Client, in §9

WebAuthnExtensions, in §3.6

WebAuthn Relying Party, in §9

whitelist, in §3.1.2

Window, in §2.1

x5c
attribute for AttestationStatement, in §4.3.2.1

dfn for AttestationStatement, in §4.3.2.1

Terms defined by reference§

[HTML] defines the following terms:
Window

[WebIDL-1] defines the following terms:
BufferSource

References§

Normative References§

[DOM4]

[FIDOEcdaaAlgorithm]

[FIPS-180-4]

[HTML]

[HTML5]

[OSCCA-SM3]

https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
https://html.spec.whatwg.org/multipage/browsers.html#window
https://heycam.github.io/webidl/#BufferSource

S. Josefsson. The Base16, Base32, and Base64 Data Encodings. October 2006. Proposed
Standard. URL: https://tools.ietf.org/html/rfc4648

M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. Proposed
Standard. URL: https://tools.ietf.org/html/rfc7515

M. Jones. JSON Web Algorithms (JWA). May 2015. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7518

SEC1: Elliptic Curve Cryptography, Version 2.0. URL: http://www.secg.org/sec1-v2.pdf

Ryan Sleevi; Mark Watson. Web Cryptography API. 11 December 2014. CR. URL:
http://www.w3.org/TR/WebCryptoAPI/

Cameron McCormack; Boris Zbarsky. WebIDL Level 1. 8 March 2016. CR. URL:
https://heycam.github.io/webidl/

R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. FIDO Alliance
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-
metadata-service-v1.0-ps-20141208.html

R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. FIDO Alliance Proposed
Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-
v1.0-ps-20141208.html

The GeoJSON Format Specification. URL: http://geojson.org/geojson-spec.html

Public Suffix List. Mozilla Foundation.

J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1. February 2003. Informational. URL:
https://tools.ietf.org/html/rfc3447

[RFC4648]

[RFC7515]

[RFC7518]

[SEC1]

[WebCryptoAPI]

[WebIDL-1]

Informative References§

[FIDOMetadataService]

[FIDOSecRef]

[GeoJSON]

[PSL]

[RFC3447]

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec1-v2.pdf
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/WebCryptoAPI/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-metadata-service-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-metadata-service-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.0-ps-20141208.html
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
https://publicsuffix.org/
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447

J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA
Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. June 2005. Proposed Standard. URL:
https://tools.ietf.org/html/rfc4055

P. Leach; M. Mealling; R. Salz. A Universally Unique IDentifier (UUID) URN Namespace.
July 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc4122

D. Cooper; et al. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. May 2008. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5280

A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL:
https://tools.ietf.org/html/rfc6454

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). October 2013.
Proposed Standard. URL: https://tools.ietf.org/html/rfc7049

T. Bray, Ed.. The JavaScript Object Notation (JSON) Data Interchange Format. March 2014.
Proposed Standard. URL: https://tools.ietf.org/html/rfc7159

Mike West. Secure Contexts. 26 April 2016. WD. URL: http://www.w3.org/TR/secure-
contexts/

Quynh Dang. NIST Special Publication 800-107: Recommendation for Applications Using
Approved Hash Algorithms. August 2012. URL: http://csrc.nist.gov/publications/nistpubs/800-
107-rev1/sp800-107-rev1.pdf

TCG Credential Profiles for TPM Family 1.2. URL:
http://www.trustedcomputinggroup.org/wp-
content/uploads/Credential_Profiles_V1.2_Level2_Revision8.pdf

TPM Main Part 2: TPM Structures. URL: http://www.trustedcomputinggroup.org/wp-
content/uploads/TPM-Main-Part-2-TPM-Structures_v1.2_rev116_01032011.pdf

[RFC4055]

[RFC4122]

[RFC5280]

[RFC6454]

[RFC7049]

[RFC7159]

[SECURE-CONTEXTS]

[SP800-107r1]

[TPMv1-2-Credential-Profiles]

[TPMv1-2-Part2]

[TPMv2-EK-Profile]

https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
http://www.w3.org/TR/secure-contexts/
http://www.w3.org/TR/secure-contexts/
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/Credential_Profiles_V1.2_Level2_Revision8.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/Credential_Profiles_V1.2_Level2_Revision8.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-2-TPM-Structures_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-2-TPM-Structures_v1.2_rev116_01032011.pdf

TCG EK Credential Profile for TPM Family 2.0. URL:
http://www.trustedcomputinggroup.org/wp-
content/uploads/Credential_Profile_EK_V2.0_R14_published.pdf

Trusted Platform Module Library, Part 2: Structures. URL:
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-
01.16-1.pdf

R. Lindemann; et al. FIDO UAF Protocol Specification v1.0. FIDO Alliance Proposed
Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.1-id-20150902/fido-uaf-protocol-
v1.1-id-20150902.html

[TPMv2-Part2]

[UAFProtocol]

IDL Index§

http://www.trustedcomputinggroup.org/wp-content/uploads/Credential_Profile_EK_V2.0_R14_published.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/Credential_Profile_EK_V2.0_R14_published.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.16-1.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.16-1.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20150902/fido-uaf-protocol-v1.1-id-20150902.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20150902/fido-uaf-protocol-v1.1-id-20150902.html

partial interface Window {
 readonly attribute WebAuthentication webauthn;
};

interface WebAuthentication {
 Promise < ScopedCredentialInfo > makeCredential (
 Account accountInformation,
 sequence < ScopedCredentialParameters > cryptoParameters,
 BufferSource attestationChallenge,
 optional unsigned long credentialTimeoutSeconds
 optional sequence < Credential > blacklist,
 optional WebAuthnExtensions credentialExtensions
);

 Promise < WebAuthnAssertion > getAssertion (
 BufferSource assertionChallenge,
 optional unsigned long assertionTimeoutSeconds,
 optional sequence < Credential > whitelist,
 optional WebAuthnExtensions assertionExtensions
);
};

interface ScopedCredentialInfo {
 readonly attribute Credential credential;
 readonly attribute any publicKey;
 readonly attribute WebAuthnAttestation attestation;
};

dictionary Account {
 required DOMString rpDisplayName;
 required DOMString displayName;
 DOMString name;
 DOMString id;
 DOMString imageURL;
};

dictionary ScopedCredentialParameters {
 required CredentialType type;
 required AlgorithmIdentifier algorithm;
};

interface WebAuthnAssertion {
 readonly attribute Credential credential;

https://html.spec.whatwg.org/multipage/browsers.html#window
https://heycam.github.io/webidl/#BufferSource
https://heycam.github.io/webidl/#BufferSource

 readonly attribute ArrayBuffer clientData;
 readonly attribute ArrayBuffer authenticatorData;
 readonly attribute ArrayBuffer signature;
};

dictionary WebAuthnExtensions {
};

interface WebAuthnAttestation {
 readonly attribute DOMString type;
 readonly attribute ArrayBuffer clientData;
 readonly attribute any statement;
};

enum CredentialType {
 "ScopedCred"
};

interface Credential {
 readonly attribute CredentialType type;
 readonly attribute BufferSource id;
};

dictionary ClientData {
 required DOMString challenge;
 required DOMString facet;
 required AlgorithmIdentifier hashAlg;
 JsonWebKey tokenBinding;
 WebAuthnExtensions extensions;
};

interface AttestationStatement {
 readonly attribute unsigned long version;
 readonly attribute ArrayBuffer claimedAAGUID;
 readonly attribute DOMString[] x5c;
 readonly attribute DOMString alg;
 readonly attribute ArrayBuffer rawData;
 readonly attribute ArrayBuffer signature;
};

interface AndroidAttestation {
 readonly attribute unsigned long version;
 readonly attribute DOMString safetyNetResponse;

https://heycam.github.io/webidl/#BufferSource

};

dictionary AndroidAttestationClientData : ClientData {
 JsonWebKey publicKey;
 boolean isInsideSecureHardware;
 DOMString userAuthentication;
 unsigned long userAuthenticationValidityDurationSeconds; // optional
};

typedef sequence < AAGUID > AuthenticatorSelectionList;

typedef BufferSource AAGUID;

https://heycam.github.io/webidl/#BufferSource

