
Proposal for a SOAP/JMS testing strategy

Here is a high-level description of a possible approach for testing SOAP/JMS
conformance. There are lots of details yet to be determined, but the intent is to stimulate
some discussions.

First, let’s define (at a high level) the environment that will be tested. I tried to model
this after Eric’s picture in his email to the soapjms mailing list.

A SOAP/JMS implementation will likely consist of both a message producer and a
message receiver. Here’s a picture that describes the environment:

We have a web services client application (A) that is supported by the vendor’s client
runtime (B), which contains the message producer (C). The message producer (C) uses
the JMS API (D) to create and deliver request messages to the request queue or topic (E).
On the server side, the message receiver (G) is contained in the vendor’s server runtime
(H) and receives the request message from the request queue/topic (E) and processes it by
using the JMS API (F).

The main purpose of the conformance test would be to test components (C) and (G) to
verify that they are in compliance with the SOAP/JMS spec. Namely, that the message
producer (C) conforms to the behavior of a requesting SOAP node and that the message
receiver (G) conforms to the behavior of a responding SOAP node. By testing the
conformance of the message producer (C), one can ensure that it will interoperate with a

(A) Web service client
application (I) Web service

(B) Web services
client runtime

(H) Web services
server runtime

(G) Message
Receiver

(C) Message
Producer

(E) Incoming request
queue/topic

(D)JMS API (F)JMS API

conformant message receiver (G). Likewise, by testing the conformance of the message
receiver (G), one can ensure that it will interoperate with a conformant message producer
(C).

Test Suite Components
The test suite would consist of the following components:
• A set of web service client applications (A) that sufficiently exercise the vendor’s

client runtime (B) (including the message producer (C)) to cause various messages
to be sent to the request queue.

• A set of web service implementations (endpoints) that will allow the vendor’s
server runtime (H) (including the message receiver (G)) to be sufficiently
exercised.

• A mocked up version of the message producer (C) to be used for testing the
vendor’s message receiver (G).

• A mocked up version of the message receiver (G) to be used for testing the
vendor’s message producer (C).

The tests which make up the test suite would consist of a set that focuses on the message
producer (C) and a set that focuses on the message receiver (G). If a particular vendor
implementation includes only one of these components, then only the set of tests
corresponding to that component would need to be executed. Note: this last statement
might need to be thrown out if we will not allow a “partial” implementation to be
declared “compliant”.

Scenario 1 – Testing the vendor’s message producer
To test the vendor’s message producer (C), various client applications are executed (this
could consist of only a single client application which simply invokes all the necessary
web service requests). The client application will invoke web service operations which
will exercise the client runtime (B) which will, in turn, cause the message producer (C) to
send various messages to the request queue. A mocked up version of the message
receiver (G) is configured to listen on the queue. Each request message is delivered to
the message receiver (G) and it validates each message to ensure that it contains the
correct JMS message properties as outlined in the SOAP/JMS spec. For tests involving
the request-response MEP, it would also send a reply message back to the destination
specified by the request message’s JMSReplyTo header (in compliance with the
SOAP/JMS spec).

Note that I haven’t specified any details of how the JMS message is validated. Some
mechanism for examining and validating the messages that does not involve Java code
would be preferable. Perhaps we could convert the JMS message into some sort of
canonical form (this idea was taken from Amy’s proposal) and then compare it to a result
which is known to be correct.

Scenario 2 – Testing the vendor’s message receiver
To test the vendor’s message receiver (G), a mocked up version of the message producer
(C) is executed that will send a variety of request messages to the request queue. The

vendor’s message receiver (G) is configured to listen on the request queue. It receives
each request message and processes it by dispatching to the server runtime (H), which in
turn dispatches the request to the web service endpoint (I). For tests involving the
request-response MEP, the message receiver (G) would send a reply message to the
destination specified in the request message’s JMSReplyTo header. The message
producer (C) would then receive the reply message and validate it to ensure that it
contains the correct JMS message properties as outlined in the SOAP/JMS spec. As in
Scenario 1 above, the reply message could be converted by (C) into a canonical form so
that it can be compared to a known good result.

Conclusion
Basically, the idea is to separately test the message producer (C) and message receiver
(G) by driving the vendor’s runtime implementation with various web service
invocations, while using a mocked up version of the opposing component. The mocked
up version of the opposing component would use the JMS APIs to retrieve the various
properties from the message and convert the JMS message into a canonical form that can
then be used to validate the message contents.

