
1 Modeling Services as Processes

To give a detailed perspective on how to interact with a service, it can be viewed as a process. Specifi-
cally, OWL-S 1.1 defines a subclass of ServiceModel, the ProcessModel, which draws upon
well-established work in a variety of fields, including work in AI on standardizations of planning lan-
guages [?], work in programming languages and distributed systems [?, ?], emerging standards in pro-
cess modeling and workflow technology such as the NIST’s Process Specification Language (PSL) [?]
and the Workflow Management Coalition effort (http://www.aiim.org/wfmc), work on modeling verb
semantics and event structure [?], previous work on action-inspired Web service markup [?], work in AI
on modeling complex actions [?], and work in agent communication languages [?, ?].

It is important to understand that a process is not a program to be executed. It is a specification
of the ways a client may interact with a service. An atomic process is a description of a service that
expects one (possibly complex) message and does one thing in response. A composite process is one
that maintains some state; each message the client sends advances it through the process.

A process can have two sorts of purpose. First, it can generate and return some new information
based on information it is given and the world state. Information production is described by the inputs
and outputs of the process. Second, it can produce a change in the world. This transition is described
by the preconditions and effects of the process.

A process can have any number of inputs (including zero), representing the information that is,
under some conditions, required for the performance of the process. It can have any number of outputs,
the information that the process provides returns. There can be any number of preconditions, which
must all hold in order for the process to be invoked. Finally, the process can have any number of effects.
Outputs and effects can depend on conditions that hold true of the world state at the time the process
is performed. (We use the term perform instead of execute to de-emphasize the traditional picture of a
single agent being responsible for the occurrence of the process.)

Before we can go into the details of how processes work, it’s necessary to explain how inputs,
outputs, conditions, and effects (colloquially known as IOPEs) work, because fitting them into the OWL
framework requires bending the rules somewhat.

1.1 Infrastructure: Parameters and Expressions

Inputs and outputs are subclasses of a general class called Parameter. It’s convenient to identify
parameters with what are called variables in SWRL, the language for expressing OWL Rules.

<owl:Class rdf:about="#Parameter">
<rdfs:subClassOf rdf:resource="&swrl;#Variable"/>

</owl:Class>

Every parameter has a type. This is not the OWL class the parameter belongs to, but some specifi-
cation of the class that values of the parameter belong to.

1

<owl:DatatypeProperty rdf:ID="parameterType">
<rdfs:domain rdf:resource="#Parameter"/>
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Parameter">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#parameterType" />
<owl:minCardinality rdf:datatype="&xsd;#nonNegativeInteger">

1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Inputs and outputs are subclasses of parameter:

<owl:Class rdf:ID="Input">
<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

<owl:Class rdf:ID="Output">
<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

Two other subclasses of Parameter, Local and ResVar, are described below.
Modeling variables as global, named individuals, as is done for Owl Rules, can be misleading. RDF

has no notion of the “scope” of a variable, because an RDF document is nothing but a pile of triples. A
variable is named with a URI, like any other resource, and so has global scope, or, more accurately, no
notion of scope at all. In spite of this lack of structure, we often use RDF to encode hierarchical entites
such as formulas and control structures. Wrapping variable references inside literals allows us to sneak
in and impose our own scoping rules. We discuss the OWL-S rules in section 1.2.

A process cannot be invoked unless its preconditions are true. If and when it does get triggered, it
has various effects. For example, an agent can order 1000 bolts from a web service only if it can get the
web service to accept its promise to pay. One effect of placing the order is the transfer of ownership of
the bolts from the service to the agent (or the legal person for which it is a proxy).

Preconditions and effects are represented as logical formulas. Getting logical formulas into RDF
has not been easy, but it is now reasonably clear how to proceed. There are actually several possible
approaches, depending on how close to RDF/OWL one wants to remain. Usually having lots of choices
for such a crucial job is a bad idea, but in this case most of the differences are superficial; it is fairly
easy to translate between alternative notations.

The key idea underpinning our approach is to treat expressions as literals, either string literals or
XML literals. The latter case is used for languages whose standard encoding is in XML, such as
SWRL [?] or RDF [?]. The former case is for other languages such as Kif [?] and PDDL [?].

2

<owl:Class rdf:ID="Expression">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#expressionLanguage"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#expressionBody"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

We annotate expressions with the language they are expressed in:

<owl:ObjectProperty rdf:ID="&expr;#expressionLanguage">
<rdfs:domain rdf:resource="&expr;#Expression"/>
<rdfs:range rdf:resource="&expr;#LanguageDefinition"/> <!-- a URI -->

</owl:ObjectProperty>

The ontology [http://www.daml.org/services/owl-s/1.1/generic/Expression.owl]
defines Expressions and their properties. As an example, we might state that in order to send the
number of a certain credit card to a web agent, one must know what its number is:

<Description rdf:about="#process2">
<hasPrecondition>

<Expression expressionLanguage="&kif;#Kif"
rdf:dataType="&xsd;#string">

(!agnt:know_val_is
(!ecom:credit_card_num ?cc)
?num)

</Expression>
</hasPrecondition>

</Description>

(where the notation “!ecom:” for namespaces is taken from Lassila’s WILBUR system [?]). (The
declaration of the variable ?c is not shown. We’ll come back to that point shortly.)

In cases where an XML encoding is used, we would declare an expression to be an XML literal.
Here’s the same example using DRS as the expression language:

3

<Description rdf:about="#process2">
<hasPrecondition>

<Expression expressionLanguage="&drs;#DRS"
rdf:parseType="Literal">

<drs:Atomic_formula>
<rdf:predicate rdf:resource="&agnt;#Know_val_is"/>
<rdf:subject>

<drs:Functional_term>
n <drs:function rdf:resource="&ecom;credit_card_num"/>

<drs:term_args rdf:parseType="Collection">
<swrl:Variable rdf:resource="#CC"/>

</drs:term_args>
</drs:Functional_term>

</rdf:subject>
<rdf:object rdf:resource="#Num"/>

</drs:Atomic_formula>
</Expression>

</hasPrecondition>
</Description>

The references to #CC and #Num in the DRS example are to parameters, that same ones written as
?cc and ?num in the Kif example. We haven’t yet provided a mechanism for declaring the scopes of
variables (see section 1.2) and how they acquire values. In the example, #CC is an input parameter to the
process, that is, supplied by the client, but #Num is supposed to be set in the process of reasoning about
this very precondition. Verifying that the process is feasible requires computing the available credit
limit, which is then associated with the variable #Num. We call such a parameter a local parameter.

<owl:Class rdf:ID="Local">
<rdfs:subClassOf rdf:resource="\#Parameter"/>

</owl:Class>

The three types of parameter are disjoint:

<rdf:Description rdf:about="#Input">
<owl:disjointWith rdf:resource="#Output"/>
<owl:disjointWith rdf:resource="#Local"/>

</rdf:Description>

<rdf:Description rdf:about="#Output">
<owl:disjointWith rdf:resource="#Local"/>

</rdf:Description>

Of course, flagging bits of RDF as “Literals” means that an RDF parser should ignore them. (If it
did not, then it might turn the RDF into a set of triples with a simple declarative meaning, which is not

4

appropriate.) The trick is to have the OWL-S parser extract the ignored stuff and interpret it appropri-
ately for its context, treating it as ordinary RDF after transformations such as replacing occurrences of
variables with their values. In the example above, the occurrences of #num and #cc are interpreted as
the values of these variables, not the variables themselves. In the Kif example, the expressions ?num
and ?cc must be similarly interpreted. It is usually not too difficult to do this sort of “field engineering”
to interface an assertional language to RDF.

There are two special cases of Expression: Condition and Effect. Because they are imple-
mented as literals, there is no way to declare what this difference is, but it’s a useful distinction for a
human reader of the ontology.

<owl:Class rdf:ID="Condition">
<owl:subClassOf rdf:resource="\&expr;#Expression"/>

</owl:Class>

<owl:Class rdf:ID="Effect">
<owl:subClassOf rdf:resource="\&expr;#Expression"/>

</owl:Class>

1.2 Process Parameters and Results

We connect processes to their “IOPEs” using the properties shown in this table:

Property Range Kind
hasInput Input Parameter
hasOutput Output Parameter
hasLocal Local Parameter
hasPrecondition Condition Expression
hasResult Result (see below)

As promised above, the links from a process to its parameters implicitly gives them scope. Input,
output, and local parameters have as scope the entire process they occur in. We introduce result vars
below, which have a narrower scope.

In the rest of this section, we will discuss the entries in this table.

• Inputs and Outputs

Inputs and outputs specify the data transformation produced by the process. Inputs specify the
information that the process requires for its execution. For atomic processes, the information must
come from the client. For the pieces of a composite process, some inputs come directly from the
client, but others come from previous steps of the process.

We said above that an atomic process corresponds to a one-step service that expects one message,
so it might appear to be contradictory to allow an atomic process to have multiple inputs. The

5

contradiction is resolved by distinguishing between the inputs and the message sent to a process.
There is just one message, but it can bundle as many inputs as required. The bundling is specified
by the grounding of the process model; see section ??.

Similarly, the outputs produced by the invocation of an atomic process flow back to the client as
a single message, the format of which is specified by the grounding. Within a composite process,
some steps’ outputs are sent back to the client, and some are used as inputs to later steps. Exactly
where inputs come from and where they go is the subject of section 1.5.

The following example shows the definition of hasParameter, and its subproperties hasInput,
hasOutput, and hasLocal:

<owl:ObjectProperty rdf:ID="hasParameter">
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Parameter"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInput">
<rdfs:subPropertyOf rdf:resource="#hasParameter"/>
<rdfs:range rdf:resource="#Input"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOutput">
<rdfs:subPropertyOf rdf:resource="#hasParameter"/>
<rdfs:range rdf:resource="#Output"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasLocal">
<rdfs:subPropertyOf rdf:resource="#hasParameter"/>
<rdfs:range rdf:resource="#Local"/>

</owl:ObjectProperty>

• Preconditions and Results

If a process has a precondition, it cannot be performed unless the precondition is true.

<owl:ObjectProperty rdf:ID="hasPrecondition">
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

Please be sure to distinguish between a condition’s being true and having various other properties,
such as being believed to be true, being known to be true, being represented in a database as true,

6

etc. In OWL-S, if a process’s precondition is false, the consequences of performing or initiating
the process are undefined.

The performance of a process may result in changes of the state of the world (effects), and the
acquisition of information by the agent performing it (outputs). However, we don’t link processes
directly to effects and outputs, because process modelers often want to model the dependence of
these on context. For example, if a process contains a step to buy an item, there are two possible
outcomes: either the purchase succeeds or it fails. In the former case, the effect is that ownership
is transferred and the output is, say, a confirmation number. In the latter case, there is no effect,
and the output is a failure message.

We use the term result to refer to a coupled output and effect.

<owl:Class rdf:ID="Result">
<rdfs:label>Result</rdfs:label>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasResult">
<rdfs:label>hasResult</rdfs:label>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Result"/>

</owl:ObjectProperty>

• Conditioning Outputs and Effects

Having a declared a result, a process model can then describe it in terms of four properties

<owl:ObjectProperty rdf:ID="inCondition">
<rdfs:label>inCondition</rdfs:label>
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="resultVar">
<rdfs:label>resultVar</rdfs:label>
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="#ResVar"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="withOutput">
<rdfs:label>withOutput</rdfs:label>
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="#OutputBinding"/>

</owl:ObjectProperty>

7

<owl:ObjectProperty rdf:ID="hasEffect">
<rdfs:label>hasEffect</rdfs:label>
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="&expr;#Expression"/>

</owl:ObjectProperty>

The inCondition property specifies the condition under which this result (and not another)
occurs. The withOutput and hasEffect properties then state what ensues when the condi-
tion is true. The resultVar property declares variables that are bound in the inCondition.
These variables, called ResVars, are analogous to Locals, and serve an isomorphic purpose,
allowing variables to be bound in preconditions and then be used to declare outputs and effects.

<owl:Class rdf:about="ResVar">
<rdfs:subClassOf rdf:resource="#Parameter"/>
<owl:disjointWith rdf:resource="#Input"/>
<owl:disjointWith rdf:resource="#Output"/>
<owl:disjointWith rdf:resource="#Local"/>

</owl:Class>

A typical example is a process that charges a credit card. The charge goes through if the card is
not overdrawn. If it is overdrawn, the only output is a failure notification. So the description of
the process must include the description of two Results, possibly in this form:

<AtomicProcess>
<hasInput/>

<Input rdf:ID="ObjectPurchased"/>
</hasInput>
<hasInput/>

<Input rdf:ID="PurchaseAmt"/>
</hasInput>
<hasInput/>

<Input rdf:ID="CreditCard"/>
</hasInput>
<hasOutput/>

<Output rdf:ID="ConfirmationNum"/>
</hasOutput>
<owls:hasResult>
<owls:Result>

<owls:resultVar>
<owls:ResVar rdf:ID="CreditLimH">

<owls:parameterType rdf:resource="&ecom;#Dollars"/>
</owls:ResVar>

8

</owls:resultVar>
<owls:inCondition expressionLanguage="&kif;#Kif"

rdf:dataType="&xsd;#string">
(and (current-value (credit-limit ?creditCard)

?CreditLimH)
(>= ?CreditLimH ?purchaseAmt))

</owls:inCondition>
<owls:withOutput>

<owls:OutputBinding>
<owls:toParam rdf:resource="#ConfirmationNum"/>
<owls:resultForm rdf:parseType="Literal">

<cc:ConfirmationNum xsd:datatype="&xsd;#string"/>
</owls:resultForm>

</owls:OutputBinding>
</owls:withOutput>
<hasEffect expressionLanguage="&kif;#Kif"

rdf:dataType="&xsd;#string">
(and (confirmed (purchase ?purchaseAmt) ?ConfirmationNum)

(own ?objectPurchased)
(decrease (credit-limit ?creditCard)

?purchaseAmt))
</hasEffect>

</owls:Result>
<owls:Result>

<owls:resultVar>
<owls:ResVar rdf:ID="CreditLimL">

<owls:parameterType rdf:resource="&ecom;#Dollars"/>
</owls:ResVar>

</owls:resultVar>
<owls:inCondition expressionLanguage="&kif;#Kif"

rdf:dataType="&xsd;#string">
(and (current-value (credit-limit ?creditCard)

?CreditLimL)
(< ?CreditLimL ?purchaseAmt))

</owls:inCondition>
<withOutput rdf:resource="&ecom;failureNotice"/>

<owls:OutputBinding>
<owls:toParam rdf:resource="#ConfirmationNum"/>
<owls:valueData rdf:parseType="Literal">

<drs:Literal>
<drs:litdefn xsd:datatype="&xsd;#string">00000000</drs:litdefn>

</drs:Literal>
</owls:valueData>

</owls:OutputBinding>
</withOutput>

9

FIGURE [[file=ProcessModel.eps, width=5in, clip=]] GOES HERE

Figure 1: Top level of the process ontology

</owls:Result>
</owls:hasResult>

</AtomicProcess>

As a result of the execution of the process, a credit card is charged and the money in the account
reduced. Note, once again, that there is a fundamental difference between effects and outputs.
Effects describe conditions in the world, while outputs describe information. In a more realistic
version of this example, the service may send a notification, or an invoice, that it charged the
credit card account. This output is just a datum of one type or another. The effect describes the
actual event that the output is part of the description of: that the amount of money in the credit
card account has been reduced and that the client now owns the object it intended to purchase.

1.3 Atomic and Simple Processes

We are now ready to formalize the classes of processes: atomic, composite, and, not mentioned before,
“simple.”

<owl:Class rdf:ID="Process">
<rdfs:comment> The most general class of processes </rdfs:comment>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AtomicProcess"/>
<owl:Class rdf:about="#SimpleProcess"/>
<owl:Class rdf:about="#CompositeProcess"/>

</owl:unionOf>
</owl:Class>

See figure 1.
Atomic processes correspond to the actions a service can perform by engaging it in a single in-

teraction; composite processes correspond to actions that require multi-step protocols; finally, simple
processes provide an abstraction mechanism to provide multiple views of the same process. We discuss
atomics and simples here, reserving composites for the next subsection.

Atomic processes are directly invocable (by passing them the appropriate messages). Atomic pro-
cesses have no subprocesses and execute in a single step, as far as the service requester is concerned.
That is, they take an input message, do something, and then return their output message. For each atomic
process, there must be provided a grounding that enables a service requester to construct messages to
the process and deconstruct replies, as explained in Section ??.

10

<owl:Class rdf:ID="AtomicProcess">
<owl:subClassOf rdf:resource="#Process"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="invocable">
<rdfs:comment>
Invocable is a flag that tells whether a Process bottoms
out in atomic processes; clearly, every atomic process is
ipso facto invocable.

</rdfs:comment>
<rdfs:domain rdf:resource="#CompositeProcess"/>
<rdfs:range rdf:resource="&xsd;#boolean"/>

</owl:DatatypeProperty>

Simple processes are not invocable and are not associated with a grounding, but, like atomic pro-
cesses, they are conceived of as having single-step executions. Simple processes are used as elements of
abstraction; a simple process may be used either to provide a view of (a specialized way of using) some
atomic process, or a simplified representation of some composite process (for purposes of planning and
reasoning). In the former case, the simple process is realizedBy the atomic process; in the latter
case, the simple process expandsTo the composite process (see below).

<owl:Class rdf:ID="SimpleProcess">
<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#AtomicProcess"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="realizedBy">
<rdfs:domain rdf:resource="#SimpleProcess"/>
<rdfs:range rdf:resource="#AtomicProcess"/>
<owl:inverseOf rdf:resource="#realizes"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="realizes">
<rdfs:domain rdf:resource="#AtomicProcess"/>
<rdfs:range rdf:resource="#SimpleProcess"/>
<owl:inverseOf rdf:resource="#realizedBy"/>

</owl:ObjectProperty>

1.4 Composite Processes

Composite processes are decomposable into other (non-composite or composite) processes; their de-
composition can be specified by using control constructs such as Sequence and If-Then-Else,
which are discussed below. Because many of the control constructs have names reminiscent of control
structures in programming languages, it is easy to lose sight of a fundamental difference: a composite

11

process is not a behavior a service will do, but a behavior (or set of behaviors) the client can do by
sending and receiving a series of messages. If the composite process has an overall effect, then the
client must perform the entire process in order to achieve that effect. We have not yet given a precise
specification of what it means to perform a process, but all we mean is that, e.g., if a composite is a
Sequence, then the client sends a series of messages that invoke every step in order. However, the
world will not end if the client stops half way through. It may not achieve the effects associated with
the entire composite process, but it might have a more devious purpose.

One crucial feature of a composite process is its specification of how its inputs are accepted by par-
ticular subprocesses, and how its various outputs are produced by particular subprocesses. We discuss
this topic in section 1.5.

<owl:Class rdf:ID="CompositeProcess">
<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#AtomicProcess"/>
<owl:disjointWith rdf:resource="#SimpleProcess"/>
<rdfs:comment>
A CompositeProcess must have exactly 1 composedOf property.

</rdfs:comment>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Process"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#composedOf"/>
<owl:cardinality rdf:datatype="&xsd;#nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

A process can often be viewed at different levels of granularity, either as a primitive, undecompos-
able process or as a composite process. These are sometimes referred to as “black box” and “glass
box” views, respectively. Either perspective may be the more useful in some given context. When a
composite process is viewed as a black box, a simple process can be used to represent this. In this case,
the relationship between the simple and composite is represented using the expandsTo property, and
its inverse, the collapsesTo property.

<owl:ObjectProperty rdf:ID="expandsTo">
<rdfs:domain rdf:resource="#SimpleProcess"/>
<rdfs:range rdf:resource="#CompositeProcess"/>
<owl:inverseOf rdf:resource="#collapsesTo"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="collapsesTo">
<rdfs:domain rdf:resource="#CompositeProcess"/>

12

<rdfs:range rdf:resource="#SimpleProcess"/>
<owl:inverseOf rdf:resource="#expandsTo"/>

</owl:ObjectProperty>

A CompositeProcess must have a composedOf property by which is indicated the control
structure of the composite, using a ControlConstruct.

<owl:ObjectProperty rdf:ID="composedOf">
<rdfs:domain rdf:resource="#CompositeProcess"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="ControlConstruct">
</owl:Class>

Each control construct, in turn, is associated with an additional property called components to
indicate the ordering and conditional execution of the subprocesses (or control constructs) from which
it is composed.

<owl:ObjectProperty rdf:ID="components">
<rdfs:domain rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

For instance, any instance of the control construct Sequence has a components property that
iranges over a ControlConstructList (a list of control constructs). We give a complete table of
composite control constructs below.

Any composite process can be considered a tree whose nonterminal nodes are labeled with con-
trol constructs, each of which has children specified using components. The leaves of the tree are
invocations of other processes, indicated as an object of class Perform.

<owl:Class rdf:ID="Perform">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#process"/>
<owl:cardinality rdf:datatype="&xsd;#nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

The process property of a perform is the process performed:

13

<owl:ObjectProperty rdf:ID="process">
<rdfs:domain rdf:resource="#Perform"/>
<rdfs:range rdf:resource="#Process"/>

</owl:ObjectProperty>

When a process is performed as a step in a larger process, there must be a description of where the
inputs to the performed process come from and where the outputs go. This issue we defer to section 1.5.

We conclude this section with an overview of the OWL-S control constructs: Sequence, Split, Split
+ Join, Choice, Unordered, Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until.

Sequence : A list of control constructs to be done in order.

<owl:Class rdf:ID="Sequence">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructList"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="ControlConstructList">
<rdfs:comment> A list of control constructs </rdfs:comment>

<rdfs:subClassOf rdf:resource="&shadow-rdf;#List"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&shadow-rdf;#first"/>
<owl:allValuesFrom rdf:resource="#ControlConstruct"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&shadow-rdf;#rest"/>
<owl:allValuesFrom rdf:resource="#ControlConstructList"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Split : The components of a Split process are a bag of process components to be executed concur-
rently. No further specification about waiting or synchronization is made at this level.

<owl:Class rdf:ID="Split">

14

<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="ControlConstructBag">
<rdfs:comment> A multiset of control constructs </rdfs:comment>

<rdfs:subClassOf rdf:resource="&shadow-rdf;#List"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&shadow-rdf;#first"/>
<owl:allValuesFrom rdf:resource="#ControlConstruct"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&shadow-rdf;#rest"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Split+Join : Here the process consists of concurrent execution of a bunch of process components with
barrier synchronization. With Split and Split+Join, we can define processes that have
partial synchronization (e.g., split all and join some sub-bag).

<owl:Class rdf:ID="Split-Join">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Unordered : Allows the process components (specified as a bag) to be executed in some unspecified
order, or concurrently. All components must be executed. As with Split+Join, completion of
all components is required. Note that, while the unordered construct itself gives no constraints

15

on the order of execution, nevertheless, in some cases, there may be constraints associated with
subcomponents, which must be respected.

<owl:Class rdf:ID="Unordered">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Examples:

1. If all process components are atomic processes, any ordering is permitted. For instance,
(Unordered a b) could result in the execution of a followed by b, or b followed by a.

2. Let a, b, c, and d be atomic processes, and X, Y, and Z be composite processes:

X = (Sequence a b)
Y = (Sequence c d)
Z = (Unordered X Y)

Z, then, translates to the following partial ordering:

{(a;b), (c;d)}

where ’;’ means “executes before”, and the possible execution sequences (total orders) in-
clude

{(a;b;c;d), (a;c;b;d), (a;c;d;b), (a;c;d;b),
(c;d;a;b), (c;a;d;b), (c;a;b;d)}

Choice : Choice is a control construct whose key property is chooseFrom, whose value is a list
of processes the execution of one of which constitutes execution of the Choice.

[[This wording is a significant scale-down from the original idea, which involved being able
to choose an arbitrary number of the processes specified as chooseFrom, and then impose
further constraints on the set chosen. We have decided to simplify because the machinery used to
implement the original idea was not thought through carefully, and because there doesn’t seem to
be much demand for the complicated version.]]

<owl:Class rdf:ID="Choice">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>

16

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="chooseFrom">
<rdfs:domain rdf:resource="#Choice"/>
<rdfs:range rdf:resource ="#ControlConstructBag"/>

</owl:ObjectProperty>

If-Then-Else : The If-Then-Else class is a control construct that has properties ifCondition,
then and else holding different aspects of the If-Then-Else. Its semantics is intended as
“Test If-condition; if True do Then, if False do Else.” (Note that the class Condition,
which is a placeholder for further work, will be defined as a class of logical expressions.)

<owl:Class rdf:ID="If-Then-Else">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="ifCondition">
<rdfs:comment> The if condition of an if-then-else</rdfs:comment>
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="then">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="else">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

17

Iterate : Iterate is a control construct whose nextProcessComponent property has the
same value as the current process component. Repeat is defined as a synonym of the
Iterate class. The repeat/iterate process makes no assumption about how many iterations
are made or when to initiate, terminate, or resume. The initiation, termination or maintenance
condition could be specified with a whileCondition or an untilCondition as below.1

<owl:Class rdf:ID="Iterate">
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#components"/>
<owl:allValuesFrom rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Repeat-while and Repeat-until Both of these iterate until a condition becomes false or true. Whether
the test occurs at a fixed place within the iteration or runs asynchronously varies from subclass to
subclass of these classes.

<owl:ObjectProperty rdf:ID="whileCondition">
<rdfs:domain rdf:resource="#Repeat-While"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="whileProcess">
<rdfs:domain rdf:resource="#Repeat-While"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Repeat-While">
<rdfs:comment> The repeat while construct</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="untilCondition">
<rdfs:domain rdf:resource="#Repeat-Until"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

1Another possible extension is to ability to define counters and use their values as termination conditions. This could be
part of an extended process control and execution monitoring ontology.

18

<owl:ObjectProperty rdf:ID="untilProcess">
<rdfs:domain rdf:resource="#Repeat-Until"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Repeat-Until">
<rdfs:comment> The repeat until process</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ControlConstruct"/>

</owl:Class>

1.5 Specifying Data Flow and Parameter Bindings

When defining processes using OWL-S, there are many places where the input to one process component
is obtained as one of the outputs of a preceding step, short-circuiting the normal transmission of data
from service to client and back. This is one type of data flow from one step of a process to another.
There are other, less familiar patterns; the outputs of a composite process are all derived as outputs of
some of its components, and specifying which component’s output becomes output X of the composite
is also a data-flow specification.

We adopt the convention that the source of a datum is identified when the user of the datum is
declared. If step 1 feeds step 3, we specify this fact in the description of step 3 rather than the description
of step 1. We call this a consumer-pull convention, as opposed to a producer-push alternative. We
implement this convention by providing a notation for arbitrary terms as the values of input or output
parameters of a process step, plus a notation for subterms denoting the output or input parameters of
prior process steps.

Consider the following tableau:

I1 input of:{ Composite Process CP: }: with output O1
composed of

Step 1: Perform S1 −→ Step 2: Perform S2

where S1 has inputs I11 and I12, and output O11
and S2 has input I21 and output O21

and suppose that we want a straightforward data flow: Input I1 of the overall process CP is used as
input I11 of S1, after adding 1. Input I12 of S1 is a constant, the string "Academic". Output O11 of
S1 is used as input I21 of S2. The maximum of 0 and output O21 of S2, times π, is used as output O1
of CP. Using a consumer-pull convention, we simply declare the parameters I1, O11, and O21, but for
parameters I11, I21, and O1 we provide, in addition to a declaration, bindings that specify that

I11(S1) comes from incr(I1(CP))

19

I12(S1) = "Academic"

I21(S2) comes from O11(S1)

O1(CP) comes from π × max(0,O21(S2))

Each of these equalities is represented in OWL-S as a Binding, an abstract object with two prop-
erties: toParam, the name of the parameter (e.g., I21(S2)), and valueSpecifier, a description of
its value. In an effort to provide value specifications in as concise a manner as possible in a variety of
situations, we provide three different types: valueSource, valueData, and valueFn. .

We declare the toParam property in the usual way:

<owl:Class rdf:ID="Binding">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#toParam"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="toParam">
<rdfs:domain rdf:resource="#Binding"/>
<rdfs:range rdf:resource="#Parameter"/>

</owl:ObjectProperty>

The simplest sort of dataflow spec is valueSource:

<owl:ObjectProperty rdf:ID="valueSource">
<rdfs:label>valueSource</rdfs:label>
<rdfs:domain rdf:resource="#Binding"/>
<rdfs:range rdf:resource="#ValueOf"/>
<rdfs:subPropertyOf rdf:resource="#valueSpecifier"/>

</owl:ObjectProperty>

The range of valueSource is a simple object of class ValueOf, specified entirely by its prop-
erties theVar and fromProcess. If a binding with toParam= p has valueSource = s with
properties theVar=v and fromProcess= R, that means that parameter p of this process = parameter
v of R.

<owl:Class rdf:ID="ValueOf">
<rdfs:label>ValueOf</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>

20

<owl:onProperty rdf:resource="#theVar"/>
<owl:cardinality rdf:datatype="&xsd;#nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#fromProcess"/>
<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">

1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="theVar">
<rdfs:domain rdf:resource="#ValueOf"/>
<rdfs:range rdf:resource="#Parameter"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="fromProcess">
<rdfs:domain rdf:resource="#ValueOf"/>
<rdfs:range rdf:resource="#Perform"/>

</owl:ObjectProperty>

For example, our simple tableau has one place where a ValueSource expression can be used.
Here is how that part of the tableau would be expressed:

<Sequence rdf:ID="CP">
<hasInput>

...
</hasInput>
<hasOutput>

...
</hasOutput>

<components rdf:parseType="Collection">
<Perform rdf:ID="S1">

<process rdf:resource="&aux;#UsefulProcess"/>
...

</Perform>
<Perform rdf:ID="S2">

<process rdf:resource="&aux;#AnotherUsefulProcess"/>
<hasDataFrom> <!-- see below -->

<Binding>
<theParam rdf:resource="&aux;#I21"/>

21

<valueSource>
<ValueOf>

<theParam rdf:resource="#O11"/>
<fromProcess rdf:resource="#S1"/>

</ValueOf>
</valueSource>

</Binding>
</hasDataFrom>

</Perform>
</components>
...

</Sequence>

In this example, we used the hasDataFrom property, which is used to link inputs of Performs
to bindings:

<owl:ObjectProperty rdf:ID="hasDataFrom">
<rdfs:domain rdf:resource="#ProcessComponent"/>
<rdfs:range rdf:resource="#Binding"/>

</owl:ObjectProperty>

The complete tableau appears below, after further discussion of bindings.
There is a subtle issue that arises from the fact that the range of fromProcess is Perform. In

our informal tableau above, we used expressions such as incr(I1(CP)) to mean the the input I1
of the overall process CP. But we cannot actually refer to a Binding with valueSource that is a
ValueOfwith fromProcess = CP, because CP is not a Perform, but a process. If you think about
it, it makes no sense to refer to a value extracted from a process, because every time the process is
invoked different values will be involved. We need an expression that refers to the “current value” of a
parameter, that is, its value during an actual Perform. We want to say: During any Perform P of CP, the
value of the input I1 of step S1 is the value of the input I1 of P .

Hence we introduce a standard variable to play the role of P , and give it the name TheParentPerform.

<swrl:Variable rdf:ID="TheParentPerform">
<rdfs:comment>
A special-purpose variable, used to refer, at runtime, to the execution
instance of the enclosing composite process definition.

</rdfs:comment>
</swrl:Variable>

We will show how this device is used in our example tableau shortly.
The remaining two data-source specifications use the XML Literal trick to encode arbitrary expres-

sions.

22

<owl:DatatypeProperty rdf:ID="valueFn">
<rdfs:label>valueFn</rdfs:label>
<rdfs:subPropertyOf rdf:resource="#valueSpecifier"/>
<rdfs:domain rdf:resource="#Binding"/>
<rdfs:range rdf:resource="&rdf;#XMLLiteral"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="valueData">
<rdfs:label>valueData</rdfs:label>
<rdfs:domain rdf:resource="#Binding"/>

</owl:DatatypeProperty>

The valueFn of a Binding is an XML literal to be read as a functional term. Some of its subterms
may be ValueOfs specifying outputs of previous terms. As with conditions and effects, the denotation
of the valueFn expression cannot be known until variable values are plugged in. The valueData of
a Binding is an XML literal to be interpreted as constant data.

Here is our complete example tableau, with all data flows expressed using one of the three data-
source specs.

<Sequence rdf:ID="CP">
<hasInput>

<Input rdf:ID="I1"/>
</hasInput>
<hasOutput>

<Output rdf:ID="O1"/>
</hasOutput>

<components rdf:parseType="Collection">
<Perform rdf:ID="S1">

<process rdf:resource="&aux;#UsefulProcess"/>
<hasDataFrom>

<InputBinding>
<theParam rdf:resource="&aux;#I11"/>
<valueFn expressionLanguage="&drs;" rdf:parseType="Literal">

<drs:Functional_term>
<drs:term_function rdf:resource="&arith;#incr"/>
<drs:term_args rdf:parseType="Collection">

<valueOf>
<theParam rdf:resource="#I1"/>
<fromProcess rdf:resource="#TheParentPerform"/>

</valueOf>
</drs:term_args>

</drs:Functional_term>

23

</valueForm>
</InputBinding>
<InputBinding>

<theParam rdf:resource="&aux;#I12"/>
<valueData xsd:datatype="&xsd;#string">Academic</valueData>

</InputBinding>
</hasDataFrom>

</Perform>
<Perform rdf:ID="S2">

<process rdf:resource="&aux;#AnotherUsefulProcess"/>
<hasDataFrom>

<Binding>
<theParam rdf:resource="&aux;#I21"/>
<valueSource>

<ValueOf>
<theParam rdf:resource="#O11"/>
<fromProcess rdf:resource="#S1"/>

</ValueOf>
</valueSource>

</Binding>
</hasDataFrom>

</Perform>
</components>

<hasResult>
<withOutput>

<OutputBinding>
<theParam rdf:resource="#O1"/>
<valueFn expressionLanguage="&drs;" rdf:parseType="Literal">

<drs:Functional_term>
<drs:term_function rdf:resource="&arith;#times"/>
<drs:term_args rdf:parseType="Collection">

<xsd:Integer rdf:datatype="&xsd;#Integer">1</xsd:Integer>
<drs:Functional_term>

<drs:term_function rdf:resource="&arith;#max"/>
<drs:term_args rdf:parseType="Collection">

<xsd:Integer rdf:datatype="&xsd;#Integer">0</xsd:Integer>
<valueOf>

<theParam rdf:resource="#O21"/>
<fromProcess rdf:resource="#S2"/>

</valueOf>
</drs:term_args>

</drs:Functional_term>
</drs:term_args>

</drs:Functional_term>

24

</valueFn>
</OutputBinding>

</withOutput>
</hasResult>

</Sequence>

Finally, there is another output descriptor, called resultForm. This is not attached to a variable,
but to a Result:

<owl:DatatypeProperty rdf:ID="resultForm">
<rdfs:label>resultForm</rdfs:label>
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="&rdf;#XMLLiteral"/>

</owl:DatatypeProperty>

The purpose of resultForm is to provide an abstract XML template for outputs sent back to the
client. The reason we need such a template are subtle, and do not always apply. Normally the grounding
suffices to express how the components of a message are bundled, i.e., how inputs are put together to
make a message to a service, and how replies are disassembled into the intended outputs. In essence,
all we can or need to do is build up and tear down record structures (in XML Schema terminology,
ComplexTypes). But in the case of a process with multiple Results, it can be extremely useful to
specify other features of an output message that indicate which result actually occurred, sparing us the
chore of providing output fields to encode that information, or making the client infer it from the form
of the other fields. That’s what valueForm is for.

In our example of a credit-card transaction, we had two Results, one for the case where there was a
sufficient balance to pay the bill, and one for when there wasn’t. We could augment each result with a
further binding, such as this one for the failure case:

<owls:Result>
<owls:resultVar>

<owls:ResVar rdf:ID="CreditLimL">
<owls:parameterType rdf:resource="&ecom;#Dollars"/>

</owls:ResVar>
</owls:resultVar>
<owls:inCondition expressionLanguage="&kif;#Kif"

rdf:dataType="&xsd;#string">
(and (current-value (credit-limit ?creditCard)

?CreditLimL)
(< ?CreditLimL ?purchaseAmt))

</owls:inCondition>
<owls:resultForm rdf:parseType="Literal">

<ecom:CreditExceededFailure>
<ecom:gap expressionLanguage="&kif;#Kif"

25

rdf:dataType="&xsd;#string">
(- ?purchaseAmt ?CreditLimL)

</ecom:gap>
</ecom:CreditExceededFailure>

</owls:resultForm>
<withOutput rdf:resource="&ecom;failureNotice"/>

...
</withOutput>

</owls:Result>

26

