
SKOS Simple Knowledge Organization System
Reference

W3C Working Draft 29 August 2008

This version:
http://www.w3.org/TR/2008/WD-skos-reference-20080829/

Latest version:
http://www.w3.org/TR/skos-reference

Previous version:
http://www.w3.org/TR/2008/WD-skos-reference-20080609/

Editors:
Alistair Miles, STFC Rutherford Appleton Laboratory / University of Oxford
Sean Bechhofer, University of Manchester

Copyright © 2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This document defines the Simple Knowledge Organization System (SKOS), a common data model for sharing and linking knowledge
organization systems via the Web.

Many knowledge organization systems, such as thesauri, taxonomies, classification schemes and subject heading systems, share a similar
structure, and are used in similar applications. SKOS captures much of this similarity and makes it explicit, to enable data and technology
sharing across diverse applications.

The SKOS data model provides a standard, low-cost migration path for porting existing knowledge organization systems to the Semantic Web.
SKOS also provides a light weight, intuitive language for developing and sharing new knowledge organization systems. It may be used on its
own, or in combination with formal knowledge representation languages such as the Web Ontology language (OWL).

This document is the normative specification of the Simple Knowledge Organization System. It is intended for readers who are involved in the
design and implementation of information systems, and who already have a good understanding of Semantic Web technology, especially RDF
and OWL.

For an informative guide to using SKOS, see the SKOS Primer.

Synopsis

Using SKOS, concepts can be identified using URIs, labeled with lexical strings in one or more natural languages, assigned notations (lexical
codes), documented with various types of note, linked to other concepts and organized into informal hierarchies and association networks,
aggregated into concept schemes, grouped into labeled and/or ordered collections, and mapped to concepts in other schemes.

[show quick access panel]

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document is a Last Call Working Draft published by the Semantic Web Deployment Working Group, part of the W3C Semantic Web
Activity. This Working Draft updates the the 9 Jun 2008 Working Draft with the Working Group decisions since that time. The changes are
summarized below.

The Working Group solicits review and feedback on this draft specification. Comments are requested by 3 October 2008, at which time the
Working Group intends to close Last Call.

All comments are welcome and may be sent to public-swd-wg@w3.org; please include the text "SKOS comment" in the subject line. All
messages received at this address are viewable in a public archive.

The Working Group intends to advance the SKOS Reference to W3C Recommendation after further review and comment. This Last Call
Working Draft signals the Working Group's belief that it has met its design objectives for SKOS and has resolved all open issues.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual
who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced
or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

Features at Risk of Change

The Working Group have identified a number of features which it considers to be "at risk of change". These features include:

The URI of the SKOS namespace. The current draft introduces a new namespace for the SKOS vocabulary. Comments have been made
that this may cause difficulty for existing SKOS implementations or vocabularies. As a result, the choice of SKOS namespace should be
considered "at risk of change".

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

1 von 34 06.09.2008 13:12

schneid
Sticky Note
Dear SKOS Working Group!

This is my review of the LC working draft of the SKOS Reference. All comments are given in the form of PDF notes.

Best regards,
Michael Schneider, FZI
<schneid@fzi.de>

Relationship between skos:exactMatch, skos:broadMatch and skos:narrowMatch. The Working group consider that there is insufficient
implementation experience or evidence to be able to make a firm decision (see resolution of ISSUE 75). The current situation is that there
are no axioms stating relationships between skos:exactMatch, skos:broadMatch and skos:narrowMatch. Axioms could be stated, for
example, asserting that the composition of skos:broadMatch and skos:exactMatch is a subproperty of skos:broadMatch. Note that this
would, however, require OWL 2 features which are not present in OWL.
The naming of the property skos:topConceptOf may change.

Any feature at risk of change is marked in the body of this document with a comment in a red box, such as:

At Risk of Change: This feature may change in subsequent versions of this document...

Changes

Changes Since 9 June 2008 Working Draft:

Section 1.7 (Conformance): Wording on requirements for URI dereference behaviour have been added.
Section 4 (Concept Schemes): A new property skos:topConceptOf is added, which is the inverse of skos:hasTopConcept, and which is a
sub-property of skos:inScheme.
Section 5 (Lexical Labels): Assertions that rdfs:label is a super-property of the SKOS lexical labelling properties skos:altLabel,
skos:hiddenLabel and skos:prefLabel added.
Section 8 (Semantic Relations): The preamble has been revised for clarity.
Section 10 (Mapping Properties): A new property skos:closeMatch is added, used to link two concepts that are sufficiently similar that they
can be used interchangeably in some information retrieval applications. The informal definition of skos:exactMatch is modified, such that
the property now indicates a high degree of confidence that two linked concepts can be used interchangeably across a wide range of
information retrieval applications. The formal definition of skos:exactMatch is modified, such that it is now transitive, a sub-property of
skos:closeMatch, and disjoint with each of skos:broadMatch and skos:relatedMatch.
Editorial Changes

Meaningful examples
Minor rewording and addressing grammatical issues throughout
Changes to xl prefix used in prose and examples

Changes since 25 January 2008 Working Draft:

The namespace used for the SKOS Vocabulary has been changed to <http://www.w3.org/2008/05/skos#>.
A new section on notations has been included.
A new appendix "SKOS eXtension for Labels" has been included.
The section on label relations has been dropped. This is replaced by the skosxl:labelRelation property in the eXtension for Labels
appendix.
The section on mapping properties has been rewritten to reflect the decision to make skos:broadMatch, skos:narrowMatch and
skos:relatedMatch sub-properties of skos:broader, skos:narrower and skos:related respectively.
Appendices on SKOS Rules of Thumb, SKOS/OWL Patterns, SKOS/SPARQL Patterns and Extending SKOS have been dropped as out
of scope for this document, to be covered in the SKOS Primer and/or other specifications.

Table of Contents

[show quick access panel]

1. Introduction
1.1. Background and Motivation
1.2. SKOS Overview
1.3. SKOS, RDF and OWL
1.4. Consistency and Integrity
1.5. Inference, Dependency and the Open-World Assumption
1.6. Design Rationale
1.7. How to Read this Document

1.7.1. Formal Definitions
1.7.2. URI Abbreviations
1.7.3. Examples

1.8. Conformance
2. SKOS Namespace and Vocabulary
3. The skos:Concept Class

3.1. Preamble
3.2. Vocabulary
3.3. Class & Property Definitions
3.4. Examples
3.5. Notes

3.5.1. SKOS Concepts, OWL Classes and OWL Properties
4. Concept Schemes

4.1. Preamble
4.2. Vocabulary
4.3. Class & Property Definitions
4.4. Integrity Conditions
4.5. Examples
4.6. Notes

4.6.1. Closed vs. Open Systems
4.6.2. SKOS Concept Schemes and OWL Ontologies
4.6.3. Top Concepts and Semantic Relations
4.6.4. Scheme Containment and Semantic Relations

5. Lexical Labels
5.1. Preamble
5.2. Vocabulary
5.3. Class & Property Definitions
5.4. Integrity Conditions
5.5. Examples

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

2 von 34 06.09.2008 13:12

5.6. Notes
5.6.1. Domain of SKOS Lexical Labeling Properties
5.6.2. Range of SKOS Lexical Labeling Properties
5.6.3. Defining Label Relations
5.6.4. Alternates Without Preferred
5.6.5. Definition of a "Language"

6. Notations
6.1. Preamble
6.2. Vocabulary
6.3. Class & Property Definitions
6.4. Examples
6.5. Notes

6.5.1. Notations, Typed Literals and Datatypes
6.5.2. Multiple Notations
6.5.3. Unique Notations in Concept Schemes
6.5.4. Notations and Preferred Labels

7. Documentation Properties (Note Properties)
7.1. Preamble
7.2. Vocabulary
7.3. Class & Property Definitions
7.4. Examples
7.5. Notes

7.5.1. Domain of the SKOS Documentation Properties
7.5.2. Type & Range of the SKOS Documentation Properties

8. Semantic Relations
8.1. Preamble
8.2. Vocabulary
8.3. Class & Property Definitions
8.4. Integrity Conditions
8.5. Examples
8.6. Notes

8.6.1. Sub-Property Relationships
8.6.2. Domain and Range of SKOS Semantic Relation Properties
8.6.3. Symmetry of skos:related
8.6.4. Transitivity of skos:related
8.6.5. Reflexivity of skos:related
8.6.6. Transitivity of skos:broader
8.6.7. Reflexivity of skos:broader
8.6.8. Cycles in the Hierarchical Relation (Reflexivity of skos:broaderTransitive)
8.6.9. Alternate Paths in the Hierarchical Relation
8.6.10. Disjointness of skos:related and skos:broaderTransitive

9. Concept Collections
9.1. Preamble
9.2. Vocabulary
9.3. Class & Property Definitions
9.4. Integrity Conditions
9.5. Examples
9.6. Notes

9.6.1. Inferring Collections from Ordered Collections
9.6.2. skos:memberList Integrity
9.6.3. Nested Collections
9.6.4. SKOS concepts, Concept Collections and Semantic Relations

10. Mapping Properties
10.1. Preamble
10.2. Vocabulary
10.3. Class & Property Definitions
10.4. Integrity Conditions
10.5. Examples
10.6. Notes

10.6.1. Mapping Properties, Semantic Relation Properties and Concept Schemes
10.6.2. "Clashes" Between Hierarchical and Associative Links
10.6.3. Transitivity of Mapping Properties
10.6.4. Reflexivity of Mapping Properties
10.6.5. Cycles and Alternate Paths Involving skos:broadMatch
10.6.6. Property Chains Involving skos:exactMatch
10.6.7. skos:closeMatch, skos:exactMatch, owl:sameAs, owl:equivalentClass, owl:equivalentProperty

11. References
Appendix A. SKOS eXtension for Labels (XL)

A.1. XL Namespace and Vocabulary
A.2. The skosxl:Label Class

A.2.1. Preamble
A.2.2. Class and Property Definitions
A.2.3. Examples
A.2.4. Notes

A.2.4.1. Identity and Entailment
A.2.4.2. Membership of Concept Schemes

A.3. Preferred, Alternate and Hidden skosxl:Labels
A.3.1. Preamble
A.3.2. Class and Property Definitions
A.3.3. Examples
A.3.4. Notes

A.3.4.1. "Dumbing-Down" to SKOS Lexical Labels
A.3.4.2. SKOS+XL Labeling Integrity

A.4. Links Between skosxl:Labels
A.4.1. Preamble
A.4.2. Class and Property Definitions
A.4.3. Examples

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

3 von 34 06.09.2008 13:12

A.4.4. Notes
A.4.4.1. Refinements of this Pattern

Appendix B. SKOS Overview
B.1. Classes in the SKOS Data Model
B.2. Properties in the SKOS Data Model

Appendix C. SKOS Data Model as RDF Triples

1. Introduction

1.1. Background and Motivation

The Simple Knowledge Organization System is a data sharing standard, bridging several different fields of knowledge, technology and practice.

In the library and information sciences, a long and distinguished heritage is devoted to developing tools for organizing large collections of
objects such as books or museum artifacts. These tools are known generally as "knowledge organization systems" (KOS) or sometimes
"controlled structured vocabularies". Several similar yet distinct traditions have emerged over time, each supported by a community of practice
and set of agreed standards. Different families of knowledge organization systems, including "thesauri", "classification schemes", "subject
heading systems", and "taxonomies" are widely recognized and applied in both modern and traditional information systems. In practice it can
be hard to draw an absolute distinction between "thesauri" and "classification schemes" or "taxonomies", although some properties can be used
to broadly characterize these different families (see e.g. [BS8723-3]). The important point for SKOS is that, in addition to their unique features,
each of these families shares much in common, and can often be used in similar ways. However, there is currently no widely deployed standard
for representing these knowledge organization systems as data and exchanging them between computer systems.

The W3C's Semantic Web Activity [SW] has stimulated a new field of integrative research and technology development, at the boundaries
between database systems, formal logic and the World Wide Web. This work has led to the development of foundational standards for the
Semantic Web. The Resource Description Framework (RDF) provides a common data abstraction and syntax for the Web [RDF-PRIMER]. The
RDF Vocabulary Description language (RDFS) and the Web Ontology language (OWL) together provide a common data modeling (schema)
language for data in the Web [RDFS] [OWL-GUIDE]. The SPARQL Query language and Protocol provide a standard means for interacting with
data in the Web [SPARQL].

These technologies are being applied across diverse applications, because many applications require a common framework for publishing,
sharing, exchanging and integrating ("joining up") data from different sources. This ability to "join up" data from different sources is motivating
many projects, as different communities seek to exploit the hidden value in linking data previously spread across isolated sources.

One facet of the Semantic Web vision is the hope of better organizing the vast amounts of unstructured (i.e. human-readable) information in the
Web, providing new routes to discovering and sharing that information. RDFS and OWL are formally defined knowledge representation
languages, providing ways of expressing meaning that are amenable to computation; meaning that complements and gives structure to
information already present in the Web [RDF-PRIMER] [OWL-GUIDE]. They go a long way towards supporting that vision, but the story doesn't
end there. To actually apply these technologies over large bodies of information requires the construction of detailed "maps" of particular
domains of knowledge, in addition to the accurate description (i.e. annotation or cataloging) of information resources on a large scale, much of
which cannot be done automatically. The accumulated experience and best practices in the library and information sciences regarding the
organization of information and knowledge is obviously complementary and applicable to this vision, as are the many existing knowledge
organization systems already developed and in use, such as the Library of Congress Subject Headings [LCSH] or the United Nations Food and
Agriculture Organization's Agrovoc Thesaurus [AGROVOC].

The Simple Knowledge Organization System therefore aims to provide a bridge between different communities of practice within the library and
information sciences involved in the design and application of knowledge organization systems. In addition, SKOS aims to provide a bridge
between these communities and the Semantic Web, by transferring existing models of knowledge organization to the Semantic Web technology
context, and by providing a low-cost migration path for porting existing knowledge organization systems to RDF.

Looking to the future, SKOS occupies a position between the exploitation and analysis of unstructured information, the informal and socially-
mediated organization of information on a large scale, and the formal representation of knowledge. It is hoped that, by making the accumulated
experience and wisdom of knowledge organization in the library and information sciences accessible, applicable within and transferable to the
technological context of the Semantic Web, in a way that is complementary to existing Semantic Web technology (and in particular formal
systems of knowledge representation such as OWL), SKOS will enable many new and valuable applications, and will also lead to new
integrative lines of research and development in both technology and practice.

1.2. SKOS Overview

The Simple Knowledge Organization System is a common data model for knowledge organization systems such as thesauri, classification
schemes, subject heading systems and taxonomies. Using SKOS, a knowledge organization system can be expressed as machine readable
data. It can then be exchanged between computer applications and published in a machine-readable format in the Web.

The SKOS data model is formally defined in this specification as an OWL Full ontology [OWL-SEMANTICS]. SKOS data are expressed as RDF
triples, and may be encoded using any concrete RDF syntax (such as RDF/XML [RDF-XML] or Turtle [TURTLE]). For more on the relationships
between SKOS, RDF and OWL, see the next sub-section below.

The SKOS data model views a knowledge organization system as a concept scheme comprising a set of concepts. These SKOS concept
schemes and SKOS concepts are identified by URIs, enabling anyone to refer to them unambiguously from any context, and making them a
part of the World Wide Web. See Section 3. The skos:Concept Class for more on identifying and describing SKOS concepts, and Section 4.
Concept Schemes for more on concept schemes.

SKOS concepts can be labeled with any number of lexical (UNICODE) strings, such as "romantic love" or "れんあい", in any given natural
language, such as English or Japanese Hiragana. One of these labels in any given language can be indicated as the "preferred" label for that
language, and the others as "alternate" labels. Labels may also be "hidden", which is useful e.g. where a knowledge organization system is
being queried via a text index. See Section 5. Lexical Labels for more on the SKOS lexical labeling properties.

SKOS concepts can be assigned one or more notations, which are lexical codes used to uniquely identify the concept within the scope of a
given concept scheme. While URIs are the preferred means of identifying SKOS concepts within computer systems, notations provide a bridge
to other systems of identification already in use such as classification codes used in library catalogues. See Section 6. Notations for more on
notations.

SKOS concepts can be documented with notes of various types. The SKOS data model provides a basic set of documentation properties,
supporting scope notes, definitions and editorial notes, among others. This set is not meant to be exhaustive, but rather to provide a framework
that can be extended by third parties to provide support for more specific types of note. See Section 7. Documentation Properties for more on
notes.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

4 von 34 06.09.2008 13:12

SKOS concepts can be linked to other SKOS concepts via semantic relation properties. The SKOS data model provides support for
hierarchical and associative links between SKOS concepts. Again, as with any part of the SKOS data model, these can be extended by third
parties to provide support for more specific needs. See Section 8. Semantic Relations for more on linking SKOS concepts.

SKOS concepts can be grouped into collections, which can be labeled and/or ordered. This feature of the SKOS data model is intended to
provide support for node labels within thesauri, and for situations where the ordering of a set of concepts is meaningful or provides some useful
information. See Section 9. Concept Collections for more on collections.

SKOS concepts can be mapped to other SKOS concepts in different concept schemes. The SKOS data model provides support for four basic
types of mapping link: hierarchical, associative, close equivalent and exact equivalent. See Section 10. Mapping Properties for more on
mapping.

Finally, an optional extension to SKOS is defined in Appendix A. SKOS eXtension for Labels (XL). XL provides more support for identifying,
describing and linking lexical entities.

1.3. SKOS, RDF and OWL

The "elements" of the SKOS data model are classes and properties, and the structure and integrity of the data model is defined by the logical
characteristics of, and interdependencies between, those classes and properties. This is perhaps one of the most powerful and yet potentially
confusing aspects of SKOS, because SKOS can, in more advanced applications, also be used side-by-side with OWL to express and exchange
knowledge about a domain. However, SKOS is not a formal knowledge representation language.

To understand this distinction, consider that the "knowledge" made explicit in a formal ontology is expressed as sets of axioms and facts. A
thesaurus or classification scheme is of a completely different nature, and does not assert any axioms or facts. Rather, a thesaurus or
classification scheme identifies and describes, through natural language and other informal means, a set of distinct "ideas" or "meanings",
which are sometimes conveniently referred to as "concepts". These "concepts" may also be arranged and organized into various structures,
most commonly hierarchies and association networks. These structures, however, do not have any formal semantics, and cannot be reliably
interpreted as either formal axioms or facts about the world. Indeed they were never intended to be so, for they serve only to provide a
convenient and intuitive "map" of some subject domain, which can then be used as an aid to organizing and finding objects, such as
documents, which are relevant to that domain.

To make the "knowledge" embedded in a thesaurus or classification scheme explicit in any formal sense requires that the thesaurus or
classification scheme be re-engineered as a formal ontology. In other words, some person has to do the work of transforming the structure and
intellectual content of a thesaurus or classification scheme into a set of formal axioms and facts. This work of transformation is both
intellectually demanding and time consuming, and therefore costly. Much can be gained from using thesauri etc. "as-is", as informal,
convenient structures for navigation within a subject domain. Using them "as-is" does not require any re-engineering, and is therefore much
less costly.

OWL does, however, provide a powerful data modeling language. We can, therefore, use OWL to construct a data model for representing
thesauri or classification schemes "as-is". This is exactly what SKOS does. Taking this approach, the "concepts" of a thesaurus or classification
scheme are modeled as individuals in the SKOS data model, and the informal descriptions about and links between those "concepts" as given
by the thesaurus or classification scheme are modeled as facts about those individuals, never as class or property axioms. Note that these
"facts" are facts about the thesaurus or classification scheme itself, such as "concept X has preferred label 'Y' and is part of thesaurus Z"; these
are not facts about the way the world is arranged within a particular subject domain, as might be expressed in a formal ontology.

SKOS data are then expressed as RDF triples. For example, the RDF graph below expresses some facts about a thesaurus.

<A> rdf:type skos:Concept ;
 skos:prefLabel "love"@en ;
 skos:altLabel "adoration"@en ;
 skos:broader ;
 skos:inScheme <S> .

 rdf:type skos:Concept ;
 skos:prefLabel "emotion"@en ;
 skos:altLabel "feeling"@en ;
 skos:topConceptOf <S> .

<S> rdf:type skos:ConceptScheme ;
 dc:title "My First Thesaurus" ;
 skos:hasTopConcept .

This point is vital to understanding the formal definition of the SKOS data model and how it may be implemented in software systems. This
point is also vital to more advanced applications of SKOS, especially where SKOS and OWL are used in combination as part of a hybrid
formal/semi-formal design.

From a user's point of view, however, the distinction between a formal knowledge representation system and an informal or semi-formal
knowledge organization system may naturally become blurred. In other words, it may not be relevant to a user that <A> and in the graph
below are individuals (instances of skos:Concept), and <C> and <D> are classes (instances of owl:Class) .

<A> rdf:type skos:Concept ;
 skos:prefLabel "love"@en ;
 skos:broader .

 rdf:type skos:Concept ;
 skos:prefLabel "emotion"@en .

<C> rdf:type owl:Class ;
 rdfs:label "mammals"@en ;
 rdfs:subClassOf <D> .

<D> rdf:type owl:Class ;
 rdfs:label "animals"@en .

An information system that has any awareness of the SKOS data model will, however, need to appreciate the distinction.

1.4. Consistency and Integrity

Under the RDF and OWL Full semantics, the formal meaning (interpretation) of an RDF graph is a truth value [RDF-SEMANTICS]
[OWL-SEMANTICS]. I.e. an RDF graph is interpreted as either true or false.

In general, an RDF graph is said to be inconsistent if it cannot possibly be true. In other words, an RDF graph is inconsistent if it contains a
contradiction.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

5 von 34 06.09.2008 13:12

Using the RDF and RDFS vocabularies alone, it is virtually impossible to make a contradictory statement. When the OWL vocabulary is used as
well, there are many ways to state a contradiction. For example, consider the RDF graph below.

<Dog> rdf:type owl:Class .
<Cat> rdf:type owl:Class .
<Dog> owl:disjointWith <Cat> .
<dogcat> rdf:type <Dog> , <Cat> .

The graph states that <Dog> and <Cat> are both classes, and that they are disjoint, i.e. that they do not have any members in common. This is
contradicted by the statement that <dogcat> has type both <Dog> and <Cat>. There is no OWL Full interpretation which can satisfy this graph,
and therefore this graph is not OWL Full consistent.

When OWL Full is used as a knowledge representation language, the notion of inconsistency is useful because it reveals contradictions within
the axioms and facts that are asserted in an ontology. By resolving these inconsistencies we learn more about a domain of knowledge, and
come to a better model of that domain from which interesting and valid inferences can be drawn.

When OWL Full is used as a data modeling (i.e. schema) language, the notion of inconsistency is again useful, but in a different way. Here we
are not concerned with the logical consistency of human knowledge itself. We are simply interested in formally defining a data model, so that
we can establish with certainty whether or not some given data conform to or "fit" with the given data model. If the data are inconsistent with
respect to the data model, then the data does not "fit".

Here, we are not concerned with whether or not some given data has any correspondence with the "real world", i.e. whether it is true or false in
any absolute sense. We are simply interested in whether or not the data fit the data model, because interoperability within a given class of
applications depends on data conforming to a common data model.

Another way to express this view is via the notion of integrity. Integrity conditions are statements within the formal definition of a data model,
which are used to establish whether or not given data is consistent with respect to the data model.

For example, the statement that <Dog> and <Cat> are disjoint classes can be viewed as an integrity condition on a data model. Given this
condition, the data below are then not (OWL Full) consistent.

<dogcat> rdf:type <Dog> , <Cat> .

The definition of the SKOS data model given in this document contains a limited number of statements that are intended as integrity conditions.
These integrity conditions are included to promote interoperability, by defining the circumstances under which data are not consistent with
respect to the SKOS data model. Tools can then be implemented which "check" whether some or all of these integrity conditions are met for
given data, and therefore whether the data "fit" the SKOS data model.

These integrity conditions are part of the formal definition of the classes and properties of the SKOS data model, however they are presented
separately from other parts of the formal definition because they serve a different purpose. Integrity conditions serve primarily to establish
whether given data are consistent with the SKOS data model. All other statements within the definition of the SKOS data model serve only to
support logical inferences (see also the next sub-section).

Integrity conditions are defined for the SKOS data model in a way that is independent of strategies for their implementation, in so far as that is
possible. This is because there are several different ways in which a procedure to find inconsistencies with the SKOS data model could be
implemented. For example, inconsistencies could be found using an OWL reasoner. Alternatively, some inconsistencies could be found by
searching for specific patterns within the data, or by a hybrid strategy (draw inferences using an RDFS or OWL reasoner, then search for
patterns in the inferred graph).

The integrity conditions on the SKOS data model are fewer than might be expected, especially for those used to working within the "closed
world" of database systems. See also the next sub-section, and the notes in sections 3-11 below.

1.5. Inference, Dependency and the Open-World Assumption

This document defines the SKOS data model as an OWL Full ontology. There are other, alternate ways in which the SKOS data model could
have been defined, for example as an entity-relationship model, or a UML class model. Although OWL Full as a data modeling language
appears intuitively similar in many ways to these other modeling approaches, there is an important fundamental distinction.

RDF and OWL Full are designed for systems in which data may be widely distributed (e.g. the Web). As such a system becomes larger, it
becomes both impractical and virtually impossible to "know" where all of the data in the system is located. Therefore, one cannot generally
assume that data obtained from such a system is "complete". I.e. if some data appears to be "missing", one has to assume, in general, that the
data might exist somewhere else in the system. This assumption, roughly speaking, is known as the "open world" assumption [OWL-GUIDE].

This means in practice that, for a data model defined as an OWL Full ontology, some definitions can have a counter-intuitive meaning. No
conclusions can be drawn from "missing" data, and removing something will never make the remaining data inconsistent.

For example, in Section 8 below, the property skos:semanticRelation is defined to have domain and range skos:Concept. These domain and
range definitions give license to inferences. Consider the graph below.

<A> skos:semanticRelation .

In this case, the graph above (RDFS and OWL Full) entails the following graph.

<A> rdf:type skos:Concept .
 rdf:type skos:Concept .

Thus, we do not need to explicitly state here that <A> and are instances of skos:Concept.

In the SKOS data model, most statements of definition are not integrity conditions, but are statements of logical dependency between different
elements of the data model, which under the open-world assumption give license to a number of simple inferences. For example, in section 7
below, skos:broader and skos:narrower are defined as inverse properties. This statement means that

<A> skos:narrower .

entails

 skos:broader <A> .

Both of these two graphs are, by themselves, consistent with the SKOS data model.

Knowledge organization systems such as thesauri and classification schemes are applied in a wide range of situations, and an individual
knowledge organization system can be used in many different information systems. By defining the SKOS data model as an OWL Full

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

6 von 34 06.09.2008 13:12

ontology, the Semantic Web can then be used as a medium for publishing, exchanging, sharing and "joining up" data involving these
knowledge organization systems. For this reason, for the expressiveness of OWL Full as a data modeling language, and for the possibility of
using thesauri, classification schemes etc. side-by-side with formal ontologies, OWL Full has been used to define the SKOS data model. The
"open world" assumption is therefore a fundamental premise of the SKOS data model, and should be borne in mind when reading this
document.

See also [RDF-PRIMER] and [OWL-GUIDE].

1.6. Design Rationale

As discussed above, the notion of a Knowledge Organisation System encompasses a wide range of artefacts. There is thus a danger of
overcommitment in the SKOS schema, which could preclude the use of SKOS for a particular application. In order to alleviate this, in situations
where there is doubt about the inclusion of a formal constraint (for example, see discussion about skos:hasTopConcept), the constraint has not
been stated formally. In such cases, usage conventions may be suggested, or specialisations of the SKOS vocabulary may be used in order to
enforce constraints (see the SKOS Primer). .

1.7. How to Read this Document

This document formally defines the Simple Knowledge Organization System data model as an OWL Full ontology. The "elements" of the SKOS
data model are OWL classes and properties, and a Uniform Resource Identifier (URI) is provided for each of these classes and properties so
that they may be used unambiguously in the Web. This set of URIs comprises the SKOS vocabulary.

The complete SKOS vocabulary is given in section 2 below. Sections 3 to 10 then formally define the SKOS data model. The definition of the
data model is broken down into a number of sections purely for convenience. Each of these sections 3 to 10 follows a common layout:

Preamble — the main ideas covered in the section are introduced informally.
Vocabulary — URIs from the SKOS vocabulary which are defined in the section are given.
Class & Property Definitions — the logical characteristics and interdependencies between the classes and properties denoted by those
URIs are formally defined.
Integrity Conditions — if there are any integrity conditions, those are given.
Examples — some canonical examples are given, both of data which are consistent with the SKOS data model, and (where appropriate)
of data which are not consistent with the SKOS data model.
Notes — any further notes and discussion are presented.

1.7.1. Formal Definitions

Most of the class and property definitions and integrity conditions stated in this document could be stated as RDF triples, using the RDF, RDFS
and OWL vocabularies. However, a small number cannot, either because of limitations in the expressiveness of OWL Full or lack of standard
URI for some class. To improve the overall readability of this document, rather than mix RDF triples and other notations, the formal definitions
and integrity conditions are stated throughout using prose.

The style of this prose generally follows the style used in [RDFS], and should be clear to a reader with a working knowledge of RDF and OWL.

So, for example, "ex:Person is an instance of owl:Class" means

ex:Person rdf:type owl:Class .

"ex:hasParent and ex:hasMother are each instances of owl:ObjectProperty" means

ex:hasParent rdf:type owl:ObjectProperty .
ex:hasMother rdf:type owl:ObjectProperty .

"ex:hasMother is a sub-property of ex:hasParent" means

ex:hasMother rdfs:subPropertyOf ex:hasParent .

"the rdfs:range of ex:hasParent is the class ex:Person" means

ex:hasParent rdfs:range ex:Person .

etc.

Where some formal aspects of the SKOS data model cannot be stated as RDF triples using either RDF, RDFS or OWL vocabularies, it should
be clear to a reader with a basic understanding of the RDF and OWL semantics how these statements might be translated into formal
conditions on the interpretation of an RDF vocabulary.

For example, from Section 5, "A resource has no more than one value of skos:prefLabel per language" means for any resource x, no two
members of the set { y | <x,y> is in IEXT(I(skos:prefLabel)) } share the same language tag (where I and IEXT are functions as defined in
[RDF-SEMANTICS]).

1.7.2. URI Abbreviations

Full URIs are cited in the text of this document in monospace font, enclosed by angle brackets. For example, <http://example.org
/ns/example>. Relative URIs are cited in the same way, and are relative to the base URI <http://example.org/ns/>. For example, <example>
and <http://example.org/ns/example> are the same URI.

URIs are also cited in the text of this document in an abbreviated form. Abbreviated URIs are cited in monospace font without angle brackets,
and should be expanded using the table of abbreviations below.

Table 1. URI Abbreviations
URI Abbreviation

http://www.w3.org/2008/05/skos# skos:

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf:

http://www.w3.org/2000/01/rdf-schema# rdfs:

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

7 von 34 06.09.2008 13:12

http://www.w3.org/2002/07/owl# owl:

So, for example, skos:Concept is an abbreviation of <http://www.w3.org/2008/05/skos#Concept>.

1.7.3. Examples

Examples of RDF graphs are given using the Terse RDF Triple language (Turtle) [TURTLE]. All examples assume that they are preceded by
the following prefix and URI base directives:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix skos: <http://www.w3.org/2008/05/skos#> .
@base <http://example.org/ns/> .

Therefore, the example given below

Example 1
<MyConcept> rdf:type skos:Concept .

is equivalent to the following Turtle document

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix skos: <http://www.w3.org/2008/05/skos#> .
@base <http://example.org/ns/> .

<MyConcept> rdf:type skos:Concept .

which is equivalent to the following RDF/XML document [RDF-XML]

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:skos="http://www.w3.org/2008/05/skos#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://example.org/ns/">

 <skos:Concept rdf:about="MyConcept"/>

</rdf:RDF>

which is equivalent to the following N-TRIPLES document [NTRIPLES]

<http://example.org/ns/MyConcept> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2008/05/skos#Concept> .

Note the use in Turtle of the ";" and "," characters to abbreviate multiple triples with the same subject or predicate.

1.8. Conformance

This specification does not define a formal notion of conformance.

However, an RDF graph will be inconsistent with the SKOS data model if that graph and the SKOS data model (as defined formally below)
taken together lead to a logical contradiction.

Where URIs are used to identify resources of type skos:Concept, skos:ConceptScheme, skos:Collection or skosxl:Label, this specification
does not require specific behaviour when dereferencing those URIs via the Web [WEBARCH]. It is, however, strongly recommended that
publishers of SKOS data follow the guidelines given in [COOLURIS] and [RECIPES].

2. SKOS Namespace and Vocabulary

The SKOS namespace URI is:

http://www.w3.org/2008/05/skos#

The SKOS vocabulary is a set of URIs, given in the left-hand column in the table below.

Table 1. SKOS Vocabulary
URI Definition

skos:Concept Section 3. The skos:Concept Class

skos:ConceptScheme Section 4. Concept Schemes

skos:inScheme Section 4. Concept Schemes

skos:hasTopConcept Section 4. Concept Schemes

skos:topConceptOf Section 4. Concept Schemes

skos:altLabel Section 5. Lexical Labels

skos:hiddenLabel Section 5. Lexical Labels

skos:prefLabel Section 5. Lexical Labels

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

8 von 34 06.09.2008 13:12

skos:notation Section 6. Notations

skos:changeNote Section 7. Documentation Properties

skos:definition Section 7. Documentation Properties

skos:editorialNote Section 7. Documentation Properties

skos:example Section 7. Documentation Properties

skos:historyNote Section 7. Documentation Properties

skos:note Section 7. Documentation Properties

skos:scopeNote Section 7. Documentation Properties

skos:broader Section 8. Semantic Relations

skos:broaderTransitive Section 8. Semantic Relations

skos:narrower Section 8. Semantic Relations

skos:narrowerTransitive Section 8. Semantic Relations

skos:related Section 8. Semantic Relations

skos:semanticRelation Section 8. Semantic Relations

skos:Collection Section 9. Concept Collections

skos:OrderedCollection Section 9. Concept Collections

skos:member Section 9. Concept Collections

skos:memberList Section 9. Concept Collections

skos:broadMatch Section 10. Mapping Properties

skos:closeMatch Section 10. Mapping Properties

skos:exactMatch Section 10. Mapping Properties

skos:mappingRelation Section 10. Mapping Properties

skos:narrowMatch Section 10. Mapping Properties

skos:relatedMatch Section 10. Mapping Properties

All URIs in the SKOS vocabulary are constructed by appending a local name (e.g. "prefLabel") to the SKOS namespace URI.

See also the SKOS overview in Appendix B and the quick access panel.

At Risk of Change: The SKOS namespace URI may be changed in future versions of this specification. In particular, the namespace URI may
be changed back to <http://www.w3.org/2004/02/skos/core#>. Defining a new namespace URI for SKOS potentially introduces difficulties in
handling legacy data. Retaining the existing namespace may also be problematic given the changes in the semantics of the properties.

3. The skos:Concept Class

3.1. Preamble

The class skos:Concept is the class of SKOS concepts.

A SKOS concept can be viewed as an idea or notion; a unit of thought. However, what constitutes a "unit of thought" is subjective, and this
definition is meant to be suggestive, rather than restrictive.

The notion of a SKOS concept is useful when describing the conceptual or intellectual structure of a knowledge organization system, and when
referring to specific ideas or meanings established within a KOS.

Note that, because SKOS is designed to be a vehicle for representing semi-formal KOS, such as thesauri and classification schemes, a certain
amount of flexibility has been built in to the formal definition of this class.

See the SKOS Primer for more examples of identifying and describing SKOS concepts.

3.2. Vocabulary

skos:Concept

3.3. Class & Property Definitions

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

9 von 34 06.09.2008 13:12

S1 skos:Concept is an instance of owl:Class.

3.4. Examples

The graph below states that <MyConcept> is a SKOS concept (i.e. an instance of skos:Concept).

Example 2 (consistent)
<MyConcept> rdf:type skos:Concept .

3.5. Notes

3.5.1. SKOS Concepts, OWL Classes and OWL Properties

Other than the assertion that skos:Concept is an instance of owl:Class, this specification does not make any additional statement about the
formal relationship between the class of SKOS concepts and the class of OWL classes. The decision not to make any such statement has
been made to allow applications the freedom to explore different design patterns for working with SKOS in combination with OWL.

For example, in the graph below, <MyConcept> is an instance of skos:Concept and an instance of owl:Class.

Example 3 (consistent)
<MyConcept> rdf:type skos:Concept , owl:Class .

This example is consistent with the SKOS data model. However, note that it is not compatible with OWL DL, because the URI <MyConcept> has
been used to denote both a class and an individual [OWL-SEMANTICS]. To work within the OWL DL language, take care not to use the same
URI to denote both an OWL class and a SKOS concept.

Similarly, this specification does not make any statement about the formal relationship between the class of SKOS concepts and the class of
OWL properties.

For example, in the graph below, <MyConcept> is an instance of skos:Concept and an instance of owl:ObjectProperty.

Example 4 (consistent)
<MyConcept> rdf:type skos:Concept , owl:ObjectProperty .

This example is consistent with the SKOS data model. However, it is not compatible with OWL DL, because the URI <MyConcept> has been
used to denote both an object property and an individual [OWL-SEMANTICS].

4. Concept Schemes

4.1. Preamble

A SKOS concept scheme can be viewed as an aggregation of one or more SKOS concepts. Semantic relationships (links) between those
concepts may also be viewed as part of a concept scheme. This definition is, however, meant to be suggestive rather than restrictive, and there
is some flexibility in the formal data model stated below.

The notion of a concept scheme is useful when dealing with data from an unknown source, and when dealing with data that describes two or
more different knowledge organization systems.

See the SKOS Primer for more examples of identifying and describing concept schemes.

4.2. Vocabulary

skos:ConceptScheme

skos:inScheme

skos:hasTopConcept

skos:topConceptOf

4.3. Class & Property Definitions

S2 skos:ConceptScheme is an instance of owl:Class.

S3 skos:inScheme, skos:hasTopConcept and skos:topConceptOf are each instances of owl:ObjectProperty.

S4 The rdfs:range of skos:inScheme is the class skos:ConceptScheme.

S5 The rdfs:domain of skos:hasTopConcept is the class skos:ConceptScheme.

S6 The rdfs:range of skos:hasTopConcept is the class skos:Concept.

S7 skos:topConceptOf is a sub-property of skos:inScheme.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

10 von 34 06.09.2008 13:12

schneid
Sticky Note
Maybe I missed it, but I don't see what the domain is for skos:inScheme. I would expect skos:Concept, but it's neither explicitly stated, nor do I see how it can be inferred. If it's inferred, or if the domain is intended to be unrestricted, something should be said in the "Notes" section below.

S8 skos:topConceptOf is the owl:inverseOf the property skos:hasTopConcept.

At Risk of Change: The property skos:topConceptOf is at risk of change or removal in future versions of this specification.

4.4. Integrity Conditions

S9 skos:ConceptScheme is disjoint with skos:Concept.

4.5. Examples

The graph below describes a concept scheme with two SKOS concepts, one of which is a top-level concept in that scheme.

Example 5 (consistent)
<MyScheme> rdf:type skos:ConceptScheme ;
 skos:hasTopConcept <MyConcept> .

<MyConcept> skos:topConceptOf <MyScheme> .

<AnotherConcept> skos:inScheme <MyScheme> .

4.6. Notes

4.6.1. Closed vs. Open Systems

The notion of an individual SKOS concept scheme corresponds roughly to the notion of an individual thesaurus, classification scheme, subject
heading system or other knowledge organization system.

However, in most current information systems, a thesaurus or classification scheme is treated as a closed system — conceptual units defined
within that system cannot take part in other systems (although they can be mapped to units in other systems).

Although SKOS does take a similar approach, there are no conditions preventing a SKOS concept from taking part in zero, one, or more than
one concept scheme.

So, for example, in the graph below the SKOS concept <MyConcept> takes part in two different concept schemes — this is consistent with the
SKOS data model.

Example 6 (consistent)
<MyScheme> rdf:type skos:ConceptScheme .

<AnotherScheme> rdf:type skos:ConceptScheme ;
 owl:differentFrom <MyScheme> .

<MyConcept> skos:inScheme <MyScheme> , <AnotherScheme> .

This flexibility is desirable because it allows, for example, new concept schemes to be described by linking two or more existing concept
schemes together.

Also, note that there is no way to close the boundary of a concept scheme. So, while it is possible using skos:inScheme to say that SKOS
concepts X, Y and Z take part in concept scheme A, there is no way to say that only X, Y and Z take part in A.

Therefore, while SKOS can be used to describe a concept scheme, SKOS does not provide any mechanism to completely define a concept
scheme.

4.6.2. SKOS Concept Schemes and OWL Ontologies

This specification does not make any statement about the formal relationship between the class of SKOS concept schemes and the class of
OWL ontologies. The decision not to make any such statement has been made to allow different design patterns to be explored for using
SKOS in combination with OWL [OWL-GUIDE].

For example, in the graph below, <MyScheme> is both a concept scheme and an OWL ontology. This is consistent with the SKOS data model.

Example 7 (consistent)
<MyScheme> rdf:type skos:ConceptScheme , owl:Ontology .

<MyConcept> skos:inScheme <MyScheme> .

4.6.3. Top Concepts and Semantic Relations

The property skos:hasTopConcept is, by convention, used to link a concept scheme to the SKOS concept(s) which are topmost in the
hierarchical relations for that scheme. However, there are no integrity conditions enforcing this convention. Therefore, the graph below, whilst
not strictly adhering to the usage convention for skos:hasTopConcept, is nevertheless consistent with the SKOS data model.

Example 8 (consistent)
<MyScheme> skos:hasTopConcept <MyConcept> .
<MyConcept> skos:broader <AnotherConcept> .
<AnotherConcept> skos:inScheme <MyScheme> .

How an application should handle such data is not defined in this specification.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

11 von 34 06.09.2008 13:12

schneid
Sticky Note
Don't say "is /the/ owl:inverseOf ...". In OWL Full, a property p may have two inverses q1 and q2 with q1 owl:differentFrom q2. For q1 and q2, in order to be both inverse of p, it suffices that q1 owl:equivalentProperty q2 holds, i.e. that q1 and q2 only have the same property extension, they don't have to be the same resource. Better say "is owl:inverseOf". Same for S25, S26, S43. Please check yourself whether I have missed some occurrence.

4.6.4. Scheme Containment and Semantic Relations

A link between two SKOS concepts does not entail containment within the same concept scheme. This is illustrated in the example below.

Example 9 (non-entailment)
<A> skos:narrower .
<A> skos:inScheme <MyScheme> .

does not entail

 skos:inScheme <MyScheme> .

See also Section 8 below.

5. Lexical Labels

5.1. Preamble

A lexical label is a string of UNICODE characters, such as "romantic love" or "れんあい", in a given natural language, such as English or
Japanese Hiragana.

The Simple Knowledge Organization System provides some basic vocabulary for associating lexical labels with resources of any type. In
particular, SKOS enables a distinction to be made between the "preferred", "alternate" and "hidden" lexical labels for any given resource.

The "preferred" and "alternate" labels are useful when generating or creating human-readable representations of a knowledge organization
system. These labels provide the strongest clues as to the meaning of a SKOS concept.

The "hidden" labels are useful when a user is interacting with a knowledge organization system via a text-based search function. The user may,
for example, enter mis-spelled words when trying to find a relevant concept. If the mis-spelled query can be matched against a "hidden" label,
the user will be able to find the relevant concept, but the "hidden" label won't otherwise be visible to the user (so further mistakes aren't
encouraged).

Formally, a lexical label is an RDF plain literal [RDF-CONCEPTS]. An RDF plain literal is composed of a lexical form, which is a string of
UNICODE characters, and an optional language tag, which is a string of characters conforming to the syntax defined by [BCP47].

See the SKOS Primer for more examples of labeling SKOS concepts.

5.2. Vocabulary

skos:prefLabel

skos:altLabel

skos:hiddenLabel

5.3. Class & Property Definitions

S10 skos:prefLabel, skos:altLabel and skos:hiddenLabel are each instances of owl:DatatypeProperty.

S11 skos:prefLabel, skos:altLabel and skos:hiddenLabel are each subproperties of rdfs:label.

S12 The rdfs:range of each of skos:prefLabel, skos:altLabel and skos:hiddenLabel is the class of RDF plain literals.

5.4. Integrity Conditions

S13 skos:prefLabel, skos:altLabel and skos:hiddenLabel are pairwise disjoint properties.

S14 A resource has no more than one value of skos:prefLabel per language.

N.B. the conditions above assume that each distinct language tag allowed by [BCP47] denotes a different "language". E.g. "en", "en-GB" and
"en-US" denote three different languages (English, British English and US English respectively). E.g. "ja", "ja-Hani", "ja-Hira", "ja-Kana" and
"ja-Latn" denote five different languages (Japanese, Japanese Kanji, Japanese Hiragana, Japanese Katakana and Japanese Rōmaji
respectively).

5.5. Examples

The following graph is consistent, and illustrates the provision of lexical labels in two different languages (French and English).

Example 10 (consistent)
<MyResource>
 skos:prefLabel "animals"@en ;
 skos:altLabel "fauna"@en ;
 skos:hiddenLabel "aminals"@en ;
 skos:prefLabel "animaux"@fr ;
 skos:altLabel "faune"@fr .

The following graph is consistent, and illustrates the provision of lexical labels in four different languages (Japanese Kanji, Japanese
Hiragana, Japanese Katakana and Japanese Rōmaji).

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

12 von 34 06.09.2008 13:12

schneid
Sticky Note
What is the rational for making SKOS labeling properties sub properties of rdfs:label (besides the common name)? Note that rdfs:Label is an owl:AnnotationProperty in OWL. While in OWL Full, annotation properties can have sub properties, it looks at least a little odd (though formally fine) to have a data property be a sub property of an annotation property. If no strong reasons talk against, I suggest to /not/ have sub properties of rdfs:label.

schneid
Sticky Note
I'm not clear how to express S12 in OWL, should this be intended. One can use rdfs:Literal as the range, which would also contain all typed literals. One can use xsd:string, which has at least a value space equivalent to the set of plain literals, but this would require to have labels of the form "Hello World!"^^xsd:string.

Note: Currently, there is some ongoing work (by the OWL and the RIF working groups) on specifying a new data type "rdf:text", which denotes the set of all internationalized plain tags. But, AFAIU, this datatype will /not/ contain those plain literals having /no/ language tag. Here is some text, which is currently under development (so be careful, it's nothing official): <http://www.w3.org/2007/OWL/wiki/InternationalizedStringSpec>.

schneid
Sticky Note
Property disjointness is not expressible in OWL Full. This should be discussed somewhere in the document, I think. Property disjointness is, however, planned to be expressible in OWL 2.

schneid
Sticky Note
Such a kind of functional property characteristics distinguished by language tags cannot be expressed in OWL Full. I suggest to say this somewhere in the document.

Again, I want to hint you to rdf:text, in combination with OWL 2, which is going to allow for specifying data ranges consisting of all plain literals having a given language tag. A somewhat more general feature was the resolution of issue-71 of the OWL WG, accepting this proposal: <http://lists.w3.org/Archives/Public/public-owl-wg/2008Sep/0053.html>. But, AFAICS, one would need to build a <=1-qualified cardinality restriction (new feature in OWL 2) on each such language-data range in order to simulate a functional property of the kind above. So this is probably all a bit academic.

Example 11 (consistent)
<AnotherResource>
 skos:prefLabel "東"@ja-Hani ;
 skos:prefLabel "ひがし"@ja-Hira ;
 skos:altLabel "あずま"@ja-Hira ;
 skos:prefLabel "ヒガシ"@ja-Kana ;
 skos:altLabel "アズマ"@ja-Kana ;
 skos:prefLabel "higashi"@ja-Latn ;
 skos:altLabel "azuma"@ja-Latn .

The following graph is not consistent with the SKOS data model, because two different preferred lexical labels have been given for the same
language.

Example 12 (not consistent)
<Love> skos:prefLabel "love"@en ; skos:prefLabel "adoration"@en .

The following graph is not consistent with the SKOS data model, because there is a "clash" between the preferred and alternate lexical labels.

Example 13 (not consistent)
<Love> skos:prefLabel "love"@en ; skos:altLabel "love"@en .

The following graph is not consistent with the SKOS data model, because there is a "clash" between alternate and hidden lexical labels.

Example 14 (not consistent)
<Love> skos:altLabel "love"@en ; skos:hiddenLabel "love"@en .

The following graph is not consistent with the SKOS data model, because there is a "clash" between preferred and hidden lexical labels.

Example 15 (not consistent)
<Love> skos:prefLabel "love"@en ; skos:hiddenLabel "love"@en .

5.6. Notes

5.6.1. Domain of SKOS Lexical Labeling Properties

Note that no domain is stated for skos:prefLabel, skos:altLabel and skos:hiddenLabel. Thus, the effective domain of these properties is the
class of all resources (rdfs:Resource).

Therefore, using the properties skos:prefLabel, skos:altLabel and skos:hiddenLabel to label any type of resource is consistent with the
SKOS data model.

For example, in the graph below, skos:prefLabel, skos:altLabel and skos:hiddenLabel have been used to label a resource of type owl:Class
— this is consistent with the SKOS data model.

Example 16 (consistent)
<MyClass> rdf:type owl:Class ;
 skos:prefLabel "animals"@en ;
 skos:altLabel "fauna"@en ;
 skos:hiddenLabel "aminals"@en ;
 skos:prefLabel "animaux"@fr ;
 skos:altLabel "faune"@fr .

This example is, however, incompatible with OWL DL, because a datatype property has been used to make assertions about a class
[OWL-SEMANTICS].

5.6.2. Range of SKOS Lexical Labeling Properties

Note that the range of skos:prefLabel, skos:altLabel and skos:hiddenLabel is the class of RDF plain literals [RDF-CONCEPTS].

By convention, RDF plain literals are always used in the object position of a triple, where the predicate is one of skos:prefLabel, skos:altLabel
or skos:hiddenLabel. However, there is nothing in the RDF or OWL Full semantics which prevents the use of a URI or a blank node to denote
an RDF plain literal. Therefore, although the graph below does not adhere to the usage convention stated above, it is nevertheless consistent
with the SKOS data model.

Example 17 (consistent)
<Love> skos:prefLabel <love> .

5.6.3. Defining Label Relations

Some applications require additional functionality relating to labels, for example allowing the description of those labels or the definition of
additional relations between the labels (such as acronyms). This can be achieved through the identification of labels using URIs. The SKOS
eXtension for Labels defined in Appendix A provides support for this.

5.6.4. Alternates Without Preferred

In the graph below, a resource has two alternate lexical labels, but no preferred lexical label. This is consistent with the SKOS data model, and
there are no additional entailments which follow from the semantics. However, note that many applications will require a preferred lexical label
in order to generate an optimum human-readable display.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

13 von 34 06.09.2008 13:12

schneid
Sticky Note
To stress this a bit: This is already incompatible with OWL DL, because skos:prefLabel, etc., are sub properties of the owl:AnnotationProperty rdfs:label. There must not be sub property axioms on annotation properties in OWL DL.

Example 18 (consistent)
<Love> skos:altLabel "adoration"@en , "desire"@en .

5.6.5. Definition of a "Language"

Note how "language" has been defined for the conditions above. Each different language tag permissible by [BCP47] is taken to denote a
different "language". Therefore the graph below is consistent with the SKOS data model, because "en", "en-US" and "en-GB" are taken to
denote different languages.

Example 19 (consistent)
<Colour> skos:prefLabel "color"@en , "color"@en-US , "colour"@en-GB .

In the graph below, there is no "clash" between the lexical labeling properties, again because "en" and "en-GB" are taken to denote different
languages, and therefore the graph is consistent.

Example 20 (consistent)
<Love> skos:prefLabel "love"@en ; skos:altLabel "love"@en-GB .

6. Notations

6.1. Preamble

A notation is a string of characters such as "T58.5" or "303.4833" used to uniquely identify a concept within the scope of a given concept
scheme.

A notation is different from a lexical label in that a notation is not normally recognizable as a word or sequence of words in any natural
language.

This section defines the skos:notation property. This property is used to assign a notation to a concept as a typed literal [RDF-CONCEPTS].

6.2. Vocabulary

skos:notation

6.3. Class & Property Definitions

S15 skos:notation is an instance of owl:DatatypeProperty.

6.4. Examples

The example below illustrates a resource <http://example.com/ns/MyConcept> with a notation whose lexical form is the UNICODE string
"303.4833" and whose datatype is denoted by the URI <http://example.com/ns/MyNotationDatatype>.

Example 21 (consistent)
<MyConcept> skos:notation "303.4833"^^<MyNotationDatatype> .

6.5. Notes

6.5.1. Notations, Typed Literals and Datatypes

A typed literal is a UNICODE string combined with a datatype URI [RDF-CONCEPTS].

Typed literals are commonly used to denote values such as integers, floating point numbers and dates, and there are a number of datatypes
pre-defined by the XML Schema specification [XML-SCHEMA] such as xs:integer, xs:float and xs:date.

For other situations, new datatypes can be defined, and these are commonly called "user-defined datatypes" [SWBP-DATATYPES].

By convention, the property skos:notation is only used with a typed literal in the object position of the triple, where the datatype URI denotes a
user-defined datatype corresponding to a particular system of notations or classification codes.

For many situations it may be sufficient to simply coin a datatype URI for a particular notation system, and define the datatype informally via a
document that describes how the notations are constructed and/or which lexical forms are allowed. Note, however, that it is also possible to
define at least the lexical space of a datatype more formally via the XML Schema language, see [SWBP-DATATYPES] section 2.

6.5.2. Multiple Notations

There are no constraints on the cardinality of the skos:notation property. A concept may have zero, 1 or more notations.

Where a concept has more than 1 notation, these may be from the same or different notation systems (i.e. datatypes). However, it is not
common practice to assign more than one notation from the same notation system (i.e. with the same datatype URI).

6.5.3. Unique Notations in Concept Schemes

By convention, no two concepts in the same concept scheme are given the same notation. If they were, it would not be possible to use the

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

14 von 34 06.09.2008 13:12

schneid
Sticky Note
This comment is certainly too late, now that the document is in Last Call. But let me at least state that it confuses me to have both skos:note and skos:notation, and they have such a different meaning! Also, I never heard somebody calling the thing discussed here a "notation". I call it a "key", and "skos:key" sounds pretty good, IMHO.

schneid
Sticky Note
I don't see a discussion why there is no rdfs:domain given for notations. Are notations intended to be used with every resource, or only with skos:ConceptS? In any case, something should be said.

notation to uniquely refer to a concept (i.e. the notation would become ambiguous).

However, this usage convention is not part of the formal SKOS data model. I.e. there are no integrity conditions on the use of skos:notation.

6.5.4. Notations and Preferred Labels

There are no constraints on the combined use of skos:notation and skos:prefLabel. In the example below, the same string is given both as
the lexical form of a notation and as a the lexical form of a preferred label.

Example 22 (consistent)
<Potassium>
 skos:prefLabel "K"@en ;
 skos:notation "K"^^<ChemicalSymbolNotation> .

Typed literals consist of a string of characters and a datatype URI. By convention, skos:notation is only used with typed literals in the object
position of the triple.

Plain literals consist of a string of characters and a language tag. By convention, skos:prefLabel (and skos:altLabel and skos:hiddenLabel)
are only used with plain literals in the object position of the triple.

There is no such thing as an RDF literal with both a language tag and a datatype URI. I.e. a typed literal does not have a language tag, and a
plain literal does not have a datatype URI.

Usually a notation system does not have any correspondence with a natural language — it is language-independent (and hence typed literals
are an appropriate representation). However, in some cases a system of notation might be associated with a particular language and/or script.
One possible strategy in this situation is to use the private use language sub-tags [BCP47] with skos:prefLabel, as illustrated in the example
below — this is consistent with the SKOS data model. An alternative strategy is to define one or more sub-properties of skos:prefLabel and/or
skos:altLabel.

Example 23 (consistent)
<Potassium>
 skos:prefLabel "Potassium"@en ;
 skos:prefLabel "K"@en-x-chemicalsymbol ;
 skos:notation "K"^^<ChemicalSymbolNotation> .

7. Documentation Properties (Note Properties)

7.1. Preamble

Notes are used to provide information relating to SKOS concepts. There is no restriction on the nature of this information. For example, it could
be plain text, hypertext, or an image; it could be a definition, information about the scope of a concept, editorial information, or any other type of
information.

There are seven properties in SKOS for associating notes with concepts, defined formally in this section. For more information on the
recommended usage of each of the SKOS documentation properties, see the SKOS Primer.

These seven properties are not intended to cover every situation, but rather to be useful in some of the most common situations, and to provide
a set of extension points for defining more specific types of note. For more information on recommended best practice for extending SKOS, see
the SKOS Primer.

Three different usage patterns are recommended in the SKOS Primer for the SKOS documentation properties — "documentation as an RDF
literal", "documentation as a related resource description" and "documentation as a document reference". The formal semantics stated in this
section are intended to accommodate all three design patterns.

7.2. Vocabulary

skos:note

skos:changeNote

skos:definition

skos:editorialNote

skos:example

skos:historyNote

skos:scopeNote

7.3. Class & Property Definitions

S16 skos:note, skos:changeNote, skos:definition, skos:editorialNote, skos:example, skos:historyNote and skos:scopeNote are each
instances of owl:ObjectProperty.

S17 skos:changeNote, skos:definition, skos:editorialNote, skos:example, skos:historyNote and skos:scopeNote are each
sub-properties of skos:note.

7.4. Examples

The graph below gives an example of the "documentation as an RDF literal" pattern.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

15 von 34 06.09.2008 13:12

Example 24 (consistent)
<MyResource> skos:note "this is a note"@en .

The graph below gives an example of the "documentation as a related resource description" pattern.

Example 25 (consistent)
<MyResource> skos:note [rdf:value "this is a note"@en] .

The graph below gives an example of the "documentation as a document reference" pattern.

Example 26 (consistent)
<MyResource> skos:note <MyNote> .

7.5. Notes

7.5.1. Domain of the SKOS Documentation Properties

Note that no domain is stated for the SKOS documentation properties. Thus, the effective domain for these properties is the class of all
resources (rdfs:Resource). Therefore, using the SKOS documentation properties to provide information on any type of resource is consistent
with the SKOS data model.

For example, in the graph below, skos:definition has been used to provide a plain text definition for a resource of type owl:Class — this is
consistent with the SKOS data model.

Example 27 (consistent)
<Protein> rdf:type owl:Class ;
 skos:definition """A physical entity consisting of a sequence of amino-acids; a protein monomer; a single polypeptide
chain. An example is the EGFR protein."""@en .

This example is, however, incompatible with OWL DL, because an object property has been used to make an assertion about a class
[OWL-SEMANTICS].

7.5.2. Type & Range of the SKOS Documentation Properties

Note that the basis for the SKOS data model is the RDF-compatible model-theoretic semantics for OWL Full [OWL-SEMANTICS]. Under the
OWL Full semantics, the class of OWL datatype properties is a sub-class of the class of OWL object properties [OWL-REFERENCE].
Therefore, stating that the SKOS documentation properties are all instances of owl:ObjectProperty is the most general statement that can be
made, and is consistent with all three usage patterns described in the SKOS Primer.

Note also that no range is stated for the SKOS documentation properties, and thus the range of these properties is effectively the class of all
resources (rdfs:Resource). Under the RDF and OWL Full semantics, everything is a resource, including RDF plain literals.

8. Semantic Relations

8.1. Preamble

SKOS semantic relations are links between SKOS concepts, where the link is inherent in the meaning of the linked concepts.

The Simple Knowledge Organization System distinguishes between two basic categories of semantic relation: hierarchical and associative. A
hierarchical link between two concepts indicates that one is in some way more general ("broader") than the other ("narrower"). An associative
link between two concepts indicates that the two are inherently "related", but that one is not in any way more general than the other.

The properties skos:broader and skos:narrower are used to assert a direct hierarchical link between two SKOS concepts. A triple <A>
skos:broader asserts that , the object of the triple, is a broader concept than <A>, the subject of the triple. Similarly, a triple <C>
skos:narrower <D> asserts that <D>, the object of the triple, is a narrower concept than <C>, the subject of the triple.

By convention, skos:broader and skos:narrower are only used to assert a direct (i.e. immediate) hierarchical link between two SKOS
concepts. This provides applications with a convenient and reliable way to access the direct broader and narrower links for any given concept.
Note that, to support this usage convention, the properties skos:broader and skos:narrower are not declared as transitive properties.

Some applications need to make use of both direct and indirect hierarchical links between concepts, for instance to improve search recall
through query expansion. For this purpose, the properties skos:broaderTransitive and skos:narrowerTransitive are provided. A triple <A>
skos:broaderTransitive represents a direct or indirect hierarchical link, where is a broader "ancestor" of <A>. Similarly a triple <C>
skos:narrowerTransitive <D> represents a direct or indirect hierarchical link, where <D> is a narrower "descendant" of <C>.

By convention, the properties skos:broaderTransitive and skos:narrowerTransitive are not used to make assertions. Rather, these
properties are used to infer the transitive closure of the hierarchical relation, which can then be used to access direct or indirect hierarchical
links between concepts.

The property skos:related is used to assert an associative link between two SKOS concepts.

For more examples of stating hierarchical and associative links, see the SKOS Primer.

8.2. Vocabulary

skos:semanticRelation

skos:broader

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

16 von 34 06.09.2008 13:12

skos:narrower

skos:related

skos:broaderTransitive

skos:narrowerTransitive

8.3. Class & Property Definitions

S18 skos:semanticRelation, skos:broader, skos:narrower, skos:related, skos:broaderTransitive and skos:narrowerTransitive are
each instances of owl:ObjectProperty.

S19 The rdfs:domain of skos:semanticRelation is the class skos:Concept.

S20 The rdfs:range of skos:semanticRelation is the class skos:Concept.

S21 skos:broaderTransitive, skos:narrowerTransitive and skos:related are each sub-properties of skos:semanticRelation.

S22 skos:broader is a sub-property of skos:broaderTransitive, and skos:narrower is a sub-property of skos:narrowerTransitive.

S23 skos:related is an instance of owl:SymmetricProperty.

S24 skos:broaderTransitive and skos:narrowerTransitive are each instances of owl:TransitiveProperty.

S25 skos:narrower is the owl:inverseOf the property skos:broader.

S26 skos:narrowerTransitive is the owl:inverseOf the property skos:broaderTransitive.

8.4. Integrity Conditions

S27 skos:related is disjoint with the property skos:broaderTransitive.

Note that as skos:related is a symmetric relation, and skos:broaderTransitive and skos:narrowerTransitive are inverses, skos:related can
be inferred to be disjoint with skos:narrowerTransitive.

8.5. Examples

The graph below asserts a direct hierarchical link between <A> and (where is broader than <A>), and an associative link between <A>
and <C>, and is consistent with the SKOS data model.

Example 28 (consistent)
<A> skos:broader ; skos:related <C> .

The graph below is not consistent with the SKOS data model, because there is a "clash" between associative links and hierarchical links.

Example 29 (not consistent)
<A> skos:broader ; skos:related .

The graph below is not consistent with the SKOS data model, again because there is a "clash" between associative links and hierarchical
links.

Example 30 (not consistent)
<A> skos:broader ; skos:related <C> .
 skos:broader <C> .

In the example above, the "clash" is not immediately obvious. The "clash" becomes apparent when inferences are drawn, based on the class
and property definitions above, giving the following graph.

Example 31 (not consistent)
<A> skos:broaderTransitive <C> ; skos:related <C> .

The graph below is not consistent with the SKOS data model, again because there is a "clash" between associative links and hierarchical
links, which can be inferred from the class and property definitions given above.

Example 32 (not consistent)
<A> skos:narrower ; skos:related <C> .
 skos:narrower <C> .

8.6. Notes

8.6.1. Sub-Property Relationships

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

17 von 34 06.09.2008 13:12

schneid
Sticky Note
Again, property disjointness is expressible in OWL 1. Should be discussed in the document.

schneid
Sticky Note
Example 32 is structurally equivalent to Example 30, and so does not provide interesting new information.

The whole document contains several such cases, where two or even more very similar examples are given. If you haven't done so already, you might consider whether this is good practice, and perhaps decide to drop all those "almost-duplicates".

The diagram below illustrates informally the sub-property relationships between the SKOS semantic relation properties.

skos:semanticRelation
 |
 +— skos:related
 |
 +— skos:broaderTransitive
 | |
 | +— skos:broader
 |
 +— skos:narrowerTransitive
 |
 +— skos:narrower

8.6.2. Domain and Range of SKOS Semantic Relation Properties

Note that the domain and range of skos:semanticRelation is the class skos:Concept. Because skos:broader, skos:narrower and skos:related
are each sub-properties of skos:semanticRelation, the graph in example 28 above entails that <A>, and <C> are each instances of
skos:Concept.

8.6.3. Symmetry of skos:related

skos:related is a symmetric property. The example below illustrates an entailment which follows from this condition.

Example 33 (entailment)
<A> skos:related .

entails

 skos:related <A> .

Note that, although skos:related is a symmetric property, this condition does not place any restrictions on sub-properties of skos:related. I.e.
sub-properties of skos:related could be symmetric, not symmetric or antisymmetric, and still be consistent with the SKOS data model.

To illustrate this point, in the example below, two new properties which are not symmetric are declared as sub-properties of skos:related. The
example, which is consistent with the SKOS data model, also shows some of the entailments which follow.

Example 34 (entailment)
<cause> rdf:type owl:ObjectProperty ;
 rdfs:subPropertyOf skos:related .

<effect> rdf:type owl:ObjectProperty ;
 rdfs:subPropertyOf skos:related ;
 owl:inverseOf <cause> .

<A> <cause> .

entails

<A> skos:related .

 <effect> <A> ; skos:related <A> .

See also the SKOS Primer for best practice recommendations on extending SKOS.

8.6.4. Transitivity of skos:related

Note that skos:related is not a transitive property. Therefore, the SKOS data model does not support an entailment as illustrated in the
example below.

Example 35 (non-entailment)
<A> skos:related .
 skos:related <C> .

does not entail

<A> skos:related <C> .

8.6.5. Reflexivity of skos:related

Note that this specification does not state that skos:related is a reflexive property, neither does it state that skos:related is an irreflexive
property.

Because skos:related is not defined as an irreflexive property, the graph below is consistent with the SKOS data model.

Example 36 (consistent)
<A> skos:related <A> .

However, for many applications that use knowledge organization systems, statements of the form X skos:related X are a potential problem.
Where this is the case, an application may wish to search for such statements prior to processing SKOS data, although how an application
should handle such statements is not defined in this specification and may vary between applications.

8.6.6. Transitivity of skos:broader

Note that skos:broader is not a transitive property. Similarly, skos:narrower is not a transitive property. Therefore, the SKOS data model does
not support an entailment as illustrated in the example below.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

18 von 34 06.09.2008 13:12

schneid
Sticky Note
I find this (and some of the following) headlines misleading: The title is "Transitivity of [some property]", and the section is then actually about /not/ having transitivity. Consider restating the title(s).

Example 37 (non-entailment)
<A> skos:broader .
 skos:broader <C> .

does not entail

<A> skos:broader <C> .

However, skos:broader is a sub-property of skos:broaderTransitive, which is a transitive property. Similarly, skos:narrower is a sub-property
of skos:narrowerTransitive, which is a transitive property. Therefore the SKOS data model does support the entailments illustrated below.

Example 38 (entailment)
<A> skos:broader .
 skos:broader <C> .

entails

<A> skos:broaderTransitive .
 skos:broaderTransitive <C> .
<A> skos:broaderTransitive <C> .

Note especially that, by convention, skos:broader and skos:narrower are only used to assert immediate (i.e. direct) hierarchical links between
two SKOS concepts. By convention, skos:broaderTransitive and skos:narrowerTransitive are not used to make assertions, but are instead
used only to draw inferences.

This pattern allows the information about direct (i.e. immediate) hierarchical links to be preserved, which is necessary for many tasks (e.g.
building various types of visual representation of a knowledge organization system), whilst also providing a mechanism for conveniently
querying the transitive closure of those hierarchical links (which will include both direct and indirect links), which is useful in other situations
(e.g. query expansion algorithms).

Note also that a sub-property of a transitive property is not necessarily transitive.

See also the note on alternate paths below.

8.6.7. Reflexivity of skos:broader

Note that this specification makes no statements regarding the reflexive characteristics of the skos:broader relationship. It does not state that
skos:broader is a reflexive property, neither does it state that skos:broader is an irreflexive property. Thus for any graph and resource <A>, the
triple:

Example 39 (consistent)
<A> skos:broader <A> .

may or may not be present. This conservative position allows SKOS to be used to model both KOS where the interpretation of skos:broader is
reflexive (e.g. a direct translation of an inferred OWL sub-class hierarchy), or KOS where skos:broader could be considered irreflexive (as
would be appropriate for most thesauri or classification schemes).

Similarly, there are no assertions made as to the reflexivity or irreflexivity of skos:narrower.

However, for many applications that use knowledge organization systems, statements of the form X skos:broader X or Y skos:narrower Y
represent a potential problem. Where this is the case, an application may wish to search for such statements prior to processing SKOS data,
although how an application should handle such statements is not defined in this specification and may vary between applications.

8.6.8. Cycles in the Hierarchical Relation (Reflexivity of skos:broaderTransitive)

In the graph below, a cycle has been stated in the hierarchical relation. Note that this graph is consistent with the SKOS data model. I.e. there
is no condition requiring that skos:broaderTransitive be irreflexive.

Example 40 (consistent)
<A> skos:broader .
 skos:broader <A> .

However, for many applications where knowledge organization systems are used, a cycle in the hierarchical relation represents a potential
problem. For these applications, computing the transitive closure of skos:broaderTransitive then looking for statements of the form X
skos:broaderTransitive X is a convenient strategy for finding cycles in the hierarchical relation. How an application should handle such
statements is not defined in this specification and may vary between applications.

8.6.9. Alternate Paths in the Hierarchical Relation

In the graph below, there are two alternate paths from A to C in the hierarchical relation.

Example 41 (consistent)
<A> skos:broader , <C> .
 skos:broader <C> .

In the graph below, there are two alternate paths from A to D in the hierarchical relation.

Example 42 (consistent)
<A> skos:broader , <C> .
 skos:broader <D> .
<C> skos:broader <D> .

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

19 von 34 06.09.2008 13:12

This is a pattern which arises naturally in "poly-hierarchical" knowledge organization systems.

Both of these graphs are consistent with the SKOS data model. I.e. there is no condition requiring that there be only one path between any
two nodes in the hierarchical relation.

8.6.10. Disjointness of skos:related and skos:broaderTransitive

This specification treats the hierarchical and associative relations as fundamentally distinct in nature. Therefore a "clash" between hierarchical
and associative links is not consistent with the SKOS data model. The examples above illustrate some situations in which a "clash" is seen to
arise.

This position follows the usual definitions given to hierarchical and associative relations in thesaurus standards [ISO2788] [BS8723-2], and
supports common practice in many existing knowledge organization systems.

Note that this specification takes the stronger position that, not only are the immediate (i.e. direct) hierarchical and associative links disjoint, but
associative links are also disjoint with indirect hierarchical links. This is captured formally in the integrity condition asserting that skos:related
and skos:broaderTransitive are disjoint properties.

9. Concept Collections

9.1. Preamble

SKOS concept collections are labeled and/or ordered groups of SKOS concepts.

Collections are useful where a group of concepts shares something in common, and it is convenient to group them under a common label, or
where some concepts can be placed in a meaningful order.

9.2. Vocabulary

skos:Collection

skos:OrderedCollection

skos:member

skos:memberList

9.3. Class & Property Definitions

S28 skos:Collection and skos:OrderedCollection are each instances of owl:Class.

S29 skos:OrderedCollection is a sub-class of skos:Collection.

S30 skos:member and skos:memberList are each instances of owl:ObjectProperty.

S31 The rdfs:domain of skos:member is the class skos:Collection.

S32 The rdfs:domain of skos:memberList is the class skos:OrderedCollection.

S33 The rdfs:range of skos:memberList is the class rdf:List.

S34 skos:memberList is an instance of owl:FunctionalProperty.

S35 For any resource, every item in the list given as the value of the skos:memberList property is also a value of the skos:member
property.

9.4. Integrity Conditions

S36 skos:Collection is disjoint with each of skos:Concept and skos:ConceptScheme.

9.5. Examples

The graph below illustrates a SKOS collection with 3 members.

Example 43 (consistent)
<MyCollection> rdf:type skos:Collection ;
 skos:member <X> , <Y> , <Z> .

The graph below illustrates an ordered SKOS collection with 3 members. Note the use of the Turtle syntax (...), representing an RDF
Collection.

Example 44 (consistent)
<MyOrderedCollection> rdf:type skos:OrderedCollection ;
 skos:memberList (<X> <Y> <Z>) .

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

20 von 34 06.09.2008 13:12

9.6. Notes

9.6.1. Inferring Collections from Ordered Collections

Statement S34 states the logical relationship between the skos:memberList and skos:member properties. This relationship means that a
collection can be inferred from an ordered collection. This is illustrated in the example below.

Example 45 (entailment)
<MyOrderedCollection> rdf:type skos:OrderedCollection ;
 skos:memberList (<X> <Y> <Z>) .

entails

<MyOrderedCollection> rdf:type skos:Collection ;
 skos:member <X> , <Y> , <Z> .

Note that SKOS does not provide any way to explicitly state that a collection is not ordered.

9.6.2. skos:memberList Integrity

Note that skos:memberList is a functional property, i.e. it does not have more than one value. This is intended to capture within the SKOS data
model that it doesn't make sense for an ordered collection to have more than one member list. Unfortunately, there is no way to use this
condition as an integrity condition without explicitly stating that two lists are different objects. In other words, although the graph below is
consistent with the SKOS data model, it entails nonsense (a list with two first elements and a forked tail).

Example 46 (entailment)
<OrderedCollectionResource>
 skos:memberList (<A>) , (<X> <Y>) .

entails

<OrderedCollectionResource>
 skos:memberList [rdf:first <A> , <X> ; rdf:rest [rdf:first ; rdf:rest rdf:nil] , [rdf:first <Y> ; rdf:rest rdf:nil
] .

9.6.3. Nested Collections

In the example below, a collection is nested within another collection.

Example 47 (consistent)
<MyCollection> rdf:type skos:Collection ;
 skos:member <A> , , <MyNestedCollection> .

<MyNestedCollection> rdf:type skos:Collection ;
 skos:member <X> , <Y> , <Z> .

This example is consistent with the SKOS data model.

9.6.4. SKOS concepts, Concept Collections and Semantic Relations

In the SKOS data model, skos:Concept and skos:Collection are disjoint classes. The domain and range of the SKOS semantic relation
properties is skos:Concept. Therefore, if any of the SKOS semantic relation properties (e.g. skos:narrower) are used to link to or from a
collection, the graph will not be consistent with the SKOS data model.

This is illustrated in the example below, which is not consistent with the SKOS data model.

Example 48 (not consistent)
<A> skos:narrower .
 rdf:type skos:Collection .

Similarly, the graph below is not consistent with the SKOS data model.

Example 49 (not consistent)
<A> skos:broader .
 rdf:type skos:Collection .

Similarly, the graph below is not consistent with the SKOS data model.

Example 50 (not consistent)
<A> skos:related .
 rdf:type skos:Collection .

However, the graph below is consistent with the SKOS data model.

Example 51 (consistent)
<A> skos:narrower , <C> , <D> .

<ResourceCollection> rdfs:label "Resource Collection"@en ;
 skos:member , <C> , <D> .

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

21 von 34 06.09.2008 13:12

schneid
Sticky Note
You should also say /why/ the example is consistent: Because the range of skos:member is /not/ restricted. In particular, the range is /not/ skos:Concept, and thus allows for collections (which would otherwise not work, since collections and concepts are disjoint).

This means that, for thesauri and other knowledge organization systems where "node labels" are used within the systematic display for that
thesaurus, the appropriate SKOS representation requires careful consideration. Furthermore, where "node labels" are used in the systematic
display, it may not always be possible to fully reconstruct the systematic display from a SKOS representation alone. Fully representing all of the
information represented in a systematic display of a thesaurus or other knowledge organization system, including details of layout and
presentation, is beyond the scope of SKOS.

10. Mapping Properties

10.1. Preamble

The SKOS mapping properties are skos:closeMatch, skos:exactMatch, skos:broadMatch, skos:narrowMatch and skos:relatedMatch. These
properties are used to state mapping (alignment) links between SKOS concepts in different concept schemes, where the links are inherent in
the meaning of the linked concepts.

The properties skos:broadMatch and skos:narrowMatch are used to state a hierarchical mapping link between two concepts.

The property skos:relatedMatch is used to state an associative mapping link between two concepts.

The property skos:closeMatch is used to link two concepts that are sufficiently similar that they can be used interchangeably in some
information retrieval applications. In order to avoid the possibility of "compound errors" when combining mappings across more than two
concept schemes, skos:closeMatch is not declared to be a transitive property.

The property skos:exactMatch is used to link two concepts, indicating a high degree of confidence that the concepts can be used
interchangeably across a wide range of information retrieval applications. skos:exactMatch is a transitive property, and is a sub-property of
skos:closeMatch.

10.2. Vocabulary

skos:mappingRelation

skos:closeMatch

skos:exactMatch

skos:broadMatch

skos:narrowMatch

skos:relatedMatch

10.3. Class & Property Definitions

S37 skos:mappingRelation, skos:closeMatch, skos:exactMatch, skos:broadMatch, skos:narrowMatch and skos:relatedMatch are each
instances of owl:ObjectProperty.

S38 The rdfs:domain of skos:mappingRelation is the class skos:Concept.

S39 The rdfs:range of skos:mappingRelation is the class skos:Concept

S40 skos:closeMatch, skos:broadMatch, skos:narrowMatch and skos:relatedMatch are each sub-properties of skos:mappingRelation.

S41 skos:broadMatch is a sub-property of skos:broader, skos:narrowMatch is a sub-property of skos:narrower, and skos:relatedMatch is
a sub-property of skos:related.

S42 skos:exactMatch is a sub-property of skos:closeMatch.

S43 skos:narrowMatch is the owl:inverseOf the property skos:broadMatch.

S44 skos:relatedMatch is an instance of owl:SymmetricProperty.

S45 skos:closeMatch and skos:exactMatch are each instances of owl:SymmetricProperty.

S46 skos:exactMatch is an instance of owl:TransitiveProperty.

10.4. Integrity Conditions

S47 skos:exactMatch is disjoint with each of the properties skos:broadMatch and skos:relatedMatch.

Note that as skos:exactMatch is a symmetric relation, and skos:broadMatch and skos:narrowMatch are inverses, skos:exactMatch can be
inferred to be disjoint with skos:narrowMatch.

10.5. Examples

The graph below asserts an exact equivalence mapping link between <A> and .

Example 52 (consistent)
<A> skos:exactMatch .

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

22 von 34 06.09.2008 13:12

schneid
Sticky Note
Is there a reason why S44 and S45 aren't integrated into a single entry?

The graph below asserts a close equivalence mapping link between <A> and .

Example 53 (consistent)
<A> skos:closeMatch .

The graph below asserts a hierarchical mapping link between <A> and (where is broader than <A>), and an associative mapping link
between <A> and <C>.

Example 54 (consistent)
<A> skos:broadMatch ; skos:relatedMatch <C> .

The graph below is not consistent with the SKOS data model, because there is a "clash" between exact and hierarchical mapping links.

Example 55 (not consistent)
<A> skos:exactMatch ; skos:broadMatch .

The graph below is not consistent with the SKOS data model, because there is a "clash" between exact and associative mapping links.

Example 56 (not consistent)
<A> skos:exactMatch ; skos:relatedMatch .

10.6. Notes

10.6.1. Mapping Properties, Semantic Relation Properties and Concept Schemes

By convention, the SKOS mapping properties are only used to link concepts in different concept schemes. However, note that using the SKOS
semantic relation properties (skos:broader, skos:narrower, skos:related) to link concepts in different concept schemes is also consistent
with the SKOS data model (see Section 8).

The mapping properties skos:broadMatch, skos:narrowMatch and skos:relatedMatch are provided as a convenience, for situations where the
provenance of data is known, and it is useful to be able to tell "at a glance" the difference between internal links within a concept scheme and
mapping links between concept schemes.

However, using the SKOS mapping properties is no substitute for the careful management of RDF graphs or the use of provenance
mechanisms.

The rationale behind this design is that it is hard to draw an absolute distinction between internal links within a concept scheme and mapping
links between concept schemes. This is especially true in an open environment where different people might re-organise concepts into concept
schemes in different ways. What one person views as two concept schemes with mapping links between, another might view as one single
concept scheme with internal links only. This specification allows both points of view to co-exist, which (it is hoped) will promote flexibility and
innovation in the re-use of SKOS data in the Web.

There is therefore an intimate connection between the SKOS semantic relation properties and the SKOS mapping properties. The property
skos:broadMatch is a sub-property of skos:broader, skos:narrowMatch is a sub-property of skos:narrower, and skos:relatedMatch is a
sub-property of skos:related. The full set of sub-property relationships is illustrated below.

skos:semanticRelation
 |
 +- skos:related
 | |
 | +- skos:relatedMatch
 |
 +- skos:broaderTransitive
 | |
 | +— skos:broader
 | |
 | +- skos:broadMatch
 |
 +— skos:narrowerTransitive
 |
 +- skos:narrower
 |
 +- skos:narrowMatch

skos:mappingRelation
 |
 +- skos:closeMatch
 | |
 | +- skos:exactMatch
 |
 +- skos:relatedMatch
 |
 +- skos:broadMatch
 |
 +- skos:narrowMatch

Examples below illustrate some entailments which follow from this sub-property tree.

Example 57 (entailment)
<A> skos:broadMatch .

entails

<A> skos:broader .
<A> skos:broaderTransitive .
<A> skos:semanticRelation .
<A> skos:mappingRelation .

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

23 von 34 06.09.2008 13:12

Example 58 (entailment)
<A> skos:narrowMatch .

entails

<A> skos:narrower .
<A> skos:narrowerTransitive .
<A> skos:semanticRelation .
<A> skos:mappingRelation .

Example 59 (entailment)
<A> skos:relatedMatch .

entails

<A> skos:related .
<A> skos:semanticRelation .
<A> skos:mappingRelation .

Example 60 (entailment)
<A> skos:exactMatch .

entails

<A> skos:closeMatch .
<A> skos:mappingRelation .

Note also that, because different people might re-organise concepts into concept schemes in different ways, a graph might assert mapping
links between concepts in the same concept scheme, and there are no formal integrity conditions in the SKOS data model that would make
such a graph inconsistent. E.g. the graph below is consistent with the SKOS data model. However, in practice it is expected that such a graph
would only ever arise from the merge of two or more graphs from different sources.

Example 61 (consistent)
<A> skos:broadMatch ; skos:relatedMatch <C> .

<A> skos:inScheme <MyScheme> .
 skos:inScheme <MyScheme> .
<C> skos:inScheme <MyScheme> .

10.6.2. "Clashes" Between Hierarchical and Associative Links

Examples below illustrate "clashes" between hierarchical and associative mapping links, which are not consistent with the SKOS data model
(because of the sub-property relationships illustrated above, and because of the data model for SKOS semantic relation properties defined in
Section 8).

Example 62 (not consistent)
<A> skos:broadMatch ; skos:relatedMatch .

Example 63 (not consistent)
<A> skos:narrowMatch ; skos:relatedMatch .

Example 64 (not consistent)
<A> skos:broadMatch .
 skos:broadMatch <C> .
<A> skos:relatedMatch <C> .

10.6.3. Transitivity of Mapping Properties

The only SKOS mapping property which is declared as transitive is skos:exactMatch. An example entailment is illustrated below:

Example 65 (entailment)
<A> skos:exactMatch .
 skos:exactMatch <C> .

entails

<A> skos:exactMatch <C> .

All other SKOS mapping properties are not transitive. Therefore, entailments as illustrated in examples below are not supported by the SKOS
data model.

Example 66 (non-entailment)
<A> skos:broadMatch .
 skos:broadMatch <C> .

does not entail

<A> skos:broadMatch <C> .

Example 67 (non-entailment)

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

24 von 34 06.09.2008 13:12

<A> skos:relatedMatch .
 skos:relatedMatch <C> .

does not entail

<A> skos:relatedMatch <C> .

Example 68 (non-entailment)
<A> skos:closeMatch .
 skos:closeMatch <C> .

does not entail

<A> skos:closeMatch <C> .

10.6.4. Reflexivity of Mapping Properties

None of the SKOS mapping properties are reflexive, neither are they irreflexive.

Because skos:exactMatch, skos:broadMatch and skos:relatedMatch are not irreflexive, the graph below is consistent with the SKOS data
model.

Example 69 (consistent)
<A> skos:exactMatch <A> .
 skos:broadMatch .
<C> skos:relatedMatch <C> .

However, see also Section 8 on the reflexivity of SKOS semantic relation properties.

10.6.5. Cycles and Alternate Paths Involving skos:broadMatch

There are no formal integrity conditions preventing either cycles or alternate paths in a graph of hierarchical mapping links.

In the graph below there are two cycles involving skos:broadMatch. This graph is consistent with the SKOS data model.

Example 70 (consistent)
<A> skos:broadMatch .
 skos:broadMatch <A> .

<X> skos:broadMatch <Y> .
<Y> skos:broadMatch <Z> .
<Z> skos:broadMatch <X> .

In the graph below there are two alternate paths involving skos:broadMatch. This graph is consistent with the SKOS data model.

Example 71 (consistent)
<A> skos:broadMatch .
 skos:broadMatch <C> .
<A> skos:broadMatch <C> .

See however Section 8 on cycles and alternate paths involving skos:broader.

10.6.6. Property Chains Involving skos:exactMatch

There are no property chain axioms in the SKOS data model involving the skos:exactMatch or skos:closeMatch properties. Hence the
entailments illustrated below are not supported.

Example 72 (non-entailment)
<A> skos:exactMatch .
 skos:broadMatch <C> .

does not entail

<A> skos:broadMatch <C> .

Example 73 (non-entailment)
<A> skos:exactMatch .
 skos:relatedMatch <C> .

does not entail

<A> skos:relatedMatch <C> .

Example 74 (non-entailment)
<A> skos:closeMatch .
 skos:broadMatch <C> .

does not entail

<A> skos:broadMatch <C> .

Example 75 (non-entailment)

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

25 von 34 06.09.2008 13:12

schneid
Sticky Note
In the case that you are going to change the spec to /allow/ such chains (it's an "At Risk" feature): Consider talking about "/Sub/ Property Chains". At least all given examples are of this kind. This would allow to express such semantic conditions in OWL 2. (I think it's not very realistic that general property chains will be part of a future version of OWL.)

<A> skos:closeMatch .
 skos:relatedMatch <C> .

does not entail

<A> skos:relatedMatch <C> .

At Risk of Change: The relationships between the properties skos:exactMatch, skos:broadMatch and skos:narrowMatch may be changed in
future versions of this specification. In particular, property chain axioms may be introduced.

10.6.7. skos:closeMatch, skos:exactMatch, owl:sameAs, owl:equivalentClass, owl:equivalentProperty

OWL provides three properties which might, at first glance, appear similar to skos:closeMatch or skos:exactMatch. owl:sameAs is used to link
two individuals in an ontology, and indicates that they are the same individual (i.e. the same resource). owl:equivalentClass is used to link two
classes in an ontology, and indicates that those classes have the same class extension. owl:equivalentProperty is used to link two properties
in an ontology and indicates that both properties have the same property extension.

skos:closeMatch and skos:exactMatch are used to link SKOS concepts in different schemes. A skos:closeMatch link indicates that two
concepts are sufficiently similar that they can be used interchangeably in some information retrieval applications. A skos:exactMatch link
indicates a high degree of confidence that two concepts can be used interchangeably across a wide range of information retrieval applications.

owl:sameAs, owl:equivalentClass or owl:equivalentProperty would typically be inappropriate for linking SKOS concepts in different concept
schemes, because the formal consequences that follow could be undesirable.

The example below illustrates some undesirable entailments that would follow from using owl:sameAs in this way.

Example 76 (entailment)
<A> rdf:type skos:Concept ;
 skos:prefLabel "love"@en ;
 skos:inScheme <MyScheme> .

 rdf:type skos:Concept ;
 skos:prefLabel "adoration"@en ;
 skos:inScheme <AnotherScheme> .

<A> owl:sameAs .

entails

<A>
 skos:prefLabel "love"@en ;
 skos:prefLabel "adoration"@en ;
 skos:inScheme <MyScheme> ;
 skos:inScheme <AnotherScheme> .

 skos:prefLabel "love"@en ;
 skos:prefLabel "adoration"@en ;
 skos:inScheme <MyScheme> ;
 skos:inScheme <AnotherScheme> .

In this example, using owl:sameAs to link two SKOS concepts in different concept schemes does actually lead to an inconsistency with the
SKOS data model, because both <A> and now have two preferred lexical labels in the same language. This will not always be the case,
however.

11. References

[BS8723-2]
BS8723 Structured Vocabularies for Information Retrieval Part 2: Thesauri, British Standards Institution (BSI), 2005.

[BS8723-3]
BS8723 Structured Vocabularies for Information Retrieval Part 3: Vocabularies Other Than Thesauri, British Standards Institution (BSI),
2005.

[SW]
W3C Semantic Web Activity. Available at http://www.w3.org/2001/sw/

[RDF-PRIMER]
RDF Primer, Frank Manola and Eric Miller, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-
primer-20040210/. Latest version available at http://www.w3.org/TR/rdf-primer/

[RDFS]
RDF Vocabulary Description Language 1.0: RDF Schema, Dan Brickley and R. V. Guha, Editors, W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. Latest version available at http://www.w3.org/TR/rdf-schema/

[OWL-GUIDE]
OWL Web Ontology Language Guide, Michael K. Smith, Chris Welty and Deborah L. McGuinness, Editors, W3C Recommendation, 10
February 2004, http://www.w3.org/TR/2004/REC-owl-guide-20040210/. Latest version available at http://www.w3.org/TR/owl-guide/

[SPARQL]
SPARQL Query Language for RDF, Eric Prud'hommeaux and Andy Seaborne, Editors, W3C Recommendation, 15 January 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/. Latest version available at http://www.w3.org/TR/rdf-sparql-query/

[LCSH]
Library of Congress Subject Headings, The Library of Congress Cataloging Distribution Service. Available at http://www.loc.gov
/cds/lcsh.html and at http://lcsh.info/

[AGROVOC]
AGROVOC Thesaurus, Food and Agriculture Organization of the United Nations (FAO). Available at http://www.fao.org/agrovoc

[OWL-SEMANTICS]
OWL Web Ontology Language Semantics and Abstract Syntax, Peter F. Patel-Schneider, Patrick Hayes and Ian Horrocks, Editors, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/. Latest version available at
http://www.w3.org/TR/owl-semantics/

[RDF-XML]
RDF/XML Syntax Specification (Revised), Dave Beckett, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

26 von 34 06.09.2008 13:12

/REC-rdf-syntax-grammar-20040210/. Latest version available at http://www.w3.org/TR/rdf-syntax-grammar/
[TURTLE]

Turtle - Terse RDF Triple Language, David Beckett and Tim Berners-Lee, W3C Team Submission, 14 January 2008, http://www.w3.org
/TeamSubmission/2008/SUBM-turtle-20080114/. Latest version available at http://www.w3.org/TeamSubmission/turtle/

[RDF-SEMANTICS]
RDF Semantics, Patrick Hayes, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.
Latest version available at http://www.w3.org/TR/rdf-mt/

[NTRIPLES]
RDF Test Cases, Jan Grant and Dave Beckett, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-
testcases-20040210/. Latest version available at http://www.w3.org/TR/rdf-testcases/

[WEBARCH]
Architecture of the World Wide Web, Volume One, Ian Jacobs and Norman Walsh, Editors, W3C Recommendation, 15 December 2004,
http://www.w3.org/TR/2004/REC-webarch-20041215/. Latest version available at http://www.w3.org/TR/webarch/

[COOLURIS]
Cool URIs for the Semantic Web, Leo Sauermann and Richard Cyganiak, Editors, W3C Interest Group Note, 31 March 2008,
http://www.w3.org/TR/2008/NOTE-cooluris-20080331/. Latest version available at http://www.w3.org/TR/cooluris/

[RECIPES]
Best Practice Recipes for Publishing RDF Vocabularies, Diego Berrueta and Jon Phipps, Editors, W3C Working Draft, 23 January 2008,
http://www.w3.org/TR/2008/WD-swbp-vocab-pub-20080123/. Latest version available at http://www.w3.org/TR/swbp-vocab-pub/

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax, Graham Klyne and Jeremy J. Carroll, Editors, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version available at
http://www.w3.org/TR/rdf-concepts/

[BCP47]
Tags for Identifying Languages, P. V. Biron, A. Malhotra, Editors, W3C Recommendation, 28 October 2004, http://www.rfc-editor.org
/rfc/bcp/bcp47.txt.

[XML-SCHEMA]
XML Schema Part 2: Datatypes Second Edition, Paul V. Biron and Ashok Malhotra, Editors, W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. Latest version available at http://www.w3.org/TR/xmlschema-2/

[SWBP-DATATYPES]
XML Schema Datatypes in RDF and OWL, Jeremy J. Carroll and Jeff Z. Pan, Editors, W3C Working Group Note, 14 March 2006,
http://www.w3.org/TR/2006/NOTE-swbp-xsch-datatypes-20060314/. Latest version available at http://www.w3.org/TR/swbp-
xsch-datatypes/

[OWL-REFERENCE]
OWL Web Ontology Language Reference, Mike Dean and Guus Schreiber, Editors, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-owl-ref-20040210/. Latest version available at http://www.w3.org/TR/owl-ref/

[ISO2788]
ISO 2788:1986 Documentation -- Guidelines for the establishment and development of monolingual thesauri, International Organization for
Standardization (ISO), 1986.

Appendix A. SKOS eXtension for Labels (XL)

This appendix defines an optional extension to the Simple Knowledge Organization System, called the SKOS eXtension for Labels (XL). This
extension provides additional support for identifying, describing and linking lexical entities.

A special class of lexical entities, called skosxl:Label, is defined. Each instance of this class has a single RDF plain literal form, but two
instances of this class are not necessarily the same individual if they share the same literal form.

Three labeling properties, skosxl:prefLabel, skosxl:altLabel and skosxl:hiddenLabel, are defined. These properties are used to label SKOS
concepts with instances of skosxl:Label, and are otherwise analogous to the properties of the same local name defined in SKOS
(skos:prefLabel, skos:altLabel and skos:hiddenLabel respectively).

The SKOS data model also defines the property skosxl:labelRelation. This property can be used to assert a direct (binary) link between
instances of skosxl:Label. It is primarily intended as an extension point, to be refined for more specific types of link. No built-in refinements of
skosxl:labelRelation are provided, although some examples of how this could be done are given.

A.1. XL Namespace and Vocabulary

The XL namespace URI is:

http://www.w3.org/2008/05/skos-xl#

Here the prefix skosxl: is used as an abbreviation for the XL namespace URI.

The XL vocabulary is the set of URIs given in the left-hand column of the table below.

Table 2. The XL Vocabulary
URI Defined by (section of this appendix)

skosxl:Label The skosxl:Label Class

skosxl:literalForm The skosxl:Label Class

skosxl:prefLabel Preferred, Alternate and Hidden skosxl:Labels

skosxl:altLabel Preferred, Alternate and Hidden skosxl:Labels

skosxl:hiddenLabel Preferred, Alternate and Hidden skosxl:Labels

skosxl:labelRelation Links Between skosxl:Labels

Here "the SKOS+XL vocabulary" refers to the union of the SKOS vocabulary and the XL vocabulary.

Here "the XL data model" refers to the class and property definitions stated in this appendix only. "The SKOS+XL data model" refers to the

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

27 von 34 06.09.2008 13:12

union of the data model defined in sections 3-10 above and the XL data model.

A.2. The skosxl:Label Class

A.2.1. Preamble

The class skosxl:Label is a special class of lexical entities.

An instance of the class skosxl:Label is a resource and may be named with a URI.

An instance of the class skosxl:Label has a single literal form. This literal form is an RDF plain literal (which is a string of UNICODE characters
and an optional language tag [RDF-CONCEPTS]). The property skosxl:literalForm is used to give the literal form of an skosxl:Label.

If two instances of the class skosxl:Label have the same literal form, they are not necessarily the same resource.

A.2.2. Class and Property Definitions

S48 skosxl:Label is an instance of owl:Class.

S49 skosxl:Label is disjoint with each of skos:Concept, skos:ConceptScheme and skos:Collection.

S50 skosxl:literalForm is an instance of owl:DatatypeProperty.

S51 The rdfs:domain of skosxl:literalForm is the class skosxl:Label.

S52 The rdfs:range of skosxl:literalForm is the class of RDF plain literals.

S53 skosxl:Label is a sub-class of a restriction on skosxl:literalForm cardinality exactly 1.

A.2.3. Examples

The example below describes an skosxl:Label named with the URI <http://example.com/ns/A>, with the literal form "love" in English.

Example 77 (consistent)
<A> rdf:type skosxl:Label ; skosxl:literalForm "love"@en .

The four examples below are each not consistent with the XL data model, because an skosxl:Label is described with two different literal
forms.

Example 78 (not consistent)
 rdf:type skosxl:Label ; skosxl:literalForm "love" ; skosxl:literalForm "adoration" .

Example 79 (not consistent)
 rdf:type skosxl:Label ; skosxl:literalForm "love"@en ; skosxl:literalForm "love"@fr .

Example 80 (not consistent)
 rdf:type skosxl:Label ; skosxl:literalForm "love"@en-GB ; skosxl:literalForm "love"@en-US .

Example 81 (not consistent)
 rdf:type skosxl:Label ; skosxl:literalForm "東"@ja-Hani ; skosxl:literalForm "ひがし"@ja-Hira .

A.2.4. Notes

A.2.4.1. Identity and Entailment

As stated above, each instance of the class skosxl:Label has one and only one literal form. In other words, there is a function mapping the
class extension of skosxl:Label to the set of RDF plain literals. This function is defined by the property extension of skosxl:literalForm. Note
especially two facts about this function.

First, the function is not injective. In other words, there is not a one-to-one mapping from instances of skosxl:Label to the set of RDF plain
literals (in fact it is many-to-one). This means that two instances of skosxl:Label which have the same literal form are not necessarily the
same individual. So, for example, the entailment illustrated below is not supported by the XL data model.

Example 82 (non-entailment)
<A> skosxl:literalForm "love"@en .
 skosxl:literalForm "love"@en .

does not entail

<A> owl:sameAs .

Second, the function is not surjective. In other words, for a given plain literal l, there might not be any instances of skosxl:Label with literal
form l.

A.2.4.2. Membership of Concept Schemes

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

28 von 34 06.09.2008 13:12

The membership of an instance of skosxl:Label within a SKOS concept scheme can be asserted using the skos:inScheme property.

Example 83 (consistent)
<A> rdf:type skosxl:Label ; skosxl:literalForm "love"@en ; skos:inScheme <MyScheme> .

A.3. Preferred, Alternate and Hidden skosxl:Labels

A.3.1. Preamble

The three properties skosxl:prefLabel, skosxl:altLabel and skosxl:hiddenLabel are used to give the preferred, alternate and hidden labels of
a resource respectively, where those labels are instances of the class skosxl:Label. These properties are analogous to the properties of the
same local name defined in the SKOS vocabulary, and there are logical dependencies between these two sets of properties defined below.

A.3.2. Class and Property Definitions

S54 skosxl:prefLabel, skosxl:altLabel and skosxl:hiddenLabel are each instances of owl:ObjectProperty.

S55 The rdfs:range of each of skosxl:prefLabel, skosxl:altLabel and skosxl:hiddenLabel is the class skosxl:Label.

S56 The property chain (skosxl:prefLabel, skosxl:literalForm) is a sub-property of skos:prefLabel.

S57 The property chain (skosxl:altLabel, skosxl:literalForm) is a sub-property of skos:altLabel.

S58 The property chain (skosxl:hiddenLabel, skosxl:literalForm) is a sub-property of skos:hiddenLabel.

A.3.3. Examples

The example below illustrates the use of all three XL labeling properties, and is consistent with the SKOS+XL data model.

Example 84 (consistent)
<Love>
 skosxl:prefLabel <A> ;
 skosxl:altLabel ;
 skosxl:hiddenLabel <C> .

<A> rdf:type skosxl:Label ;
 skosxl:literalForm "love"@en .

 rdf:type skosxl:Label ;
 skosxl:literalForm "adoration"@en .

<C> rdf:type skosxl:Label ;
 skosxl:literalForm "luv"@en .

A.3.4. Notes

A.3.4.1. "Dumbing-Down" to SKOS Lexical Labels

The property chain axioms S55-S57 support the "dumbing-down" of XL labels to vanilla SKOS lexical labels via inference. This is illustrated in
the example below.

Example 85 (entailment)
<Love>
 skosxl:prefLabel <A> ;
 skosxl:altLabel ;
 skosxl:hiddenLabel <C> .

<A> rdf:type skosxl:Label ;
 skosxl:literalForm "love"@en .

 rdf:type skosxl:Label ;
 skosxl:literalForm "adoration"@en .

<C> rdf:type skosxl:Label ;
 skosxl:literalForm "luv"@en .

entails

<Love>
 skos:prefLabel "love"@en ;
 skos:altLabel "adoration"@en ;
 skos:hiddenLabel "luv"@en .

A.3.4.2. SKOS+XL Labeling Integrity

In Section 5, two integrity conditions were defined on the basic SKOS labeling properties. First, the properties skos:prefLabel, skos:altLabel
and skos:hiddenLabel are pairwise disjoint. Second, a resource has no more than one value of skos:prefLabel per language. Because of the
property chain axioms defined above, the following four examples, whilst consistent w.r.t. the XL data model alone, are not consistent with the
SKOS+XL data model.

Example 86 (not consistent)

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

29 von 34 06.09.2008 13:12

Two different preferred labels in the same language

<Love> skosxl:prefLabel <A> ; skosxl:prefLabel .
<A> skosxl:literalForm "love"@en .
 skosxl:literalForm "adoration"@en .

Example 87 (not consistent)
"Clash" between preferred and alternate labels

<Love> skosxl:prefLabel <A> ; skosxl:altLabel .
<A> skosxl:literalForm "love"@en .
 skosxl:literalForm "love"@en .

Example 88 (not consistent)
"Clash" between alternate and hidden labels

<Love> skosxl:altLabel <A> ; skosxl:hiddenLabel .
<A> skosxl:literalForm "love"@en .
 skosxl:literalForm "love"@en .

Example 89 (not consistent)
"Clash" between preferred and hidden labels

<Love> skosxl:prefLabel <A> ; skosxl:hiddenLabel .
<A> skosxl:literalForm "love"@en .
 skosxl:literalForm "love"@en .

A.4. Links Between skosxl:Labels

A.4.1. Preamble

This section defines a pattern for representing binary links between instances of the class skosxl:Label.

Note that the vocabulary defined in this section is not intended to be used directly, but rather as an extension point which can be refined for
more specific labeling scenarios.

A.4.2. Class and Property Definitions

S59 skosxl:labelRelation is an instance of owl:ObjectProperty.

S60 The rdfs:domain of skosxl:labelRelation is the class skosxl:Label.

S61 The rdfs:range of skosxl:labelRelation is the class skosxl:Label.

S62 skosxl:labelRelation is an instance of owl:SymmetricProperty.

A.4.3. Examples

The example below illustrates a link between two instances of the class skosxl:Label.

Example 90 (consistent)
<A> rdf:type skosxl:Label ; skosxl:literalForm "love" .
 rdf:type skosxl:Label ; skosxl:literalForm "adoration" .
<A> skosxl:labelRelation .

A.4.4. Notes

A.4.4.1. Refinements of this Pattern

As mentioned above, the skosxl:labelRelation property serves as an extension point, which can be refined for more specific labeling
scenarios.

For example, below a third party has refined the property skos:labelRelation to express acronym relationships, and used it to express the fact
that "FAO" is an acronym for "Food and Agriculture Organization".

Example 91 (consistent)
First define an extension to skosxl:labelRelation
ex:acronym rdfs:subPropertyOf skosxl:labelRelation .

Now use it
<A> rdf:type skosxl:Label ; skosxl:literalForm "FAO"@en .
 rdf:type skosxl:Label ; skosxl:literalForm "Food and Agriculture Organization"@en .
 ex:acronym <A> .

Note that a sub-property of a symmetric property is not necessarily symmetric.

Appendix B. SKOS Overview

B.1. Classes in the SKOS Data Model

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

30 von 34 06.09.2008 13:12

skos:Collection

URI: http://www.w3.org/2008/05/skos#Collection

Definition: Section 9. Concept Collections

Disjoint classes: skos:Concept
skos:ConceptScheme

skos:Concept

URI: http://www.w3.org/2008/05/skos#Concept

Definition: Section 3. The skos:Concept Class

Disjoint classes: skos:Collection
skos:ConceptScheme

skos:ConceptScheme

URI: http://www.w3.org/2008/05/skos#ConceptScheme

Definition: Section 4. Concept Schemes

Disjoint classes: skos:Collection
skos:Concept

skos:OrderedCollection

URI: http://www.w3.org/2008/05/skos#OrderedCollection

Definition: Section 9. Concept Collections

Super-classes: skos:Collection

B.2. Properties in the SKOS Data Model

skos:altLabel

URI: http://www.w3.org/2008/05/skos#altLabel

Definition: Section 5. Lexical Labels

Super-properties: http://www.w3.org/2000/01/rdf-schema#label

skos:broadMatch

URI: http://www.w3.org/2008/05/skos#broadMatch

Definition: Section 10. Mapping Properties

Super-properties: skos:broader
skos:mappingRelation

Inverse of: skos:narrowMatch

skos:broader

URI: http://www.w3.org/2008/05/skos#broader

Definition: Section 8. Semantic Relations

Super-properties: skos:broaderTransitive

Inverse of: skos:narrower

skos:broaderTransitive

URI: http://www.w3.org/2008/05/skos#broaderTransitive

Definition: Section 8. Semantic Relations

Super-properties: skos:semanticRelation

Inverse of: skos:narrowerTransitive

Other characteristics: Transitive

skos:changeNote

URI: http://www.w3.org/2008/05/skos#changeNote

Definition: Section 7. Documentation Properties

Super-properties: skos:note

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

31 von 34 06.09.2008 13:12

skos:closeMatch

URI: http://www.w3.org/2008/05/skos#closeMatch

Definition: Section 10. Mapping Properties

Super-properties: skos:mappingRelation

Other characteristics: Symmetric

skos:definition

URI: http://www.w3.org/2008/05/skos#definition

Definition: Section 7. Documentation Properties

Super-properties: skos:note

skos:editorialNote

URI: http://www.w3.org/2008/05/skos#editorialNote

Definition: Section 7. Documentation Properties

Super-properties: skos:note

skos:exactMatch

URI: http://www.w3.org/2008/05/skos#exactMatch

Definition: Section 10. Mapping Properties

Super-properties: skos:closeMatch

Other characteristics: Transitive
Symmetric

skos:example

URI: http://www.w3.org/2008/05/skos#example

Definition: Section 7. Documentation Properties

Super-properties: skos:note

skos:hasTopConcept

URI: http://www.w3.org/2008/05/skos#hasTopConcept

Definition: Section 4. Concept Schemes

Domain: skos:ConceptScheme

Range: skos:Concept

Inverse of: skos:topConceptOf

skos:hiddenLabel

URI: http://www.w3.org/2008/05/skos#hiddenLabel

Definition: Section 5. Lexical Labels

Super-properties: http://www.w3.org/2000/01/rdf-schema#label

skos:historyNote

URI: http://www.w3.org/2008/05/skos#historyNote

Definition: Section 7. Documentation Properties

Super-properties: skos:note

skos:inScheme

URI: http://www.w3.org/2008/05/skos#inScheme

Definition: Section 4. Concept Schemes

Range: skos:ConceptScheme

skos:mappingRelation

URI: http://www.w3.org/2008/05/skos#mappingRelation

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

32 von 34 06.09.2008 13:12

Definition: Section 10. Mapping Properties

Domain: skos:Concept

Range: skos:Concept

skos:member

URI: http://www.w3.org/2008/05/skos#member

Definition: Section 9. Concept Collections

Domain: skos:Collection

skos:memberList

URI: http://www.w3.org/2008/05/skos#memberList

Definition: Section 9. Concept Collections

Domain: skos:OrderedCollection

Range: http://www.w3.org/1999/02/22-rdf-syntax-ns#List

Other characteristics: Functional

skos:narrowMatch

URI: http://www.w3.org/2008/05/skos#narrowMatch

Definition: Section 10. Mapping Properties

Super-properties: skos:mappingRelation
skos:narrower

Inverse of: skos:broadMatch

skos:narrower

URI: http://www.w3.org/2008/05/skos#narrower

Definition: Section 8. Semantic Relations

Super-properties: skos:narrowerTransitive

Inverse of: skos:broader

skos:narrowerTransitive

URI: http://www.w3.org/2008/05/skos#narrowerTransitive

Definition: Section 8. Semantic Relations

Super-properties: skos:semanticRelation

Inverse of: skos:broaderTransitive

Other characteristics: Transitive

skos:notation

URI: http://www.w3.org/2008/05/skos#notation

Definition: Section 6. Notations

skos:note

URI: http://www.w3.org/2008/05/skos#note

Definition: Section 7. Documentation Properties

skos:prefLabel

URI: http://www.w3.org/2008/05/skos#prefLabel

Definition: Section 5. Lexical Labels

Super-properties: http://www.w3.org/2000/01/rdf-schema#label

skos:related

URI: http://www.w3.org/2008/05/skos#related

Definition: Section 8. Semantic Relations

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

33 von 34 06.09.2008 13:12

Super-properties: skos:semanticRelation

Other characteristics: Symmetric

skos:relatedMatch

URI: http://www.w3.org/2008/05/skos#relatedMatch

Definition: Section 10. Mapping Properties

Super-properties: skos:mappingRelation
skos:related

Other characteristics: Symmetric

skos:scopeNote

URI: http://www.w3.org/2008/05/skos#scopeNote

Definition: Section 7. Documentation Properties

Super-properties: skos:note

skos:semanticRelation

URI: http://www.w3.org/2008/05/skos#semanticRelation

Definition: Section 8. Semantic Relations

Domain: skos:Concept

Range: skos:Concept

skos:topConceptOf

URI: http://www.w3.org/2008/05/skos#topConceptOf

Definition: Section 4. Concept Schemes

Super-properties: skos:inScheme

Inverse of: skos:hasTopConcept

Appendix C. SKOS Data Model as RDF Triples

The SKOS Data Model as RDF Triples can be found at http://www.w3.org/2008/05/skos.

Note that it is not possible to express all of the statements of the SKOS data model as RDF triples.

The SKOS eXtension for Labels (XL) Data Model as RDF Triples can be found at http://www.w3.org/2008/05/skos-xl.

Note also that it is not possible to express all of the statements of the XL data model as RDF triples.

SKOS Simple Knowledge Organization System Reference http://www.w3.org/TR/skos-reference/

34 von 34 06.09.2008 13:12

