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Abstract 

Structured Product Labels (SPLs) contain information about drugs that can be valuable to clinical and translational 

research, especially if it can be linked to other sources that provide data about drug targets, chemical properties, 

interactions, and biological pathways. Unfortunately, SPLs currently provide coarsely-structured drug information 

and lack the detailed annotation that is required to support computational use cases.  To help address this issue we 

created LinkedSPLs, a Linked Data resource that extends the "web of drug identity" using information extracted 

from SPLs. In this paper we describe the mapping that LinkedSPLs provides between SPL active ingredients and 

DrugBank chemical entities.  These mappings were created using three approaches:  InChI chemical structure de-

scriptors comparison, exact string matching based on the chemical name, and automatic (unsupervised) linkage 

identification.  Comparison of the approaches found that, while these three approaches are complementary, the au-

tomatic approach performs well in terms of precision and recall. 

Introduction 

The product labels for many drugs marketed in the United States (US) contain important knowledge that can support 

clinical and translational research use cases. This knowledge includes relationships between genes, diseases, drugs, 

and adverse events that can help clinicians improve the safety and effectiveness of treatments, and translational re-

searchers develop novel bioinformatics algorithms. Unfortunately, knowledge written into the product label is cur-

rently available only in unstructured text and HTML tables, introducing significant challenges to computational 

analysis of the knowledge, and its integration with existing knowledge bases. We are addressing these issues by de-

veloping a new Linked Data resource called LinkedSPLs that provides content from product labels for Food and 

Drug Administration’s (FDA) approved prescription and over-the-counter (OTC) drugs
1
. One long-term goal of the 

project is to develop a reference resource that links the textual content of drug product labels with semantically-

labeled annotations extracted either manually or automatically by the NLP and Semantic Web communities. Another 

goal is to make both the original and extracted product label content queryable using drug identifiers present in drug 

information resources that are being used by the translational research community. We envision that this will enable 

drug product labels to be crawled, cached, and analyzed in innovative ways that will help advance clinical and trans-

lational research. This paper focuses on progress we have made toward the second goal. We discuss how drug prod-

uct active ingredients have been mapped to DrugBank 3.0
2
, a source of drug knowledge used widely by the transla-

tional research community. We find that several complementary approaches are required to achieve the goal of 

providing a trustworthy mapping with good coverage. We discuss the strengths and limitations of the individual 

approaches and the combined approach that we implemented. 

Background 

The FDA requires industry to submit drug product labels using a Health Level Seven standard called Structured 

Product Labeling
3
. A Structured Product Label (SPL) is an XML document that specifically tags the content of each 

product label section with a unique code from the Logical Observation Identifiers Names and Codes (LOINC®) 

vocabulary
4
. The SPLs for all drug products marketed in the United States are available for download from the Na-

tional Library of Medicine's DailyMed resource
5
. At the time of this writing, DailyMed provides access to more than 

36,000 prescription and OTC product labels. In addition to the ability to download SPLs, DailyMed also provides a 

query interface that supports retrieval of HTML and PDF versions of the product label generated by an XSLT trans-

form of an SPL document. Visitors to DailyMed can use a web form to search for product labels using a variety of 

queries including the product's drug name, drug class, National Drug Codes, and a unique identifier called a ‘setid’ 

that is assigned to each SPL. However, a number of potentially useful queries are not yet supported including 

searching for labels manufactured by a specific company, or by version or date. There is rudimentary support for 

querying product labels that mention specific drugs, genes, or side effects, but no way to issue such queries using 

identifiers from other very commonly used drug information sources such as RxNorm
6
, ChEBI

7
, or DrugBank

2
.  
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The ability to perform such a cross-resource query is desirable because many sources of drug information are com-

plementary to each other. For example, RxNorm provides normalized names for the drug products and Unified Med-

ical Language System mappings from the drug product and its active ingredients to concepts in numerous other vo-

cabularies. DrugBank contains information on the specific biochemical targets that a drug entity may influence, ma-

jor enzymatic pathways, and potential drug-drug interactions
2
. While information on the latter two items may be 

present in the SPLs, it is hidden in the unstructured text. Similarly, ChEBI provides a rigorous classification of drug 

entities using a formal ontology maintained by members of the OBO
7
. Both resources provide links to other im-

portant drug taxonomies (such as the ATC system) as well as resources that provide further information on the genes 

that encode drug targets, metabolism and transport of the drug, and diseases that the drug may help treat.  

A promising technology that can enable cross-resource queries of SPLs is Linked Data
8
. A resource created using 

Linked Data principles provides a Uniform Resource Identifier (URI) for each data item and links to the URIs of 

data present in complementary Linked Data sources
8
. Once appropriately annotated, Linked Data can be searched, 

crawled, cached, and analyzed, with interconnections providing rich context that would be unavailable from any 

single database
9
. Over the past several years, considerable effort has been exerted to make health care and life sci-

ences data available as Linked Data
10
, and to enrich the resulting resources with data spanning discovery research 

and drug development
11
. This has resulted in billions of drug-related triples now publically available in RDF

12
. 

Among these is a pilot Linked Data resource for SPLs that was developed prior to 2011 by members of the Linked 

Open Drug Data (LODD) task force of the W3C Health Care and Life Sciences Interest Group
13
. This pilot resource, 

which we will refer to as LODD DailyMed, demonstrated the feasibility of converting SPLs to an RDF dataset con-

taining external mappings to a variety of other resources in the LODD Cloud including ClinicalTrials.gov (via 

LinkedCT
14
) and Wikipedia (via DBpedia

15
).  

While an important pilot project, the LODD DailyMed does not include all marketed drug products or keep current 

with the frequent changes to the SPL corpus available from the NLM DailyMed site. Other limitations of the dataset 

include inaccurate representation of drug products with more than one active ingredient, and several missing links to 

external resources along with non-Unicode formatting that made basic linkage by string matching difficult. Since the 

LODD DailyMed is no longer an active project, we are developing a new Linked Data resource for SPLs designed 

to support the needs of the clinical and translational research community
1
. Our goal is to provide several features in 

the new resource (LinkedSPLs) including  

• the provision of section content and metadata for all SPLs for FDA-approved prescription and OTC drugs, 

• weekly updating of SPL content using an RSS feed from the NLM DailyMed site, 

• a mapping for all active moieties and product labels to RxNorm persistent URLs provided by the National 

Center for Biomedical Ontology’s BioPortal SPARQL endpoint
16
, 

• mappings from drug product active ingredients to the National Drug File Reference Terminology
17,18

, 

• annotated pharmacogenomics statements in the SPL referenced by an FDA biomarker table
19
, and 

• SPL versioning data so that researchers can record the provenance of the source information.   

A feature we are currently providing in LinkedSPLs is trustworthy mappings between the URIs for active ingredi-

ents in drug products to other important sources of complimentary drug information that have been made available 

as Linked Data. The remainder of this paper discusses how SPL active ingredients have been mapped to DrugBank 

3.0
2
, a particularly relevant member of this “web of drug identity”. 

Methods 

The SPL for all FDA-approved prescription and OTC drugs were downloaded from the NLM’s DailyMed re-

source
20
. Custom scripts were written that load the content of each SPL into a relational database. The active moie-

ties and products present in each SPL were mapped to RxNorm unique identifiers (RxCUIs) through RxNorm ingre-

dient strings and this mapping was added to the database. The relational database was mapped to an RDF knowledge 

base using a relational to RDF mapper
21
. The mapping from the relational database to RDF was derived semi-

automatically and enhanced based on our design goals, and a final RDF dataset was generated which is hosted on a 

Virtuoso RDF server (http://virtuoso.openlinksw.com/) that provides SPARQL endpoint
a
. We then tested three ap-

proaches to mapping the SPL active ingredients present in LinkedSPLs to DrugBank drugs (Figure 1). All experi-

ments attempted to map active ingredients present in drug products with SPLs in DailyMed as of August 30, 2012 

for which we could find preferred terms in the March 2012 version of the FDA UNII table. This helped to avoid 

attempting to map drugs that were very recently released to the market and thus, might not be listed in DrugBank. 

                                                 
a
 The SPARQL endpoint is at http://purl.org/net/linkedspls/sparql; sample data can be viewed at http://purl.org/net/linkedspls.  
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Approach 1 – Using InChI chemical structure descriptors: Previous experience by the LODD community suggests 

that chemical structure descriptors, such as the IUPAC International Chemical Identifier (InChI), may be useful for 

establishing links between drug resources
10
. We implemented this method by first mapping FDA-provided structure 

strings for each active ingredient to InChI identifiers (specifically InChIKey), and then querying DrugBank for drug 

records that provided the InChI identifiers. The Chemical Identifier Resolver
22
 is a free service useful for converting 

between various string-based chemical identifiers and structure formats. We used the REST API provided by the 

Resolver to convert structure strings provided by the FDA for each active ingredient to chemical InChI identifiers. 

We then issued SPARQL queries against the Bio2RDF DrugBank endpoint
23
 for any drug record that provided the 

InChI identifiers that we retrieved from the Resolver.  

Approach 2 – Exact string matching followed by property 

matching: The second method that we tested is based on the 

knowledge that DrugBank itself provides many mappings to 

external drug resources. One of the resources is ChEBI, 

which is also available through the BioPortal’s SPARQL 

endpoint
24
. Because BioPortal’s endpoint provides preferred 

names for all of the concepts it stores, it is possible to map 

from the preferred name of many FDA active ingredients to 

ChEBI using an exact case-insensitive string match. Drug-

Bank can then be queried through the SPARQL endpoint 

provided by Bio2RDF
23
 for drug records that provide links to 

the ChEBI identifiers returned by the string match.  

Approach 3 – Automatic link identification: Approaches 1 

and 2 are based on expert judgment about potentially reason-

able linkage paths between the two resources. However, 

there might be other linkage paths that perform as well as, or 

even better, than these approaches. We tested a third experi-

mental approach that automatically identified pairs of attrib-

utes (properties) that can be used to establish links between 

the two data sets. We refer to such attribute pairs as linkage 

points. The method took as input 1) a table listing the pre-

ferred name for all FDA active ingredients and associated 

synonyms within the FDA’s Substance Registration System, 

and 2) XML data containing all DrugBank 3.0 records. The 

method then: 

1. Indexed the values of all the attributes in each source, 

i.e., indexed non-empty cells of each column in the FDA 

table and the literal values of all the XML tags and at-

tributes in the DrugBank XML. The values are indexed 

using several string analyzers. Each string analyzer 

transforms the string values using one or several of the 

following operations a) transforming the values into 

lowercase b) removing non-alphanumeric characters c) 

splitting the string into word tokens d) splitting the 

strings into q-gram tokens, i.e., substrings of length q of 

the string. The result is an indexed value set for each attribute (FDA table column or DrugBank XML 

tag/attribute). 

2. Searched for linkage points by measuring the similarity of each pair of value sets created in Step 1 using two 

different approaches. One approach was based on measuring the similarity of the value sets using set similarity 

measures such as the Jaccard coefficient. The second approach was based on taking a sample of each value set, 

and running a similarity search over all the other attributes using the state-of-the-art BM25
25
 similarity measure.  

3. The result of Steps 1 and 2 is a list of FDA active ingredient – DrugBank attribute pairs, where each pair is as-

signed similarity scores derived from each analyzer and similarity function. The method further prunes the list 

based on the cardinality of the values sets and the number of values that can be linked using the pair (i.e., their 

coverage of each source). The most suitable set of analyzers and similarity metrics are then chosen based on the 

average top-k similarity scores returned.  

 

Figure 1. An overview of the three mapping methods 
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4. The final step was to use the linkage points along with the suitable analyzers and similarity metrics identified in 

Step 3 to establish links between the entities in the two data sets. The method uses the most suitable analyzer 

and similarity function along with the top k potential linkage points to establish the links. The method then 

prunes any entity (i.e., active ingredient or DrugBank identifier) that is linked to more than M entities in the 

other data set. For active ingredients and DrugBank, we set M=1 since we expect no more than one link for each 

entity in each source. 

Analysis of the completeness and quality of the three linkage approaches: Two of the investigators (RDB and RRF) 

visually compared the preferred name of the FDA active ingredient with the label of each DrugBank entity to which 

it was mapped by any of the three methods. A mapping was considered valid if either there was 1) an exact match 

between preferred name and DrugBank label, 2) one of the two entities represented a salt form or isomer of the other 

(e.g. “THEOPHYLLINE ANHYDROUS” and “Theophylline”), or 3) one of the entities was a known synonym for 

the other (e.g., “ASPIRIN” and “Acetylsalicylic acid”). In cases where cases (1) and (2) were not satisfied, and in-

vestigators could not rule out case (3) by their own domain knowledge, investigators queried PubChem
26
 for records 

listing the active ingredient preferred name and DrugBank label as either synonyms, or related by a compound, 

structure, or connectivity “sameness” relationship. Mappings meeting none of the three inclusion criteria were 

dropped and descriptive statistics were used to compare the accuracy and coverage of each method.  

Compilation of the final mapping: All mappings that met inclusion criteria were merged into a final mapping table 

and imported into the LinkedSPLs resource. Example queries were created to demonstrate the potential value of the 

linked data set. 

Results 

A total of 36,344 unique SPLs were loaded 

into the LinkedSPLs repository. These 

SPLs referred to 2,264 distinct active in-

gredients (identified by the “active moie-

ties” XML tag within each SPL). A 

Bio2RDF query for distinct drug records in 

DrugBank 3.0 provided 6,711 results, sug-

gesting that it should be feasible to map 

large proportion of active ingredients to DrugBank. Table 1 shows each method’s accuracy and coverage of active 

ingredients without considering overlap between the methods. The automatic method produced the greatest number 

of valid mappings (1,162). Each method produced a relatively similar proportion of true mappings (0.988, 0.985, 

and 0.986 for Approaches 1, 2, and 3 respectively). Table 2 shows a comparison of the overlap between the validat-

ed mappings produced by each of the methods, adding one more row to show that overlap between the “expert de-

rived” methods and automatic methods. The automatic method produced the largest number of unique validated 

mappings but also missed 40 mappings provided by at least one of the other two methods. A final set of 1,168 vali-

dated mappings was loaded into LinkedSPLs. This left a total of 1,096 active ingredients that could not be mapped 

to DrugBank. All the results along with an analysis of the strengths and shortcomings of each approach are available 

online at http://purl.org/net/linkedspls/docs. 

Discussion  

Our results show that the three approaches complement each other. The automatic approach performs very well in 

terms of accuracy of the links discovered although it missed some valid links that the manual approaches were able 

to find. A significant number of active ingredients remain unmapped in spite of the excellent accuracy of all three 

methods. The unmapped ingredients include salt or racemic forms of mapped ingredients (e.g., alpha tocopherol 

acetate D), elements (e.g., gold, iodine), and variety of natural organic compounds including pollens (N~200), foods 

(e.g., almond, apple, beef), proteins (e.g., capsaicin, globulins), and other biologics (e.g., cavia porcellus hair).  It is 

likely that not all ingredients will be included in DrugBank, and therefore other resources may be required to obtain 

complete mappings for active ingredients. 

Table 1. The results of three different approaches to mapping drug product active ingredients to DrugBank 3.0. 

 

Approach 1:  

InChI identifier 

Approach 2: 

ChEBI identifier 

Approach 3: Automatic 

Valid Not 

Valid 

Total Valid Not 

Valid 

Total Valid Not 

Valid 

Total 

Active ingredients (N=2,264) 424 5 429 707  11 718 1,162 17 1,179 

 

Table 2. A comparison of the overlap of validated mappings 

 InChI 

identifier 

ChEBI 

identifier 

InChI + 

ChEBI  

Automatic 

InChI identifier  424 261 424 395 

ChEBI identifier  --- 707 707 650 

InChI + ChEBI  -- -- 831 791 

Automatic -- -- -- 1162 
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Conclusion 

LinkedSPLs contains a high quality, though incomplete, mapping between SPL active ingredients and DrugBank 

chemical entities.  In future work we will further investigate the characteristics of unmapped active ingredients and 

explore whether alternate mapping strategies can successfully identify valid mappings. 
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