
JSONP

• “JSON with Padding”

• Pre-CORS cross-origin API exploiting script-src SOP
exception

• Quite popular and fast

• Lots of legacy APIs of this sort that won’t go away or be
converted to CORS for a long time
– Pre-CORS browser compatability

• Client sends the name of a callback function

• Server returns JSON wrapped in a call to that function

JSONP example

Client includes:

<script type=“text/javascript”

src=“http://api.example.com/api?callback=myFunc”>

</script>

Response from api.example.com:

myFunc({“Name”: “Foo”, “Id” : “1234”, “Rank” : “Bar”});

 JSONP problems

• Data sharing by code injection

• Should be as safe as a CORS call

• Is actually as dangerous as a script injection

Request: allow JSONP in CSP

• Potential CSP adopters want to be able to call
JSONP APIs

– But without having to accept the unlimited risk of
putting those sites in script-src

– And would like to make such calls close to “as safe
as CORS” as possible

Proposed CSP directives

“jsonp-src” : list of origins allowed for script-src but
returned resources must parse as one of:

function({JSON});
obj.function({JSON});
obj[“function”]({JSON});

“jsonp-sink” : optional list of function names. If specified
with jsonp-src, when script includes from origins allowed
by jsonp-src are parsed, function must be in this list of
function names.

Why jsonp-sink?

• Prevent ROP-style exploitation:

http://api.example.com/jsonp?func=stage1

http://api.example.com/jsonp?func=stage2

http://api.example.com/jsonp?func=stage3

