
1

W3C SysApps WG

Raw Socket API based on Streams

W3C TPAC November - 2013

Claes Nilsson

Technology Research / Sony Mobile

claes1.nilsson@sonymobile.com

mailto:claes1.nilsson@sonymobile.com

2

Proposal for Raw Socket API

• W3C SysApps Raw Socket API provides

interfaces to raw UDP sockets, TCP Client sockets

and TCP Server sockets.

• Reviewers from the node.js community have

proposed that the Raw Socket API should be

based on a general Streams API.

• I am investigating how the SysApps Raw Socket

API could be reworked to be based on a Streams

API. However, this would mean a significant

redesign of the Raw Socket API.

http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/

3

Motivations for this potential re-design

• Reusing a general standardized solution for

handling the complexity of buffering, backpressure

and other issues related to streaming and

asynchronous APIs.

• Reusing a solution for piping a source stream to a

destination stream.

4

Streams API activities

• Ongoing work on a general Streams API:

• W3C Streams API

• WHAT WG Github Streams API (including node.js

community)

• These proposals are unfortunately very different and not

coordinated.

https://dvcs.w3.org/hg/streams-api/raw-file/tip/Overview.htm
https://github.com/whatwg/streams
https://github.com/whatwg/streams
https://github.com/whatwg/streams
https://github.com/whatwg/streams

5

What is a Streams API?

• A streams API provides an interface for creating,

composing, and consuming streams of data.

• The work on Streams deals with similar issues as

we do with the Raw Socket API, e.g.:

• ”don’t lose data”

• ”don’t overflow send buffers”

• ”keep it simple for developers”

• The Streams API is designed to be used in

conjunction with other APIs.

6

Stream Producers

• APIs which can produce a Stream object are

identified as Producers. Examples:

• XMLHTTPRequest

• FileReader

• WebSockets

• Raw Socket

7

Stream Consumers

• APIs which read and act on a Stream object are

identified as consumers. Examples:

• WebAudio

• WebSockets

• Raw Socket

8

Reading push-based data sources

(such as TCP) - requirements

• Handling new data pushed from the source

• Mechanism for pausing and resuming the flow

of data.

• A way to signal that the source has no more

data

• A way to signal when there is an error in getting

data

• Buffering logic in the stream primitive itself to

assure that we don’t lose data.

9

Writing data - requirements

• The Stream object must handle the complexity of

buffering sequential writes, e.g. the case when the

send buffer becomes full due to slow network. For

example:

• A method to write data

• A way to signal that the buffer is getting full (reached the

“high water mark”)

• A way to signal that the buffer is drained and can

receive more data

• Must be possible to signal that the underlying sink

should be closed.

• Must be possible to detect “abort” signal

10

Piping streams - requirements

• A common way of consuming streams is to pipe

them to each other. This is one essence of

streaming APIs: getting data from a readable

stream to a writable one, while buffering as little

data as possible in memory.

• Example: Create a read stream from a file,

possibly transforming it, and pipe it to a write TCP

socket stream.

11

How to use the Streams API for Raw

Sockets? (Extremely preliminary!) 1(3)
Today:

[Constructor (DOMString remoteAddress, unsigned short remotePort,

optional TCPOptions options)]

interface TCPSocket : EventTarget {

 readonly attribute DOMString remoteAddress;

 readonly attribute unsigned short remotePort;

 readonly attribute DOMString localAddress;

 readonly attribute unsigned short localPort;

 readonly attribute boolean addressReuse;

 readonly attribute boolean noDelay;

 readonly attribute unsigned long bufferedAmount;

 readonly attribute ReadyState readyState;

 attribute EventHandler ondrain;

 attribute EventHandler onopen;

 attribute EventHandler onclose;

 attribute EventHandler onerror;

 attribute EventHandler ondata;

 void close ();

 void halfclose ();

 void suspend ();

 void resume ();

 boolean send ((DOMString or Blob or ArrayBuffer or ArrayBufferView) data);

};

http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/

12

How to use the Streams API for Raw

Sockets? (Extremely preliminary!) 2(3)
Tomorrow ? (extremely preliminary….):

[Constructor (DOMString remoteAddress, unsigned short remotePort,

optional TCPOptions options)]

interface TCPSocket : EventTarget {

 readonly attribute DOMString remoteAddress;

 readonly attribute unsigned short remotePort;

 readonly attribute DOMString localAddress;

 readonly attribute unsigned short localPort;

 readonly attribute boolean addressReuse;

 readonly attribute boolean noDelay;

 readonly attribute ReadyState readyState;

 attribute EventHandler onopen; // Not sure if we should use Stream API handlers instead

 attribute EventHandler onclose; // Not sure if we should use Stream API handlers instead

 attribute WritableStream out;

 attribute ReadableStream in;

 void close (); // Not sure if we should use Stream API methods instead

 void halfclose (); // Not sure if we should use Stream API methods instead

};

http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/
http://raw-sockets.sysapps.org/

13

How to use the Streams API for Raw

Sockets? (Extremely preliminary!) 3(3)

Example: Writing the contents of a readable stream to the console as

fast as it can.
var mySocket = new TCPSocket("127.0.0.1", 6789);

pump ();

function pump() {

 while (mySocket.in.readableState === "readable") {

 console.log (mySocket.in.read());

 }

 if (mySocket.in.readableState === "finished") {

 console.log("--- all done!");

 } else {

 mySocket.in.waitForReadable().then(pump, e => console.error(e));

 }

 }

14

“SONY” or “make.believe” is a registered trademark and/or trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are the registered trademarks and/or trademarks of the respective companies.

