Japanese Subtitles on the Netflix Service

Authors (alphabetical)

Cyril Concolato: Senior Software Engineer, Cloud Media Systems
David Ronca: Director, Encoding Technologies

Ronhit Puri: Manager, Cloud Media Systems

Yumi Deeter: Manager, Catalog QC

Introduction

This document is a technical description of the work that we have done to support JA subtitles, intended for
discussion at the W3C. The primary purpose of the document is to describe the features that we consider
essential for the success of IMSCvNext, and how TTML2 tools are used by Netflix to enable those features.

In 2014, we were working on the technical features for the planned September, 2015 launch of Netflix in
Japan. At the time, we were mindful that other streaming services that were operating in the Japanese market
had received significant criticism for providing a substandard subtitle experience. That knowledge, and our
desire to maintain Netflix' very high standards of quality, led us to establish a set of challenging requirements:

1. Proper support for all of the "essential" Japanese subtitle features; those features that are expected in
premium Japanese video services.

2. Subtitles must be delivered to clients separate from the video (i.e. no burned-in subtitles).

3. All subtitle sources must be delivered to Netfflix in text format, in order to be future-proof.

Essential Japanese Subtitle Features

Feature Overview

When considering a high-quality, Japanese subtitle experience, we identified five essential Japanese subtitle
features. These features are rubies, boutens, vertical text, tate-chu-yoko (horizontal numbers in vertical text),
and slanted text. These essential features are described in the following sections.

Rubies

Rubies explain the meaning of unfamiliar, foreign, or slang words/phrases AND/OR convey pronunciation of
kaniji characters that are rare and/or unknown. Rubies can help provide cultural context to a translation which
allows the viewer to enjoy the content with a deeper understanding. Common practice is to place the ruby
above the base character for single-line subtitles, and for the
first line of two-line subtitles. Rubies are placed below the
base character if appearing on the second line of a two-line
subtitle. Rubies should never be placed between two

lines as it is difficult to discern which base character ﬁﬁ L_J -F 73\‘,‘ %)
they should be associated with. Figure 1 shows a ruby

example for the dialogue “All he ever amounted to was
chitlins.”

RIIEBORDE R

Figure 1: Rubies Example

The base text translates the word “chitlins™, while the ruby provides transliteration of the word “chitlins” so that
viewers can more closely associate the keyword of the
dialogue to the translation.

As mentioned above, rubies should never be placed in jj ;& % 50 %ﬁ ﬁﬁ ND

between two lines. Figure 2 shows the proper placement ;j: — {; j L/ ?E FFEJ <
for rubies with two-line subtitles. In the unlikely event that 05

a subtitle spans 3 lines, it is preferable to have the rubies
on top of each line, except for the last line where they Figure 2. Proper ruby placement for a two-line subtitle
should be at the bottom.

Boutens

Boutens are dots placed above or below a word or phrase that act as D Qe

literal points of emphasis, equivalent to the use of italics in English. [% = é *g gE [6: a‘
Boutens can help express implied meanings which provide a richer and

more dynamic translation. Figure 3 shows a bouten example for the Figure 3: bouten example:
dialogue: “I need someone to talk to.”

This subtitle has boutens above the word for “talk”. In
the context of this scene, placing emphasis on this Wi
word allows the viewer to understand the implication Call |
that the speaker needs someone to provide him/her
with privileged information.

Vertical Subtitles

Co-EERCulive Prod -

Vertical subtitles are generally used to avoid overlap Deran Sarafian
with on-screen text present in the video. This is the

Japanese equivalent to putting subtitles at the top of
the screen. This is illustrated in Figure 4. Figure 4. Vertical subtitle overlap with credits

Tate-chu-yoko é%

In Japanese typography, vertical text often includes short runs of horizontal numbers or Latin text.
This is referred to as tate-chu-yoko. Instead of stacking the characters vertically, half-width
characters are placed side-by-side to enhance legibility and allow more characters to be placed
on a single subtitle line. This is illustrated in the figure to the right, for the dialogue, "It’s as if we
are still 23 years old". In this example, subtitle, the number “23” uses half-width numeric

characters, @
and employ the tate-chu-yoko functionality.

' Slang word used in “House of Cards”, also known as “Chitterlings”, southern US food usually made from the small
intestines of a pig. Such word is unlikely to be known to the audience.

Slanted Text

Slanted text is used in similar fashion as D = — —
italics/oblique text in other languages - for %&5 C‘: — }-b‘ —ZF Zh— 'Z }d‘-’
narration, off-screen dialogue, and forced

narratives. One unique feature in Figure 6: Example of horizontal and vertical slanted text.
Japanese subtitles however is that italics

slant in different directions for horizontal

vs. vertical subtitles; furthermore, the angle of the slant

is not necessarily constant, but may vary.

This is illustrated in Figure 6.

=
5]
D
2]
£
7
2
Z

LambdaCAP: The only option.

From the first subtitle asset, Netflix has always required text sources (vs. image). There are several reasons for
this requirement. First, different clients have different subtitle capabilities, requiring us to be able to produce
many variations of client assets from a single source. In addition, text subtitle sources are future-proof. That is,
as new device capabilities emerge, we can apply those to our large back-catalog of subtitle assets. As an
example, when displaying subtitles on an HDR device playing HDR content, it is useful to specify the
luminance gain so that white text is not a max-white specular highlight. With text sources, we can easily go
back and reprocess to produce subtitles for a client profile that supports #luminanceGain. If we had ingested
image sources, on the other hand, it would have been difficult to add this sort of functionality to client assets.

With text sources as a "must-have" requirement, we reviewed the available options for Japanese, and
LambdaCAP was chosen as the only workable model for JA subtitles. There were several reasons for this
decision. From our analysis, we determined that LambdaCAP:

is reasonably open, allowing us to develop our own tools and workflows.

is currently the most common subtitle format that Japanese subtitle tools can support. This was a key
driver of our decision because it meant that the established JA subtitle industry could produce subtitles
for Netflix.

e is the most common archive format for existing Japanese subtitles. Another key driver, because
supporting LambdaCAP meant that we could ingest existing assets without any transformation
requirements.
supports the essential Japanese features as described above.
has been widely used in the industry to create image-based subtitle files for burn-in. Thus, it is
well-tested.

While the LambdaCAP model was suitable for our JA launch, it is not a great long-term option. It is not an
industry standard, and there are some ambiguities in the specification. Thus, while we chose LambdaCAP as
an interim source format, we do not feel that it is suitable as a long-term subtitle. In addition, we chose to not
use LambdaCAP as a client model for JA subtitles. That is, we ingest LambdaCAP assets and create
derivative subtitle assets in TTML2 and WebVTT, but we do not deliver LambdaCAP to any Netflix clients.

Mapping of Japanese Features to TTML2

The following table summarizes the features of TTML2 that are considered by Netflix as essential for the
support of Japanese subtitling. It also shows with usage statistics that most of these features are already used,
sometimes significantly, in today’s Japanese subtitles. The other features not yet used or used significantly are
expected to be used more widely in the future®. The following sections provide details on each feature, in
particular regarding the supported values.

Japanese Feature TTML2 Feature Percentage of Notes
subtitle events
using the feature

Slanted Text tts:fontShear 8.2% n.a.

Rubies tts:ruby 1.9% (including n.a.
0.2% in vertical
text)

tts:rubyAlign Used with its Only ‘auto’
default value ‘auto’
when tts:ruby is

used
tts:rubyPosition Used with its ‘outside’ is most
default value when | useful. 'auto’
tts:ruby is used should take same
behavior as
'outside’.
tts:rubyReserve Not ingested yet Only ‘auto’
Tate-chu-yoko tts:textCombine 0.1% n.a.
Boutens tts:textEmphasis 0.1% n.a.
Vertical Subtitles tts:writingMode 5.9% n.a.
Ruby
tts:ruby

This styling attribute specifies structural aspects of ruby content. The range of values associated with tts:ruby
maps to corresponding HTML markup elements, but for subtitling we think that nested rubies and the notions
of baseContainer, textContainer and delimiters are not required.

2 Other TTML2 JA features (such as tts:rubyOverhang) not listed in the table are not necessary for the support of
Japanese features in the Netflix use-case.

Sample rendering

EFLEES

(ﬁ%
m% TITDP 27

tts:rubyPosition

For the Japanese use-case, tts:rubyPosition="top” and tts:rubyPosition="bottom” are less than ideal because
they do not provide for unanticipated word wrapping, where the second line of text should have rubies below.
In general, the behavior tts:rubyPosition="auto” would be preferred. However, the behavior of 'auto’ is only
specified for exactly two-line events, which will not cover the use case of unanticipated wrapping of a two-line
event. We believe that that the current behavior described for 'outside' is the correct model, and that 'auto'
should have the same behavior as 'outside’.

TTML snippet

<?xml version="1.0" encoding="UTF-8"?>

<tt xmlns="http://www.w3.org/ns/ttml" xmlns:tt="http://www.w3.org/ns/ttml"
xmlns:ttm="http://www.w3.0rg/ns/ttml#fmetadata” xmlns:ttp="http://www.w3.0org/ns/ttml#parameter"
xmlns:tts="http://www.w3.0org/ns/ttml#styling" ttp:tickRate="10000000" ttp:version="2" xml:lang="ja">

<head>
<styling>
<initial tts:backgroundColor="transparent" tts:color="white" tts:fontSize="6.000vh"/>
<style xml:id="styleO" tts:textAlign="center"/>
<style xml:id="stylel" tts:textAlign="start"/>
<style xml:id="style2" tts:ruby="container" tts:rubyPosition="auto"/>
<style xml:id="style3" tts:ruby="base"/>
<style xml:id="styled" tts:ruby="text"/>
<style xml:id="style5" tts:ruby="text"/>
</styling>
<layout>
<region xml:id="regionO" tts:displayAlign="after"/>
</layout>
</head>
<body =xml:space="preserve">
<div>

<p xml:id="subtitlel" begin="18637368750t" end="18676157500t" region="regionO"
style="style0">§f/7?span style="style2">0)ﬁﬁfh VB UBH d
/LH Y X < /span>TRIBTHEH S5</p>
</div>
</body>
</tt>

Sample rendering

v7mﬁf EH I
;@rﬂ%fﬁﬁﬁ

-+

tts:rubyAlign

Netflix’s prefered value of tts:rubyAlign is “center”.

TTML snippet

<?xml version="1.0" encoding="utf-8"?>

<tt xmlns="http://www.w3.org/ns/ttml" xmlns:tt="http://www.w3.org/ns/ttml"

xmlns:ttm="http://www.w3.0org/ns/ttmlfmetadata"” xmlns:ttp="http://www.w3.org/ns/ttml#parameter"
Xmlﬁb:LLS:”hLLp://WWW.W3.0£Q/HS/‘Lml#SLy,an" ttp:tickRate="10000000" ttp:version="2" xml:lang="ja">
<head>
<styling>
<initial tts:backgroundColor="transparent" tts:color="white" tts:fontSize="6.000vh"
tts:lineHeight="7.500vh" tts:opacity="1.000" tts:showBackground="whenActive" tts:writingMode="1lrtb"

:rubyAlign="center"/>
<style xml:id="styleO" tts:textAlign="center"/>
<style xml:id="stylel" tts:textAlign="start"/>
<style xml:id="style2" tts:ruby="container"/>
<style xml:id="style3" tts:ruby="base"/>
<style xml:id="styled" tts:ruby="text" tts:rubyPosition="auto"/>
</styling>
<layout>
<region xml:id="regionO" tts:displayAlign="after" tts:extent="80.000% 30.000%" tts:position="center
bottom 10vh" tts:showBackground="whenActive"/>
</layout>
</head>
<body xml:space="preserve">
<div>
<p xml:id="subtitlel" begin="18637368750t" end="18676157500t" region="regionO" style="styleO">T Y FMDFEH B>
B#H S</p>
<p xml:id="subtitle2" begin="18676991666t" end="18717031666t" region="region0" style="style(0">T Y FMffSHAVEBVHVE
< /span>BH I</p>
</div>
</body>
</tt>

Sample rendering

The illustrations below were obtained from the above TTML snippet and they serve to describe the behavior in
two cases, when the base text is wider than the ruby text and vice-versa. In all cases, the base text
corresponds to ‘D Ff 72’ (3 Unicode characters) and the ruby annotation is at “center”.

Case 1

In this case, the width of the ruby text is smaller than the width of the base text.

hog

TY7DREES I

Case 2

In this case, the width of the ruby text is greater than the width of the base text. As illustrated below, when
there is a single ruby text, because the initial value of tts:rubyOverhang is “allow”, the ruby text is allowed to
overhang the surrounding text. Note that we have never encountered a use case when there are 2 adjacent
large ruby texts.

AVBVHVEY

7Y 7 DRSS

tts:rubyReserve

The intent of this feature is to maintain temporal consistency in placement of the base text along the block
progression direction as we move from subtitles with only base text to those with base text that is annotated
with rubies.

NOTE: This feature can also be used to preserve base text alignment across time when boutens are used.

TTML snippet

<?xml version="1.0" encoding="utf-8"?>

<tt xmlns="http://ww .org/ns/ttml" xmlns:tt="http://www.w3.o0rg/ns/ttml"

xmlns:ttm="http: 13.0rg/ns/ttmlfmetadata” xmlns:ttp="http://www.w3.org/ns/ttml#parameter"

xmlns:tts="http://www.w3.0rg/ns/ttml#styling" ttp:tickRate="10000000" ttp:version="2" xml:lang="ja">
<head>
<styling>
<!-- set tts:rubyReserve in initial section -->
<initial tts:backgroundColor="transparent" tts:color="white" tts:fontSize="6.000vh"
tts:lineHeight="7.500vh" tts:opacity="1.000" tts:showBackground="whenActive" tts:writingMode="lrtb

tts:rubyReserve="auto"/>

<style xml:id="styleO" tts:fontShear="16.78842%" tts:textAlign="center"/>

<style xml:id="stylel" tts:fontShear="16.78842%" tts:textAlign="start"/>

<style xml:id="style2" tts:fontShear="16.78842%" tts:ruby="container"/>

<style xml:id="style3" tts:fontShear="16.78842%" tts:ruby="base"/>

<style xml:id="style4" tts:fontShear="16.78842%" tts:ruby="text" tts:rubyPosition="auto"/>

</styling>

<layout>

<region xml:id="regionO" tts:displayAlign="after" tts:extent="80.000% 30.000%" tts:position="center
bottom 10vh" tts:showBackground="whenActive"/>
</layout>
</head>

<body =xml:space="preserve">

<div>
<!-- illustration of tts:fontShear -->
<p xml:id="subtitlel" begin="18623187916t" end="18635700416t" region="region0" style="style(0"><span

style="stylel">“{T&E%I[&L?"</p>

<p xml:id="subtitle2" begin="18637368750t" end="18676157500t" region="regionO" style="style0"><span

style "stylel”>“5:7fjo)ﬁﬁf
ﬂﬂ§7]
VX< /span>TRIBGTHLEEH 5 "</p>

</div>

</body>

</tt>

Sample Rendering

TR

YTEIEG 7 %w@ﬂ% TERE T

The above TTML snippet results in this rendering. We note that with tts:rubyReserve enabled, there is no
relative movement of subtitles over time.

“FUTDEE

T [T 7l 3 P
“GTEZIE 7 fﬂfﬁﬁféﬁé7

When tts:rubyReserve is not enabled, the base line of base text moves over time resulting in a jarring user
experience.

Vertical Text

Basic vertical text

Netflix relies on the use of writingMode to indicate the vertical writing mode. Below is a sample illustration of
vertical text (including specific vertical punctuation and symbols), and a TTML snippet using vertical text is
provided below.

=) A5 Y EEIA ¢ QY
CVIY)

Ruby in vertical text

As shown in the following TTML snippet, the indication of ruby markup in vertical writing mode is no different
from that in the horizontal writing mode.

TTML snippet

<?xml version="1.0" encoding="utf-8"?>
<tt xmlns="http://www.w3.org/ns/ttml" xmlns:ttm="http://www.w3.0org/ns/ttml#metadata”
xmlns:ttp="http://www.w3.0rg/ns/ttml#parameter" xmlns:tts="http://www.w3.o0rg/ns/ttml#styling"
ttp:frameRate="24" ttp:frameRateMultiplier="1000 1001" ttp:pixelAspectRatio="1 1" ttp:version="2"
tts:extent="1280px 720px" xml:lang="ja">
<head>
<styling>

<initial tts:fontSize="6.0vh"/>

<initial tts:lineHeight="7.5vh"/>

<initial tts:showBackground="whenActive"/>

<initial tts:textOutline="black 0.lem"/>

<initial tts:fontFamily="notosans"/>

<style xml:id="sl" tts:textCombine="all"/>

<style xml:id="s2" tts:ruby="container"/>

<style xml:id="s3" tts:ruby="base"/>

<style xml:id="s4" tts:ruby="text" tts:rubyPosition="auto" tts:textOutline="black 0.lem"/>

<style xml:id="s5" tts:textAlign="center"/>

<style xml:id="s6" tts:textAlign="start"/>

<style xml:id="s7" tts:fontSize="1.0em 1.5em"/>

<style xml:1id="s8" tts:fontShear="16.78842%"/>

<style xml:id="s9" tts:fontShear="16.78842%" tts:textAlign="center"/>

<!-- set up tts:textEmphasis in initial section -->
<style xml:id="sl10" tts:textEmphasis="dot after"/>
</styling>
<layout>

<region xml:id="#TF" tts:displayAlign="after" tts:extent="80vw 30vh" tts:position="center bottom
10vh"/>
<!-- region for vertical writing mode -->
<region xml:id="#tE" tts:extent="30vh 80vh" tts:position="right 10vw center"
tts:writingMode="tbrl"/>
</layout>
</head>
<body region:"tﬁT:" xml:space="preserve">
<div>

<!-- jllustration of tts:textCombine in vertical writing mode -->

<p begin="00:00:37:07" end="00:00:40:00" region="#tH">F S T23HmDEEZH</p>

<!-- illustration of rubies in vertical writing mode -->

<p begin="00:05:46:20" end="00:05:49:00" region="#tHA" style="s8"> “%1)—
U+ —A—CW I h
HH%Z—&F" </p>

<'!-- illustration of tts:textEmphasis -->

<p begin="00:09:37:14" end="00:09:41:00" style="s5">% L £5 TH
F#E
F¥ %> T</p>

</div>

</body>

</tt>

Sample rendering

©

Nl | &
== &%‘K’, =Sy

=

Tate-chu-yoko

tts:textCombine

tts:textCombine is used to realize the “tate-chu-yoko” feature. This feature helps increase
legibility of subtitles.

TTML snippet

A ttml snippet for this feature can be found here.

Sample rendering

This is a rendering corresponding to the above TTML snippet.

Slanted text

tts:fontShear

O e on O Fk B 7 999k

Japanese typography does not have italics fonts. This behavior is realized by performing
geometric transformations on glyphs. The common value of tts:fontShear corresponds to a
rotation by nearly 15°.

TTML snippet
A TTML snippet for this feature can be found_here.

(FFL=%=) WD THEDIPITNE
wen E B2 Te ¥ T @D

B
Font shear output

Boutens

tts:textEmphasis

This is used for rendering boutens

TTML snippet

A TTML snippet for this feature can be found here.

Sample rendering

This is a rendering corresponding to the above TTML snippet

HL Z5TH
PIEEeY 2T

Boutens output

