
edits suggested by Ann Bassetti, 30 May 16

Social Web Protocols

W3C Editor's Draft 27 May 2016
This version:

https://w3c-social.github.io/social-web-protocols/respec.html
Latest published version:

http://www.w3.org/TR/social-web-protocols/
Latest editor's draft:

https://w3c-social.github.io/social-web-protocols/respec.html
Editor:

Amy Guy, University of Edinburgh

Copyright © 2016 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use
rules apply.

Abstract
The Social Web Protocols are a collection of standards which enable various aspects of decentralised
social interaction on the Web. This document describes the purposes of each, and how they fit together.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical
report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document was published by the Social Web Working Group as an Editor's Draft. If you wish to
make comments regarding this document, please send them to public-socialweb@w3.org (subscribe,
archives). All comments are welcome.

Publication as an Editor's Draft does not imply endorsement by the W3C Membership. This is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy.
W3C maintains a public list of any patent disclosures made in connection with the deliverables of the
group; that page also includes instructions for disclosing a patent. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the
information in accordance with section 6 of the W3C Patent Policy.

page 1 of 12

https://w3c-social.github.io/social-web-protocols/respec.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/2004/01/pp-impl/424242/status
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://lists.w3.org/Archives/Public/public-socialweb/
mailto:public-socialweb-request@w3.org?subject=subscribe
mailto:public-socialweb@w3.org
https://www.w3.org/Social/WG
http://www.w3.org/TR/
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://ev.buaa.edu.cn/
http://www.keio.ac.jp/
http://www.ercim.eu/
http://www.csail.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://inf.ed.ac.uk/
http://rhiaro.co.uk/
https://w3c-social.github.io/social-web-protocols/respec.html
http://www.w3.org/TR/social-web-protocols/

edits suggested by Ann Bassetti, 30 May 16

This document is governed by the 1 September 2015 W3C Process Document.

Table of Contents
• 1. Overview

• 1.1 Contents
• 1.2 Social Web Working Group Drafts
• 1.3 Other specifications
• 1.4 Requirements

• 2. Reading
• 2.1 Content representation
• 2.2 Objects
• 2.3 Streams

• 3. Creating content
• 3.1 Updating
• 3.2 Deleting

• 4. Subscribing
• 5. Delivery
• 6. Profiles

• 6.1 Relationships
• 6.2 Authorization and access control

• A. References
• A.1 Informative references

1. Overview
People and the content they create are the core componantscomponents of the social web; they make up
the social graph. This document describes a standard way in which people can:

• connect with other people and subscribe to their content;
• create, update and delete social content;
• interact with other people’s content;
• be notified when other people interact with their content;

regardless of what that content is or where it is stored.

This provides the These components are core building blocks for interoperable social systems.

Each of these specifications can be implemented independently as needed, or all together in one
system, as well as extended to meet domain-specific requirements. Users can store their social data
across any number of compliant servers, and use compliant clients hosted elsewhere to interact with
their own content and the content of others. Put simply, this document tells you, according the
recommendations of the Social Web Working Group:

page 2 of 12

http://w3c-social.github.io/social-web-protocols/#informative-references
http://w3c-social.github.io/social-web-protocols/#references
http://w3c-social.github.io/social-web-protocols/#authorization-and-access-control
http://w3c-social.github.io/social-web-protocols/#relationships
http://w3c-social.github.io/social-web-protocols/#profiles
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#subscribing
http://w3c-social.github.io/social-web-protocols/#deleting
http://w3c-social.github.io/social-web-protocols/#updating
http://w3c-social.github.io/social-web-protocols/#creating-content
http://w3c-social.github.io/social-web-protocols/#streams
http://w3c-social.github.io/social-web-protocols/#objects
http://w3c-social.github.io/social-web-protocols/#content-representation
http://w3c-social.github.io/social-web-protocols/#reading
http://w3c-social.github.io/social-web-protocols/#requirements
http://w3c-social.github.io/social-web-protocols/#other-specs
http://w3c-social.github.io/social-web-protocols/#swwg-drafts
http://w3c-social.github.io/social-web-protocols/#contents
http://w3c-social.github.io/social-web-protocols/#overview
http://www.w3.org/2015/Process-20150901/

edits suggested by Ann Bassetti, 30 May 16

• how to expose/consume social content (reading).
• what to post, and where to,
• how to create, update or delete content.
• how to ask for notifications about content (subscribing).
• how to deliver notifications about content or users (delivery).
• how to expose profiles and relationships.

1.1 Contents

This is an overview of the current state of specifications of the Social Web Working Group:
Actiivty Activity Streams, Activitypub, Micropub and Webmention. This document also describes Social
Web Working Group specifications in context of W3C recommendations and relatedrelevant drafts
from other communities outside of the Social Web Working Group where relevant. As many of these
specs are under ongoing development, this document is subject to change alongside them.

You might also want to take a look at the Working Group's Social API Requirements to understand the
division of concerns.

This document is on track to become a Working Group Note to provide guidance on how and when to
implement the various specifications produced.

1.2 Social Web Working Group Drafts

ActivityPub [SWWG WD]
JSON-based APIs for reading, creating, updating, deleting, subscribing, delivery and profiles.

ActivityStreams 2.0 (AS2) [SWWG WD Core, SWWG WD Vocab]
The syntax and vocabulary for representing social data in JSON and RDF.

Micropub [SWWG WD]
Minimal form-encoded API for creating, updating and deleting.

Webmention [SWWG CR]
Minimal form-encoded API for delivery.

1.3 Other specifications

ActivityStreams 1.0 [External]
The predecessor to [ActivityStreams2].

Annotations Protocol [AnnoWG WD]
Transport mechanisms for creating and managing annotations on the Web.

JF2jf2 [ED] (External with SWWG representation)
A complimentarycomplementary social vocabulary to AS2 for object-centric (as opposed to
activity-centric) data.

Linked Data Platform [LDP REC]
A protocol for reading and writing Linked Data.

Post Type Discovery [ED] (External with SWWG representation)

page 3 of 12

House Boat, 05/30/16
(added new paragraph)

House Boat, 05/30/16
(needs link)

http://w3.org/TR/activitystreams
https://www.w3.org/wiki/Post-type-discovery
https://www.w3.org/TR/ldp/
http://dissolve.github.io/jf2/
https://www.w3.org/TR/annotation-protocol/
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://activitystrea.ms/specs/json/1.0/
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3.org/TR/webmention
http://w3c-social.github.io/social-web-protocols/#deleting
http://w3c-social.github.io/social-web-protocols/#updating
http://w3c-social.github.io/social-web-protocols/#creating
http://w3.org/TR/micropub
http://w3.org/TR/activitystreams-vocabulary
http://w3.org/TR/activitystreams-core
http://w3c-social.github.io/social-web-protocols/#profiles
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#subscribing
http://w3c-social.github.io/social-web-protocols/#deleting
http://w3c-social.github.io/social-web-protocols/#updating
http://w3c-social.github.io/social-web-protocols/#creating
http://w3c-social.github.io/social-web-protocols/#reading
http://w3.org/TR/activitypub
https://www.w3.org/wiki/Socialwg/Social_API/Requirements
http://webmention.net/
http://micropub.net/
http://w3c-social.github.io/activitypub/
http://w3.org/TR/activitystreams
http://w3c-social.github.io/social-web-protocols/#relationships
http://w3c-social.github.io/social-web-protocols/#profiles
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#subscribing
http://w3c-social.github.io/social-web-protocols/#deleting
http://w3c-social.github.io/social-web-protocols/#updating
http://w3c-social.github.io/social-web-protocols/#creating
http://w3c-social.github.io/social-web-protocols/#content-representation
http://w3c-social.github.io/social-web-protocols/#reading

edits suggested by Ann Bassetti, 30 May 16

A protocol to bridge object-centric and activity-centric vocabularies.
Solid [ED] (External with SWWG representation)

Extensions to LDP for use in social applications

1.4 Requirements

The high level requirements according to the Social Web Working Group charter and the Social API
Requirements.

Vocabulary Syntax Read Create Update Delete Subscription Delivery Profiles
ActivityPub X X X X X X X
ActivityStreams
2.0

X X

Micropub X X X
Webmention X

2. Reading
If you are a content publisher, this section is about how you should publish your content. If you are a
content consumer, this is what you should expect to consume.

2.1 Content representation

Content MUST be available as [ActivityStreams2] JSON and MAY additionally be served as an
alternative syntax. If a URL does not return [ActivityStreams2] JSON, consumers SHOULD look for
the JSON format via a rel="alternate" type="application/activity+json" link
(which could be to a different domain, for third-party services which dynamically generate
[ActivityStreams2] JSON on behalf of the publisher). [ActivityStreams2] content MUST be served with
the Content-Type application/activity+json or, if necessary for JSON-LD extended
implementations, application/ld+json;
profile="http://www.w3.org/ns/activitystreams".

Content MUST be described using the [ActivityStreams2] vocabulary, and MAY use other vocabularies
in addition or instead, per the [ActivityStreams2] extension mechanism.

[ActivityStreams2] builds upon [AS1] and is not fully backwards compatible; the relationship between
AS1 and AS2 is documented in the AS2 spec. If you have implemented [AS1], you should transition to
[ActivityStreams2].

[Activitypub] exposes all content as [ActivityStreams2] JSON.

page 4 of 12

House Boat, 05/30/16
this table is really helpful!

http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-AS1
http://w3.org/TR/activitystreams-core#activitystreams-1.0
http://w3.org/TR/activitystreams-core#activitystreams-1.0
http://w3c-social.github.io/social-web-protocols/#bib-AS1
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#profiles
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#subscribing
http://w3c-social.github.io/social-web-protocols/#deleting
http://w3c-social.github.io/social-web-protocols/#updating
http://w3c-social.github.io/social-web-protocols/#creating-content
http://w3c-social.github.io/social-web-protocols/#reading
http://w3c-social.github.io/social-web-protocols/#content-representation
http://w3c-social.github.io/social-web-protocols/#content-representation
https://www.w3.org/wiki/Socialwg/Social_API/Requirements
https://www.w3.org/wiki/Socialwg/Social_API/Requirements
https://www.w3.org/2013/socialweb/social-wg-charter.html
http://github.com/solid/solid-spec

edits suggested by Ann Bassetti, 30 May 16

2.2 Objects

All objects MUST have URLs in the id property, which return the properties of an object according to
content representation, and depending on the requester's right to access the content.

2.3 Streams

Each stream MUST have a URL which MUST result in the contents of the stream (according to the
requester's right to access, and could be paged), and MAY include additional metadata about the stream
(such as title, description).

Each object in a stream MUST contain at least its URL, which can be dereferenced to retrieve all
properties of the object, and MAY contain other properties of the object.

One user may publish one or more streams of content. Streams may be generated automatically or
manually, and might be segregated by post type, topic, audience, or any arbitrary criteria decided by the
curator of the stream. A user profile MAY include links to multiple streams, which a consumer could
follow to read or subscribe to.

[Activitypub] specifies four feeds that MUST be accessible from a profile via the following properties:

• inbox: A reference to an [ActivityStreams2] collection comprising of all the messages received
by the actor.

• outbox: An [ActivityStreams2] collection comprising of all the messages produced by the
actor.

• following: An [ActivityStreams2] collection of the actors that this actor is following.
• followers: An [ActivityStreams2] collection of the actors that follow this actor.

[Activitypub] also specifies a further property for accessing additional feeds, which MAY be included in
a profile:

• streams: A list of supplementary Collections which may be of interest.

Issue 1

Activitypub discovery mechanism for this to be specified, likely link relations per issue 50.

[Activitypub] specifies special behaviourbehavior for activities with types Add and Remove. When a
server receives such an activity in the outbox, and the target is a Collection, it MUST add the
object to the target (for Add) or remove the object from the target (for Remove).

3. Creating content
Content generated through a client (such as a web form, mobile app, smart device) is created when it is
sent to a server for processing, where it is typically stored and usually published (either publicly or to a
restricted audience). Clients and servers may independently support creating, updating and deleting;
there are no dependencies between them. Authentication and authorization for creating content is left

page 5 of 12

House Boat, 05/30/16
sorry, but W3C has decided to use American spellings

http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
https://github.com/w3c-social/activitypub/issues/50
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#profiles
http://w3c-social.github.io/social-web-protocols/#objects
http://w3c-social.github.io/social-web-protocols/#content-representation

edits suggested by Ann Bassetti, 30 May 16

out of scope.

[Activitypub] clients discover the outbox of the authenticated user from their JSON profile, then
make an HTTP POST request with an appropriate [ActivityStreams2] Activityactivity as a JSON
payload. [Activitypub] requires use of the [ActivityStreams2] vocabulary and syntax, which may be
extended with JSON-LD. The URL of the created resource is generated at the discretion of the server.
This is an appropriate protocol to use when:

• You want to send/receive a JSON or JSON-LD payload.
• Your data is described with [ActivityStreams2] (optionally extensible via JSON-LD).

[Micropub] clients discover the Micropub endpoint from the current user's homepage (likely entered by
the user as part of authentication) from a rel="micropub" link, then make a x-www-form-
urlencoded POST request containing the key-value pairs for the attributes of the object being
created. The URL of the created resource is generated at the discretion of the server. Micropub requires
use of the Microformats 2 [h-entry] vocabulary, as well as a set of reserved attributes as commands to
the server.; Aany additional key names sent outside of this vocabulary may be ignored by the server.

[Micropub] requests may alternatively be sent as a JSON payload, the syntax of which is derived from
the Microformats 2 parsing algorithm. This is an appropriate protocol to use when:

• You want to send/receive a form-encoded or JSON payload.
• Your data is described with the [h-entry] syntax and vocabulary.
• You can rely on out-of-band agreements between clients and servers for vocabulary

extensibility.

[LDP] servers are written to by sending an HTTP POST request to a Container (any resource on the
server which returns Link: <http://www.w3.org/ns/ldp#Container>; rel="type"),
containing an RDF payload with attributes of the object being created. An identifier for the created
resource is generated at the discretion of the server, and tThe URL is created by appending the
identifier to the URL of the Container that was posted to. [Solid] and [AnnotationsProtocol] both
use slightly altered [LDP] to create content; [Solid] restricts use to only Basic Containers, while the
[AnnotationsProtocol] specifies the [AnnotationsVocab] and primary syntax as JSON-LD. This is an
appropriate protocol to use when:

• Your data is represented as RDF.
• Clients and servers are vocabulary agnostic.
• You prefer a more RESTful API.

3.1 Updating

Updating cContent is updated when a client sends changes to attributes (additions, removals,
replacements) to an existing object. If a server has implemented a delivery or subscription mechanism,
when an object is updated, the update MUST be propagated to the original recipients using the same
mechanism.

[Activitypub] clients replace the complete object by sending an HTTP POST request containing an

page 6 of 12

House Boat, 05/30/16
Is the acronym LDP widely known, or do we need to make it explicit, as “Linked Data Platform [LDP] servers...”?

House Boat, 05/30/16
(I suggest breaking into 2 sentences at this point. A little hard to read the strikeouts.)

House Boat, 05/30/16
(“activity” would be lower case in this instance, right?)

http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#subscribing
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#bib-AnnotationsVocab
http://w3c-social.github.io/social-web-protocols/#bib-AnnotationsProtocol
http://w3c-social.github.io/social-web-protocols/#bib-Solid
http://w3c-social.github.io/social-web-protocols/#bib-LDP
http://w3c-social.github.io/social-web-protocols/#bib-AnnotationsProtocol
http://w3c-social.github.io/social-web-protocols/#bib-Solid
http://w3c-social.github.io/social-web-protocols/#bib-LDP
http://w3c-social.github.io/social-web-protocols/#bib-h-entry
http://w3c-social.github.io/social-web-protocols/#bib-Micropub
http://w3c-social.github.io/social-web-protocols/#bib-h-entry
http://w3c-social.github.io/social-web-protocols/#bib-Micropub
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub

edits suggested by Ann Bassetti, 30 May 16

[ActivityStreams2] Update activity to the outbox of the authenticated user, where the object is a
nested object, including an id, which serves as the replacement.

Issue 2

ActivityPub currently only supports updates of a whole object at once. Issue 85 for partial updates.

[Micropub] clients perform updates, as either form-encoded or JSON POST requests, using the mp-
action=update parameter, as well as a replace, add or delete property containing the
updates to make, to the Micropub endpoint (discovery described in creating). replace replaces all
values of the specified property. If the property does not exist already, it is created. add adds new
values to the specified property without changing the existing ones. If the property does not exist
already, it is created. delete removes the specified property; you can also remove properties by value
by specifying the value.

[LDP] clients perform replacement-style updates by sending an HTTP PUT request to the URL of the
object to be updated. Partial-style updates are performed with an HTTP PATCH request.

3.2 Deleting

Deleting cContent is deleted when a client sends a request to delete an existing object. If a server has
implemented a delivery or subscription mechanism, when an object is deleted, the deletion MUST be
propagated to the original recipients using the same mechanism.

[Activitypub] clients delete an object by sending an HTTP POST request containing an
[ActivityStreams2] Delete activity to the outbox of the authenticated user. Servers MUST replace
the object of this activity with a tombstone, and return a 410 Gone status code from its URL.

[Micropub] delete requests are two key-value pairs, in form-encoded or JSON: `mp-action`: `delete`
and `url`: `url-to-be-deleted`, sent to the Micropub endpoint (discovery described in creating).

[LDP] deletes are performed by sending an HTTP DELETE request to the URL of the object to be
deleted.

4. Subscribing
An agent (client or server) may ask to be notified of changes to a content object (eg. edits, new replies)
or stream of content (eg. objects added or removed from a particular stream). This is subscribing. A
server may also receive notifications of changes to content it has not subscribed to: see delivery.

Issue 3

Working group has yet to discuss this in depth, subject to significant change.

[Activitypub] servers distribute the activities of an actor by sending POST requests containing the
activities as JSON payloads to the inbox of all actors in an actor's Followers collection. For

page 7 of 12

House Boat, 05/30/16
ditto

House Boat, 05/30/16
should this “may” be formatted as “MAY”? (I suspect not yet, since it's not yet resolved, per Issue 3.)

http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#bib-LDP
http://w3c-social.github.io/social-web-protocols/#creating-content
http://w3c-social.github.io/social-web-protocols/#bib-Micropub
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#subscribing
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#bib-LDP
http://w3c-social.github.io/social-web-protocols/#creating-content
http://w3c-social.github.io/social-web-protocols/#bib-Micropub
https://github.com/w3c-social/activitypub/issues/85
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2

edits suggested by Ann Bassetti, 30 May 16

subscription requests, special behaviourbehavior is defined for servers when an [ActivityStreams2]
Follow activity is appears in an actor's outbox or inbox.

• For outbox (an outgoing subscription request): The activity is delivered as usual to the
object's inbox, and additionally the object is added to the actor's Following
Ccollection.

• For inbox (an incoming subscription request): The recipient's (the object of the Follow
activity) server adds the actor of the Follow activity to the recipient's Followers
collection, to which subsequently all new activities of the recipient are subsequently delivered
to.

It This works when the publisher and subscriber are on different domains, thus serving as a federation
protocol. This is a suitable subscription mechanism when:

• The objects and streams being subscribed to are described with [ActivityStreams2].
• The subscriber wants to request updates from a specific actor (rather than objects, streams or

threads, see issue 80.
• You need to send or receive the whole requested resource over the wire (ie. a 'fat ping').
• You need to send or receive JSON payloads only.
• Subscriptions requests and fulfillment are handled serversideserver-side.
• The publisher is aware of who has subscribed; this is a push mechanism.

[Solid] uses websockets to allow clientsideclient-side applications to subscribe to changes in objects
([LDP] Resources) and streams ([LDP] Containers). The websocket endpoint is advertised in the
Updates-Via HTTP Link Header. The subscriber sends the keyword sub followed by an empty
space and then the URI of the resource, to the target’s websockets URI. The target’s server sends a
websockets message containing the keyword pub, followed by an empty space and the URI of the
resource that has changed, whenever there is a change. It works when the publisher and subscriber are
on different domains, thus serving as a federation protocol. This is a suitable subscription mechanism
when:

• You send live updates over websockets.
• You can send and receive on the URL of the requested resource over the wire (ie. a 'thin ping').
• Subscriptions are requested clientsideclient-side and fulfilled serversideserver-side.
• The publisher is aware of who has subscribed; this is a push mechanism.

[Webmention] can be deployed as a subscription mechanism through the [Salmentions] extension.
Documents contain links to the sources of received webmentions along with the content. Every time the
document is updated, including when new incoming webmentions are added, the server (re-)sends
webmentions to every link. Thus, all documents which originally sent a webmention receive a
webmention back, enabling them to parse the document for changes, and detect new replies in a thread,
as well as changes to the original document. It works when the publisher and subscriber are on different
domains, thus serving as a federation protocol. This is a suitable subscription mechanism when:

• The subscriber wants to subscribe to a specific thread or object.
• The subscriber has a document which links to that thread or object, and has sent a [Webmention]

page 8 of 12

House Boat, 05/30/16
also same domain? (repeat of question above)

House Boat, 05/30/16
(Q: does it also work when they are in the same domain? If yes, is that obvious, or should it be stated?)

http://w3c-social.github.io/social-web-protocols/#bib-Webmention
http://w3c-social.github.io/social-web-protocols/#bib-Salmentions
http://w3c-social.github.io/social-web-protocols/#bib-Webmention
http://w3c-social.github.io/social-web-protocols/#bib-LDP
http://w3c-social.github.io/social-web-protocols/#bib-LDP
http://w3c-social.github.io/social-web-protocols/#bib-Solid
https://github.com/w3c-social/activitypub/issues/80
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#delivery
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2

edits suggested by Ann Bassetti, 30 May 16

about it.
• The publisher displays links to the sources of received webmentions with their content.
• The subscriber is linked to a document and wants to be notified of further changes to a

document linked to.
• The subscriber has implemented [Webmention] receiving.
• The publisher is aware of who has subscribed; this is a push mechanism.

Other options yet to be debated...

• Web Push Protocol: The subscriber follows the urn:ietf:params:push link relation to
the target’s Push Service, and then Subscribes for Push Messages

• PubSubHubbub: The subscriber discovers the target’s hub, and sends a form-encoded POST
request containing values for hub.mode (“subscribe”), hub.topic and hub.callback.
When the target posts new content, the target’s server sends a form-encoded POST to the hub
with values for hub.mode (“publish”) and hub.url and the hub checks the URL for new
content and POSTs updates to the subscriber’s callback URL. (See PuSH 0.4 and How To
Publish And Consume PuSH)

• Pull, ie. just reading an [ActivityStreams2] feed.

Note

Nothing should rely on implementation of a subscription mechanism.

5. Delivery
A user or application may wish to push a notification to another user, for example because they have
linked to (replied, liked, bookmarked, reposted, …) their content or linked to (tagged, addressed) the
user directly, or to make the recipient aware of a change in state of some document or resource on the
Web.

[Webmention] provides an API for sending and receiving notifications when a relationship is created
between two documents. It works when the two documents are on different domains, thus serving as a
federation protocol. This is a suitable notification mechanism when:

• You have a document (source) which links to another document (target).
• The owner of the target has access to view the source (so that their webmention endpoint can

parse the source and check the claimed link exists).
• The only data you need to send over the wire are the URLs of the source and target documents

(ie. a 'thin ping').

Discovery of the [Webmention] endpoint (a script which can process incoming webmentions) is through
a link relation (rel="webmention"), either in the HTTP Header or body of the target. This
endpoint does not need to be on the same domain as the target, so webmention receiving can be
delegated to a third party.

[Webmention] uses x-www-form-urlencoded for the source and target as parameters in an HTTP
POST request. This means a webmention can be triggered from a web form or from the commandline

page 9 of 12

House Boat, 05/30/16
ditto same domain?

http://w3c-social.github.io/social-web-protocols/#bib-Webmention
http://w3c-social.github.io/social-web-protocols/#bib-Webmention
http://w3c-social.github.io/social-web-protocols/#bib-Webmention
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://indiewebcamp.com/How_to_publish_and_consume_PubSubHubbub
http://indiewebcamp.com/How_to_publish_and_consume_PubSubHubbub
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
https://tools.ietf.org/html/draft-ietf-webpush-protocol-02#section-4
http://w3c-social.github.io/social-web-protocols/#bib-Webmention

edits suggested by Ann Bassetti, 30 May 16

with curl. Integration with existing applications is straightforward through translating this form-
encoded data into JSON, RDF (namespace), or another preferred syntax at the recievers end if
necessary. There are no constraints on the syntax of the source and target documents.

[Webmention] can be extended by adding additional parameters to the POST request; applications must
have prior agreement in order to understand them, and there is potential for collision of extension
terms.

[Activitypub] provides a JSON-based API for sending and receiving [ActivityStreams2] activities as
notifications. It works when the two documents are on different domains, thus serving as a federation
protocol. This is a suitable notification mechanism when:

• You describe the notification with [ActivityStreams2].
• You need to send or receive the whole notification over the wire (ie. a 'fat ping').
• You need to send or receive JSON payloads only.
• You need to add additional properties to your notifications unambiguously with JSON-LD.
• You need to send the same notification to multiple users from one activity.

The endpoint which processes incoming notifications is a user's [Activitypub] inbox, discoverable
from the target user's profile. The recipient user may be addressed directly (through object,
target, to, cc, and/or bcc), and/or inferred as the owner of another resource which is addressed
(through object, target and/or inReplyTo).

An [Activitypub] server delivers the entire activity to all discovered endpoints as a JSON payload of an
HTTP POST request.

An [Activitypub] server receiving such an activity must verify the notification is accurate (by fetching
the source, or some prior trust arrangement with the sender, eg. through an authentication token or
digital signature).

[Activitypub] delivery can be extended through the [ActivityStreams2] extension mechanism, with
JSON-LD.

Issue 4

Add Solid Notifications for pure RDF usage.

Note

Note: we need to leave it open for users to refuse content they have not explicitly subscribed to, ie.
nothing else should rely on implementation of Delivery.

6. Profiles

Issue 5

Stub, needs expansion

page 10 of 12

House Boat, 05/30/16
ditto same domain?

http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-ActivityStreams2
http://w3c-social.github.io/social-web-protocols/#bib-Activitypub
http://w3c-social.github.io/social-web-protocols/#bib-Webmention
http://www.w3.org/ns/webmention#

edits suggested by Ann Bassetti, 30 May 16

The subject of a profile document can be a person, persona, organisation, bot, location, … the type of
the subject of the profile is not required. Each profile document MUST have a URL which SHOULD
return attributes of the subject of the profile; SHOULD return at least one link to a stream of content
and MAY return content the subject has created. A JSON format MUST be available; other content types
MAY be returned as well.

6.1 Relationships

Semantics and representation of personal relationships are implementation- specific. This specification
deals with relationships only when distribution of content is affected, for example if one user
‘friending’ another triggers a subscription request from the first user’s server to the second. Lists of
other relationships MAY be discoverable from a user profile, SHOULD be represented according to the
ActivityStremas 2 syntax and MAY (and are likely to) use extension vocabularies as needed.

• Activitypub: When a server receives a Follow Activity in its inbox, the subject is added to a
Followers Collection, which is discoverable from the subject’s profile.

6.2 Authorization and access control

Servers may restrict/authorize access to content however they want?

• ActivityPump: see auth
• Indieweb: see private posts, private webmention
• SoLiD: see acl

A. References

A.1 Informative references

[AS1]
J. Snell; M. Atkins; W. Norris; C. Messina; M. Wilkinson; R. Dolin. http://activitystrea.ms. JSON
Activity Streams 1.0.. Unofficial. URL: http://activitystrea.ms/specs/json/1.0/

[ActivityStreams2]
James Snell; Evan Prodromou. W3C. ActivityStreams 2.0. W3C Working Draft. URL:
http://w3.org/TR/activitystreams

[Activitypub]
Christopher Webber; Jessica Tallon; Owen Shepherd. W3C. ActivityPub. 28 January 2016. W3C
Working Draft. URL: http://www.w3.org/TR/activitypub/

[AnnotationsProtocol]
Reference not found.

[AnnotationsVocab]
Reference not found.

[LDP]
Steve Speicher; John Arwe; Ashok Malhotra. W3C. Linked Data Platform 1.0. 26 February 2015.

page 11 of 12

House Boat, 05/30/16
is it going to be SoLiD or Solid? (I had this question throughout.)

House Boat, 05/30/16
(note suggestion of hyphen, as: implementation-specific)

http://www.w3.org/TR/ldp/
http://www.w3.org/TR/activitypub/
http://www.w3.org/TR/activitypub/
http://w3.org/TR/activitystreams
http://w3.org/TR/activitystreams
http://activitystrea.ms/specs/json/1.0/
http://activitystrea.ms/specs/json/1.0/
http://activitystrea.ms/specs/json/1.0/
https://github.com/solid/solid-spec#web-access-control
https://indiewebcamp.com/private-webmention
https://indiewebcamp.com/private_posts
http://w3c-social.github.io/activitypump/#authorization
http://w3c-social.github.io/social-web-protocols/#reading

edits suggested by Ann Bassetti, 30 May 16

W3C Recommendation. URL: http://www.w3.org/TR/ldp/
[Micropub]

Aaron Parecki. W3C. Micropub. 4 May 2016. W3C Working Draft. URL:
http://www.w3.org/TR/micropub/

[Salmentions]
Ben Roberts, Tantek Çelik. IndieWebCamp. Salmentions. Living specification. URL:
http://indiewebcamp.com/Salmention

[Solid]
Andrei Sambra. http://solid.mit.edu. Solid. W3C Editor's Draft. URL:
https://github.com/solid/solid-spec

[Webmention]
Aaron Parecki. W3C. Webmention. W3C Candidate Recommendation. URL:
http://w3.org/TR/webmention

[h-entry]
Reference not found.

page 12 of 12

http://w3.org/TR/webmention
http://w3.org/TR/webmention
https://github.com/solid/solid-spec
https://github.com/solid/solid-spec
http://indiewebcamp.com/Salmention
http://indiewebcamp.com/Salmention
http://www.w3.org/TR/micropub/
http://www.w3.org/TR/micropub/
http://www.w3.org/TR/ldp/

	Social Web Protocols
	W3C Editor's Draft 27 May 2016
	Abstract
	Status of This Document
	Table of Contents
	1. Overview
	1.1 Contents
	1.2 Social Web Working Group Drafts
	1.3 Other specifications
	1.4 Requirements

	2. Reading
	2.1 Content representation
	2.2 Objects
	2.3 Streams

	3. Creating content
	3.1 Updating
	3.2 Deleting

	4. Subscribing
	5. Delivery
	6. Profiles
	6.1 Relationships
	6.2 Authorization and access control

	A. References
	A.1 Informative references

