
Appendix to ShEx Specification (Proof that the
semantics is independent on the chosen

stratification)

Iovka Boneva

1 Definitions
We use the following notions defined in the ShEx 2.0 specification.

Consider an arbitrary RDF graph G , and an arbitrary ShEx schema Sch than
satisfies the schema requirements as defined in Section 5.7 of ShEx Specification,
fixed for the sequel of the document.

The shapes of Sch are as defined in Section 5.5.1 of ShEx Specification.
The dependency graph of Sch is as defined in Section 5.7.4 of ShEx Specifica-

tion. Its vertices are the shapes of Sch.
A reference, resp. negated reference, from shape s1 to shape s2 of Sch, are as

defined in Section 5.7.4 of ShEx Specification.
We recall that a typing of G and Sch is a set of pairs (n, s) where n is a node

in G and s is a shape in Sch.
A correct typing is as defined in Section 5.2 of ShEx Specification.
We recall that the number of strata of Sch is the number of maximal strongly

connected components (written mscc for short) of its dependency graph.
Let k be the number of strata of Sch. We assume that k ≥ 2.1
We recall that a stratification of Sch is a function stratum that with every

shape of Sch associates a natural between 1 and k s.t.

• If the shapes s1 and s2 belong to the same mscc, then stratum(s1) =
stratum(s2)

• If there is a reference from shape s1 to s2 in Sch and s1, s2 do not belong
to the same mscc, then stratum(s2) < stratum(s1).

We recall the definition of completeTypingOn(i,G ,Sch) for 1 ≤ i ≤ k. In
ShEx Specification it is defined w.r.t. some fixed stratification, here we extend
that definition by giving the stratification as parameter. Thus, let stratum be a
stratification of Sch. We define

• completeTypingOnstratum(1,G ,Sch) is the union of all correct typings that
contain only pairs (n, s) with stratum(s) = 1;

• for every 1 ≤ i ≤ k, completeTypingOnstratum(i,G ,Sch) is the union of all
correct typings that:

1If k = 1, then there exists a unique stratification of Sch and the property of the semantics
that we want to show is trivial.

1



– contain only pairs (n, s) with stratum(s) ≤ i, and
– are equal to completeTypingOnstratum(i− 1,G ,Sch) when restricted

to their pairs (n ′, s ′) for which stratum(s ′) < i.

For a typing , an RDF node n and a shape s , the predicate matches(n, s,G ,Sch, typing)
is as defined is Section 5.5.2 of ShEx Specification.

We will show that

Theorem 1. For any two stratifications stratum1 and stratum2 of Sch, it holds

completeTypingOnstratum1(k,G ,Sch) = completeTypingOnstratum2(k,G ,Sch).

2 Proof of the theorem
The proof is an adaptation of the proof that the semantics of a stratified
Datalog program is independent on the choice of a stratification, as shown in
Theorem 15.2.10 in 2

We start by recalling some folklore results.
A mscc of a graph is a subgraph induced by some set of vertices, therefore

can be identified with that set set of vertices. Let V be the set of mscc of the
dependency graph of Sch, that is, the elements of V are sets of shapes lying
on the same mscc of the dependency graph of Sch. We denote with [k] the set
{1, . . . , k}.

A stratification stratum of Sch can be lifted to a function from V to [k] by:
for every C ∈ V , stratum(C) is the unique 1 ≤ j ≤ k s.t. stratum(s) = j for
some shape s in C.

By the definition of a stratification, it follows that

Claim 2. stratum : V → [k] is a bijection for every stratum stratification of
Sch.

As usual, stratum−1 denotes the inverse function of stratum.
Let D be the graph which set of vertices is V and that has an edge (C,C ′)

iff there exist s shape in C and s ′ shape in C ′ s.t. there is a reference from s to
s ′ in Sch. For C,C ′ two mscc of Sch, we write C ≺ C ′ if there is a path from
C ′ to C in D.

As it is usual with stratification (e.g. with stratified Datalog programs):

Claim 3. The graph D is acyclic and ≺ is a partial ordering relation on V ; we
denote � its reflexive closure.

Claim 4. Every stratum stratification of Sch satisfies stratum(C) < stratum(C ′)
iff C ≺ C ′.

In other words, every stratification of Sch is a linearization of the partial
ordering ≺. Threfore, if stratum and stratum ′ are two stratifications of Sch,
then stratum ′ can be obtained from stratum by a finite sequence of permutation
of two adjacent ≺-incomparable elements. More formally:

2Negation in Datalog. Chapter 15 in Foundations of Databases by Serge Abiteboul, Rick
Hull and Victor Vianu. Published by Addisson Wesley, 1994.

2



Claim 5. If stratum and stratum ′ are two stratifications of Sch, then there
exists a finite sequence of stratifications stratum1, . . . , stratumn s.t. stratum =
stratum1, stratum ′ = stratumn, and for every 1 ≤ i < n, there exists a natural
1 ≤ j < k s.t. stratum and stratum ′ differ only on their pre-images for j and
j + 1, with:

• stratum−1
i+1(j) = stratum−1

i (j + 1),

• stratum−1
i+1(j + 1) = stratum−1

i (j), and

• stratum−1
i (j) and stratum−1

i (j + 1) are incomparable for the ≺ ordering
relation.

We now give the elements of the proof that are specific to the semantics of ShEx.

Lemma 6. Let stratum and stratum ′ be two stratifications of Sch and 1 ≤ j < k
s.t. stratum and stratum ′ differ only on their pre-images for j and j + 1.
Then completeTypingOnstratum(j + 1,G ,Sch) = completeTypingOnstratum

′
(j +

1,G ,Sch).

An immediate corollary of the above lemma is that with the same hypotheses,
completeTypingOnstratum(k,G ,Sch) = completeTypingOnstratum

′
(k,G ,Sch).

Then Proposition 1 is shown by applying inductively Lemma 6 on the finite
sequence of local permutations of ≺-incomparable elements described in Claim 5
that allow to change stratum to stratum ′.

In the sequel we prove Lemma 6, starting by some technical results.
The following claim is a consequence of the definitions of matches predicate

and is shown using an induction on the ≺ ordering relation. It intuitively states
that whether a node matches a shape s depends only on the shapes to which s
refers directly or indirectly.

Claim 7. For every n, s and typing, it holds that

matches(n, s,G ,Sch, typing) iff matches(n, s,G ,Sch, typing�s)

where typing�s is typing restricted only on those shapes that precede s for the �
ordering. Formally, if Cs is the mscc of Sch that contains s and Nodes(G) is
the set of RDF nodes in G, then

typing�s = typing ∩

Nodes(G)×
⋃

C∈V,C�Cs

C



The following claim is a technical corollary of Claim 7.

Claim 8. Let 1 < j < k and let C1, . . . , Cj−1, Cj , Cj+1 be a sequence of distinct
elements of V compatible with the ≺ ordering, and s.t. Cj and Cj+1 are
incomparable for ≺. That is:

3



• Ci ∈ V for any 1 ≤ i ≤ j + 1, and

• if i < l, then Cl 6≺ Ci, and

• Cj 6≺ Cj+1 and Cj+1 6≺ Cj.

Let C =
⋃

1≤i≤j−1 Ci. Let T be a typing using only shapes from C, typingj be a
typing using only shapes from Cj, and typingj+1 be a typing using only shapes
from Cj+1.

Then T∪typingj∪typingj+1 is a correct typing iff T∪typingj and T∪typingj+1

are both correct typings.

Proof of Lemma 6. Denote Tx = completeTypingOnstratum(x,G ,Sch) and
T ′
x = completeTypingOnstratum

′
(x,G ,Sch) for x ∈ [k], end let T0 = T ′

0 = ∅. It
immediately follows from the hypotheses that Tj−1 = T ′

j−1, we set T = Tj−1 in
the sequel.

Let typingj be the restriction of Tj on the shapes in Cj , typingj+1 be the
restriction of Tj+1 on the shapes in Cj+1, and similarly typing ′j be the restriction
of T ′

j on Cj+1 and typing ′j+1 be the restriction of T ′
j+1 on Cj .

Then by definition of completeTypingOn it follows that Tj , Tj+1, T ′
j and T ′

j+1

can be written as the disjoint unions:

• Tj+1 = T ∪ typingj ∪ typingj+1,

• T ′
j+1 = T ∪ typing ′j ∪ typing ′j+1.

It also follows by Claim 8 and by the hypotheses that these four are correct
typings:

• T ∪ typingj

• T ∪ typingj+1

• T ∪ typing ′j

• T ∪ typing ′j+1

Still using Claim 8 and the definitions we can show that Tj = T ∪ typingj and
T ′
j = T ∪ typing ′j , and finally that typingj = typing ′j+1 and typingj+1 = typing ′j ,

from which the lemma follows immediately.

4


