
SchemaBindingProposal-V3.doc

 Page 1 of 9

Schema Binding Proposal 1

Sandy Gao 2

Valentina Popescu 3
 4
1 Terminology ... 1 5

2 Problem definition .. 2 6

3 Requirements... 3 7

3.1 Support schema composition... 3 8

3.2 Support schema versioning ... 3 9

3.3 Deterministic .. 3 10

3.4 Full schema support... 3 11

3.5 Schema document exchange .. 3 12

4 Constraints ... 4 13

4.1 Support access to schema documents outside of SML-IF .. 4 14

4.2 Ignorable schema locations ... 4 15

4.3 Include definition and instance documents as-is ... 4 16

4.4 Lazy schema assembly.. 4 17

4.5 Support reference constraints .. 4 18

5 Interoperability Approach... 5 19

6 Schema binding proposal .. 5 20

6.1 An Example.. 5 21

6.2 Solution to the Example ... 6 22

6.3 Default Schema.. 6 23

6.4 Formal Proposal... 7 24

6.5 Proposal Analysis... 8 25

7 Implementation Cost .. 9 26

8 Acknowledgement.. 9 27

1 Terminology 28

Schema document: an <xs:schema> element; can be an XML fragment 29

Schema: a set of schema components; a schema is normally (but not required to be) 30
constructed from one or more schema documents 31

Schema component: an element declaration or a type definition or a particle or … 32

Include: A schema document can include another schema document using <xs:include>. 33
Both schema documents contribute to the same schema; and both correspond to 34
schema components from the same target namespace (or no namespace). If the 35
included schema document does not have a target namespace, namespace of 36
the including schema document is used. 37

SchemaBindingProposal-V3.doc

 Page 2 of 9

Redefine: Similar to include, but use <xs:redefine>, and the redefining schema document 38
can replace certain included components with new components. 39

Import: Allows the importing schema document to refer to components from the imported 40
namespace (or no namespace), which must be different from the importing 41
schema document’s target namespace. If the combination of the “namespace” 42
attribute and the “schemaLocation” attribute on <xs:import> resolves to a schema 43
document, then the resulting schema also includes components from the 44
imported schema document. 45

Schema composition: (In this document) construct a single schema from multiple schema documents, 46
using the above include, redefine and/or import mechanisms. 47

Note: “a schema” is not equal to “a schema document”! 48

2 Problem definition 49

In performing SML model validation over the SML model packaged in an SML-IF instance, associations 50
between XML Schema definition documents and instance documents need to be drawn, both to 51
completely validate XML Schema documents themselves (to make sure they produce valid schemas) and 52
to establish schema-validity of the instance documents. 53

Schema documents can be connected with other schema documents using composition features 54
provided by XML Schema. This includes <xs:include>, <xs:redefine>, and <xs:import>. A schema 55
document’s validity may depend on other schema documents it includes/redefines/imports, or even other 56
schema documents that include/redefine/import it. 57

When validating a model instance document, a precise list of schema documents need to be associated 58
with it for a “schema” and the instance document is schema-assessed using this schema. 59

The XML Schema 1.0 specification provides more flexibility in constructing the schema used for 60
assessment than is appropriate for the semantics defined by SML and SML-IF validation: 61

• It allows processor latitude in terms of locating schema documents (resolving namespace and 62
schema location attributes) and composing schema documents together to form a single schema. 63

• Schema location attributes can be ignored in some cases (“xsi:schemaLocation” in instance 64
documents and “schemaLocation” on <xs:import>); and allowed to “fail to resolve” in others 65
(“schemaLocation” attribute on <xs:include> and <import>). Known schema and SML 66
implementations behave differently with respect to how/whether they process schema location 67
attributes. 68

• Multiple imports of the same namespace allow all but the first one to be ignored. 69

So it is clear that we have no hope of guaranteeing general case interoperability using anything based 70
only on XML Schema given the constraints above, and SML-IF needs to specify how to determine such 71
associations. 72

NOTE: this proposal is only about SML model validation, and not SML-IF validation (against the IF 73
schema). Unless otherwise indicated, “validation/validity” in the following sections is always about SML 74
model validation. 75

SchemaBindingProposal-V3.doc

 Page 3 of 9

3 Requirements 76

3.1 Support schema composition 77

There are many real-life schemas that are constructed from multiple schema documents. Such schemas 78
may span multiple namespaces (hence the need for import); components from each namespace may be 79
further divided into multiple schema documents (hence the need for include). 80

Schema has a feature often referred to as “chameleon include”. This means that a schema document 81
with a target namespace includes or redefines another schema document without a target namespace, 82
and the result is as if the included/redefined document had a target namespace that’s the same as the 83
including/redefining document. SML-IF needs to support this usage scenario. 84

3.2 Support schema versioning 85

Schema authors can’t anticipate how their schemas will be used, hence the need to evolve schemas. 86
There are different versioning scenarios. There are cases where minor modifications of older versions 87
suffice, and redefine can be used. Some schemas need to be rewritten to accommodate new 88
requirements, and new namespace may or may not be introduced (compatibility is often a good reason 89
for not changing namespaces). There are also cases where there are generic and specific versions (as 90
opposed to previous and next versions), which often co-exist and share the same namespace. 91

To support this, SML-IF needs to be able to package in the same SML-IF instance different versions of 92
the same schema in the same namespace. 93

3.3 Deterministic 94

For a given SML-IF instance, there MUST be no ambiguity in determining how schema documents (that 95
are included in this instance) are connected using <xs:include>, <xs:redefine>, and <xs:import>, and 96
therefore MUST be no ambiguity in determining which schema documents are used to form a schema 97
against which a given instance document is validated. 98

3.4 Full schema support 99

Being a generic validation language, SML supports all schema features. Being a mechanism to transmit 100
SML models, SML-IF also needs to support full schema features, especially <xs:include>, <xs:redefine>, 101
and <xs:import>. For example, in an SML model, if an instance document I is validated against a schema 102
formed from a schema document A, which redefines schema document B, then it MUST be possible to 103
transmit I, A, and B in an SML-IF instance and maintain their relationship. 104

3.5 Schema document exchange 105

An SML-IF document can contain XML Schema documents within its definition documents that are 106
attached for exchange purposes only. These documents are not intended to be used for XML Schema 107
validity assessment of the model instance documents. SML-IF needs to support this use case and 108
ensure that documents of this purpose do not participate in model instance document validation. 109

This is analogous to the case we already have for rule documents, except rule documents do not have a 110
“bind to all” default as we are contemplating for XML Schema documents. Any new types of definition 111
documents added in the future will have to address similar concerns, whose syntax will be influenced by 112
the default binding (all or none). 113

Note that for both schema documents and Schematron rule documents that are not bound to any 114
instances, their validity should still be checked when assessing SML model validity, as required by SML, 115
which has: 116

SchemaBindingProposal-V3.doc

 Page 4 of 9

• Each XML Schema document in the model's definition documents MUST satisfy the conditions 117
expressed in Errors in Schema Construction and Structure (§5.1). [XML Schema Structures] 118

• Each Schematron document in the model's definition documents MUST be a valid Schematron 119
document [ISO/IEC 19757-3] 120

4 Constraints 121

4.1 Support access to schema documents outside of SML-IF 122

We do not want to force all schemas necessary to validate the model instance documents packaged by a 123
single SML-IF instance to be included by value in every SML-IF instance. It is not clear this would even 124
be sensible in a repository interchange scenario, let alone the more general case of usage scenarios 125
some have mentioned for SML-IF like web services message exchanges. 126

4.2 Ignorable schema locations 127

We cannot require honoring of xsi:schemaLocation and xsi:noNamespaceSchemaLocation in instance 128
documents or schemaLocation on <xs:import>, because 129

• Some existing implementations ignore them 130

• Honoring schema location in instance documents may have security consequences 131

Schema specification does require that processors attempt to resolve schema locations specified on 132
<xs:include> and <xs:redefine>. It is not an error for such attempt to fail for <xs:include>. It is an error 133
when <xs:redefine> contains non-annotation content. 134

It’s more flexible for <xs:import>. Schema allows any strategy for processors to locate components to 135
import, based on either or both of the namespace and the schema location. 136

4.3 Include definition and instance documents as-is 137

SML-IF instance producers may not have control over the content of the schemas necessary for 138
validation of model instance documents, where “control” means what is coded in the files. I.e. there will 139
be cases where xs:import and xs:include are coded, with and without schemaLocation, and multiple files 140
containing schema components for the same namespace will be observed. 141

4.4 Lazy schema assembly 142

Schema specification allows schemas to be assembled lazily. A partial schema can be used to validate 143
an instance document, and more components can be added to the schema during the validation, as long 144
as the new components don’t change the validation result of information items that are already validated. 145

This is sometimes not easy to enforce, but a consequence of “supporting full schema” implies that SML-IF 146
validation cannot violate this constraint. 147

4.5 Support reference constraints 148

Reference-related constraints (targetElement, targetType, acyclic, SML identity constraints) need to be 149
properly supported. When 2 documents A and B are connected by an SML reference, these constraints 150
require the ability to determine whether a component from the schema used to assess A is identical to a 151
component from the schema used to assess B. The schema spec doesn't define identity of components 152
across multiple schemas. The same source declaration may produce totally different components in 153
different schemas. So to check those reference-related constraints, related instance documents MUST 154
be validated using the same schema. 155

SchemaBindingProposal-V3.doc

 Page 5 of 9

5 Interoperability Approach 156

We divide the universe of SML-IF documents into two disjoint subsets: 157

• A set that have all schema documents included, by value (smlif:data) and/or by reference 158
(smlif:locator), in the SML-IF instance; the “schema-complete set” 159

• All other SML-IF documents; the “schema-incomplete set” 160

It is necessary for a producer to declaratively distinguish between these two cases, since it is not always 161
possible to distinguish based on the content alone. For example, XML Schema allows xs:include’s 162
schema location attribute’s value to not resolve, although the value is required. This can be done by 163
introducing a “schemaComplete” attribute on the <smlif:definitions> element to indicate whether this SML-164
IF instance includes all necessary definition documents. 165

When this attribute is specified with an actual value “true”, then for the instance to be valid, its schema 166
definition documents and instance documents can only refer to either built-in components or components 167
from definition documents included in the instance. “Built-in” components include: 168

• 4 xsi: attributes (defined by XML Schema) 169

• all schema built-in types (xs:anyType and simple types defined in XML Schema Part 2) 170

• sml:ref attribute declaration 171

• sml:uri element declaration 172

Remember, this is not trying to say that SML-IF document instances in the schema-incomplete set are 173
now invalid. It does say that SML-IF cannot guarantee interoperability for the schema-incomplete set. 174

6 Schema binding proposal 175

6.1 An Example 176

(See the picture next page) Assume an SML model packaged in an IF document has 4 schema 177
documents: xsd1-a and xsd1-b have target namespace ns1, and xsd2-v1 and xsd2-v2 have target 178
namespace ns2, where xsd2-v1 and xsd2-v2 are conflicting versions of the same schema (same target 179
namespace). There are 4 instances: doc1 uses xsd1-a and xsd1-b; doc2-v1-a and doc2-v1-b uses 180
xsd2-v1, and doc2-v2 uses xsd2-v2. All doc2-* instances have SML references to doc1, and their 181
references have targetType constraints, pointing to a component in ns1. 182

To check targetType, doc2-v1-a, doc2-v1-b and doc1 must be validated using the same schema (xsd1-183
a + xsd1-b + xsd2-v1); similarly, doc2-v2 and doc1 must be validated using the schema from xsd1-a + 184
xsd1-b + xsd2-v2. More concretely, in the following picture, instances in the red rectangle are validated 185
using the schema built from schema documents in the red oval; and instances in the blue rectangle are 186
validated using the schema built from the blue oval. 187

Note that doc1 is validated twice using 2 different schemas. doc1 may also be validated against only 188
xsd1; this is up to the model author to specify. 189

 190

SchemaBindingProposal-V3.doc

 Page 6 of 9

 191

6.2 Solution to the Example 192

 <schemaBindings> 193
 <!-- Each "schemaBinding" element corresponds to a schema and model 194
 instance documents that are assessed aga inst this schema --> 195
 <schemaBinding> 196
 <!-- all "namespaceBinding" children togeth er build the schema --> 197
 <namespaceBinding namespace="ns1" aliases=" xsd1-a xsd1-b"/> 198
 <namespaceBinding namespace="ns2" aliases=" xsd2-v1"/> 199
 <!-- list all applicable instances; same as for rule bindings --> 200
 <documentAlias>doc1</documentAlias> 201
 <documentAlias>doc2-v1-a</documentAlias> 202
 <documentAlias>doc2-v1-b</documentAlias> 203
 </schemaBinding> 204
 <schemaBinding> 205
 <namespaceBinding namespace="ns1" aliases=" xsd1-a xsd1-b"/> 206
 <namespaceBinding namespace="ns2" aliases=" xsd2-v2"/> 207
 <documentAlias>doc1</documentAlias> 208
 <documentAlias>doc2-v2</documentAlias> 209
 </schemaBinding> 210
 </schemaBindings> 211
 <definitions schemaComplete="true"> 212
 <!-- schema documents for xsd1-a, xsd1-b, xsd 2-v1, xsd2-v2 --> 213
 </definitions> 214

 215

6.3 Default Schema 216

There are cases where most instance documents use the same schema. It’s desirable to have a default 217
schema to cover this case, instead of having to have a <schemaBinding> that lists all those instances. 218

For example, if an IF document contains 3 schema documents: ns1.xsd, ns2.xsd, and ns2-exchange.xsd, 219
where the latter 2 documents share the same target namespace, but ns2-exchange.xsd is meant to be 220
exchanged only and should not be considered as part of the schema that governs instance documents. 221
This can be achieved using the following syntax: 222

doc1

xsd2-v1

doc2-v1-a

doc2-v1-b

xsd2-v2

doc2-v2

xsd1-a

xsd1-b

SchemaBindingProposal-V3.doc

 Page 7 of 9

 <schemaBindings> 223
 <!-- The "defaultSchema" element corresponds to a schema that governs 224
 all instance documents *not* included in any "schemaBinding". --> 225
 <defaultSchema> 226
 <!-- all "namespaceBinding" children togeth er build the schema --> 227
 <namespaceBinding namespace="ns1" aliases=" ns1.xsd"/> 228
 <namespaceBinding namespace="ns2" aliases=" ns2.xsd"/> 229
 </defaultSchema> 230
 </schemaBindings> 231

“defaultSchema” can be used together with “schemaBinding” as a default to cover instances documents 232
that are not included in any “schemaBinding”. 233

6.4 Formal Proposal 234

1. Change the IF document structure to add the following (new content highlighted): 235

<model> 236
... 237
<ruleBindings> ? 238
 <ruleBinding> * 239
 <documentAlias="xs:anyURI"/> ? 240
 <ruleAlias="xs:anyURI"/> 241
 </ruleBinding> 242
</ruleBindings> 243
<schemaBindings> ? 244
 <defaultSchema> ? 245
 <namespaceBinding/> * <!-- a single namespace name 246
 and list of schema document aliases --> 247
 </defaultSchema> 248
 <schemaBinding> * 249
 <namespaceBinding/> * <!-- a single namespace name 250
 and list of schema document aliases --> 251
 <documentAlias/> * <!-- a list of instance document aliases --> 252
 </schemaBinding> 253
</schemaBindings> 254
... 255
<definitions schemaComplete=”xs:boolean”> ? 256
... 257

</model> 258

The details of the preceding XML syntax, e.g. whether the data is contained in attributes or elements, 259
is fully negotiable. The XML above simply captures enough to have the discussion that follows. 260

2. For every schema binding SB in the model, i.e. every “/model/schemaBindings/schemaBinding” 261
element (using XPATH notation): 262

2.1. Compose a schema using all documents specified under all SB’s <namespaceBinding> children 263

2.2. Whenever there is an <import> for a namespace N 264

2.2.1. If there is a <namespaceBinding> child of SB whose "namespace" matches N, then 265
components from schema documents listed in the corresponding "aliases" are used. As 266
with rule bindings, URI prefixing is used for matching schema document aliases. 267

Note: at most one <namespaceBinding> is allowed per namespace N within a given SB. If 268
more than one namespace binding exists for the namespace as part of a single schema 269
binding, the SML-IF instance is in error. 270

Note: if the set of aliases for namespace N is empty, the namespace has no schema 271
documents defining it in the schema binding. 272

Deleted: ¶

Deleted: and

Deleted: ¶

SchemaBindingProposal-V3.doc

 Page 8 of 9

2.2.2. Otherwise if there are schema documents in the IF whose targetNamespace is N, then 273
components from all those schema documents are used 274

2.2.3. Otherwise 275

2.2.3.1. If a schema-complete document (/model/definitions/@schemaComplete=true) is 276
being processed, then no component from N (other than built-ins) is included in the 277
schema being composed 278

2.2.3.2. Otherwise, it is implementation-defined whether the processor tries to retrieve 279
components for N from outside the SML-IF instance 280

2.3. Whenever there is an <include> or <redefine>, the schemaLocation is used to match aliases of 281
schema documents, as with base SML-IF. 282

2.3.1. If there is a schema document in the IF matching that alias, then that document is used 283

2.3.2. Otherwise 284

2.3.2.1. If it's a schema-complete set, then the <include> or <redefine> is unresolved (which 285
is allowed by XML Schema validity assessment rules) 286

2.3.2.2. Otherwise, it's implementation-defined whether it tries to resolve <include> or 287
<redefine> to schema documents outside the IF 288

2.4. The list of <documentAlias> documents are assessed against this *same* schema. targetXXX 289
and identity constraints can now be checked. Similar to <documentAlias> under <ruleBinding> 290
elements, each <documentAlias> can refer to multiple documents via URI prefixing. 291

3. If <defaultSchema> is present, then compose a schema from it following rules 2.1 to 2.3 above; 292
otherwise compose a schema using *all* schema documents included in the IF. Then use this 293
schema to assess those instance documents that are not included in any <schemaBinding>. 294

Note: in the common case where match-all namespace matching is the desired result, this is achieved by 295
omitting <schemaBindings>, i.e. without introducing any additional complexity into the SML-IF instance. 296

Note: one implication of this formulation is that the Schema document exchange requirement of section 297
3.5 is supported. This would be done by explicitly binding /model/instances/* to a schema binding that 298
excludes the exchange-only schemas. The model instance documents may still contain information items 299
from namespace(s) in the exchange-only schemas, however those schema documents would not be 300
used to assess schema validity of the model instance documents. 301

6.5 Proposal Analysis 302

• Great synergy with <ruleBindings> 303

o It works in a way very similar to Schematron rules. You associate a schema (built from a 304
set of schema documents) with a set of instance documents 305

• Handles all the requirements 306

o Supports schema composition: chameleon included documents is supported by removing 307
them from the corresponding <namespaceBinding> (whose “namespace” attribute is 308
absent) 309

o Supports schema versioning: multiple versions can be specified in different 310
<schemaBinding> elements 311

o Deterministic: the association between instances and schemas is deterministic 312

o Full schema support: <include/redefine/import> are all supported 313

o Schema document exchange: similar to chameleon included documents, exchange-only 314
documents can also be omitted from the corresponding <namespaceBinding> 315

• Meets all the constraints 316

Deleted: C

Deleted: , t

Deleted: 3.5

SchemaBindingProposal-V3.doc

 Page 9 of 9

o Supports access to schema documents outside of SML-IF: when schemaComplete=false, 317
processors are allowed to use external schema documents 318

o Ignorable schema locations: all xsi:schemaLocation attributes can be ignored 319

o Includes definition and instance documents as-is: no need to modify any included 320
document; document aliases are used. 321

o Lazy schema assembly: the schema is known up-front; no need to handle lazy assembly 322

o Supports reference constraints: instances specified under the same <schemaBinding> 323
use the same schema, so reference constraints can be checked. 324

• Simple to understand 325

• This has may Note that the “trivial case” is also handled by bullet 2. That is, there is no 326
<schemaBinding> and all instance documents are assessed against the same schema. 327

7 Implementation Cost 328

We have to assume that all existing schema processors are capable of handling the "namespace 329
matching" approach. That is, they can compose a schema from a list of schema documents. 330

This approach should be straightforward to handle. All the SML processor needs to do is to compute a 331
list of schema documents based on schema documents mentioned in <schemaBinding> and give that list 332
to the schema processor. 333

The “Explicit Binding” approach from earlier iterations of this proposal had what we believe is equivalent 334
function, but was eliminated because it also had greater complexity (four levels of binding to sift through, 335
instead of the two used here, i.e. schema binding and match-all namespace matching). 336

8 Acknowledgement 337

John Arwe, Bassam Tabarra, Harm Sluiman, and Pratul Dublish all provided useful input into the 338
formulation of this document. This does not imply their endorsement of the proposal. 339

