Example Knowledge Resource Illustrating Automated Consistency Validation in
RDF vs. XML

John Barkley (jbarkley@nist.gov)

With Semantic Web methods and tools, knowledge resource semantics made explicit can
be automatically validated for their consistency. Reducing the need for developing
specialized validation tools for each application provides a significant ROI.

This short example illustrates this advantage of using RDF over XML for knowledge
resources. For those who may be unfamiliar with the Semantic Web, this note provides an
example that can be understood with minimal effort.

This example is a variation of the textbook classic “Student Registration”. Semantics
include:

e Each course has only one instructor

e Each course has at least three students.

In XML, one might have:

<?xml version="1.0"?>
<Student_Registration>
<Courses>
<Course name="PHY499" >
<Instructor name="Nobel" />
<Students>
<Student name="Cornel" />
<Student name="Hall" />
<Student name="Phillips" />
</Students>
</Course>
</Courses>
</Student_Registration>

One might use XSLT or XQuery to develop an application to validate the data in this
knowledge resource according to the semantics listed above. In order to do this, the
semantics must be specified explicitly. For this example, XPath expressions are used:
e Only one Instructor: count(//Course[@name="PHY499"]/Instructor)=1

e At least three Students: count(//Course[@name="PHY499"]/Students/Student)>=3

Furthermore, one may want to test queries such as “Find all Courses that do not have just
the minimum number of Students” using the XPath expression:
/ICourse[not(count(//Course/Students/Student)>= 3)]. The list of Courses returned by this
expression is a subset of all Courses.

Having defined semantics and queries explicitly, how is their consistency to be assured?
This is typically done by manual inspection and testing. Since there are no automated
tools for checking the consistency of XPath expressions, such tools would have to be
developed. These tools would likely be specialized for this application.

However, semantics and queries can be validated for consistency by existing tools when
the knowledge resource is represented in OWL DL. In the Semantic Web tool Protege,
this knowledge resource might appear as illustrated below:

student-registration Protége 3.2 beta (file:\C:\barkley\pubsigrouplsemantic-weblexamples-sw-advantages\studen... |:||E|rg|

File Edit Project OWL Code Tools ‘Window Help

DoE tBE md ¢W ar g <§pmn§gé

r @ Metadata r . OWlLClasses r M Properties |/ & Individuals r = Forms |/ © # Instance Tree |

CLASS BROWSER INSTANCE BROWSER INDIVIDUAL EDITOR +-FT

For Project: @ studert-registration For Class: 9 Course For Individual: ’|PYH499 |

- C Asserted Inferred | | | il
Class Hierarchy ~ ‘? t}-‘ g
Thi has_instructor
WG Asserted Instances & * X @ Hobel
e obe
¥ (5 Course (1) |‘ PYH499 | ||
E) Find_Courses_with_not_just_min_Student_number | |'| ® e v & t.l-‘ *
@ Instructor (17 & Comel
. Student (3) ’ Hall
Asserted Types q; @ # Fhilips
E) Course
-

There are three OWL Classes: Course, Instructor, and Student. There is one individual in
the Class Course: PHY499 that has Instructor Nobel and three Students, i.e., Cornell,
Hall, and Phillips.

student-registration Protége 3.2 beta ([file:\C:\barkley\pubs\group\semantic-web\examples-sw-advantages\student-registration. pprj, OWL /R... |ZHE|E|

Eile Ecit Projsct OWL Code Tools ‘Window Help
DeHE tBm wd <9 a4k % <G| protége
r & Metacata r. DL Classes r- Properties r‘ Indivicuals r’ = Forms r.’lnstance Tree ‘
swoassootomn wlaasern =]
For Project: @ student-registration For Class: e Course (instance of owl:Class) [interred View
[a]
PEERIEH HI B e w tf> % ﬁ ﬁ ﬁ % Asserted Conditions [
owk:Thing NECESSARY & SUFFICIENT
v eCourse ehas_inslrudur exactly 1]
) Find_Courses_with_not_just_min_Studert_number | | | has_student min 3 i
@ nstructor NECESSARY ||
I:Thi cC -
@ Student owl:Thing =]
E
[& %R |« & o Lo view) Progertes View

As shown in the display above, the Class Course specifies the semantics: one instructor
per Course, and at least 3 Students in each Course.

student-registration Protége 3.2 beta (file:\C:\barkley\pubs\aroup\semantic-weblexamples-sw-advantages\student-registration.pprj, OWL /R... |ZHE”.X|

File Ecit Project OWL Code Tools ‘Window Help

NeHE tBH ma % ar % <@prorégé
|/ @ Metadata . O Classes r- Properties r‘ Inelivichuzlz rl = Forms r.QInstance Tres ‘
SUBCLASS EXPLORER 'm)), CLASS EDITOR AR = [F |
For Project: @ student-registration For Class: e Find_Courses_with_not_just_min_Student_number (instance of owl.Class)] inferred view
(]
Asserted Hierarchy il W & ﬁ ﬁ Q; 0 Asserted Conditions [
owkiing NECESSARY & SUFFICIENT
¥ 8 course &) not (has_student min 3) Il
e Find_Courses_with_not_just_min_Student_number NECESSARY
@ Instructor © Course b
INHERITED | —
Student
. U has_instructor exactly 1 [fl'olnCourse]
has_student min 3 [from Course]
I~

I:E L 3:: :. (f’; (ﬂ:j ib] $ [] ® Logic View () Properties Viewﬁ

This display shows the specification of the Class
Find_Courses_with_not_just_min_Student_number representing the query “Find all
Courses that do not have just the minimum number of Students”. This Class is specified
as a subclass of Course since all courses which do not have just the minimum number of
Students is a subset of all Courses.

In order to check the consistency of the semantics and queries, a reasoner, in this case,
Racer, is applied yielding the following result:

student-registration, Protége 3.2 beta (file:\C:\barkley\pubs\groupisemantic-weblexamples-sw-advantagesistudent-registration. pprj, OWL f RDF ... |Z||EH’X

File Edit Project OWL Code Tools Window Help
NeE “BE ma ¢% b & <@\ protégé

[@ Metadsta | () OWLClsses | B Properties | 4 individuals | = Forms || © ® Instance Tree |

SUBCLASS EXPLORER W), CLASS EDITOR CERSRERTE

For Project: @ studert-registration For Class: B Find_Courses_with_not_just_min_Stuclert_number [Inferred visw
Asserted Hierarchy il tf)’ & ﬁ ﬁ q: [] Asserted Conditions
owl:Thing NECESSARY & 5UFFICIENT
¥ & Course &) not (has_studert min 3) ”
© Find_Courses_with_not_just_min_Student_number NECESSARY (22
@ Instructor © course
INHERITED
Studert
. e has_instructor exactly 1 [ﬂnm(nurse]
has_student min 3 [from Course]
-
af s 1T»]
| |'| i1} 3:: 30 [f/-“; [7% ih] $ [] (@) Logic View () Properties View

As shown in the above, the Class Find_Courses_with_not_just_min_Student_number has
been marked in red, indicating an inconsistency. In this case, the reasoner identifies this
Class is always empty. A brief examination locates the error in its specification. The
Class of all Courses which do not have just the minimum number of students is not the
Class of all Courses whose count is not greater than or equal to 3 (i.e., less than 3). It is
the Class of all Courses whose count is greater than or equal to 4.

student—regislratiun Protégeé 3.2 beta (file:\C:\barkley\pubs\group\semantic-weblexamples-sw-advantages\student-registration. pprj, OWL / RDF ... EJEJ
File Edit Project OWL Code Tools Window Help
NeR BB wma &% ar % <@pmrégé
r & Metackta r WML Classes r- Properties r’ Inclivicuals r = Forms r # Inztance Tree
: GHESNERTS
For Project: @ student-registration For Class: O|F\nd_Coulsas_w|th_nouust_mm_Swdent_number [Inferred view
n . w S
Asserted Hierarchy & on W Asserted Conditions
owl:Thing NECESSARY & SUFFICIENT
v Course has_student min 4 o
Find_Courses_with_not_just_min_Student_number HECESSART i
Instructor Lotiss
INHERITED
Student
e has_instructor exactly 1 [from Course][C |
-
Al i [Tv]
| |'| A |k B @) Logic view (! Properties View

This display shows the results of the consistency check once the error has been corrected.

Note that the XPath expression for the query “Find all Courses that do not have just the
minimum number of Students” is also incorrect, and should be:
/[Course[count(//Course/Students/Student)>= 4]

In this example, RDF/OWL tools have revealed an error in the specification of semantics
and queries which resulted from a mistranslation of the English expression of the query -
not an uncommon occurrence.

Additional Notes:

e Generally speaking, knowledge resource semantics represented in either XML or
RDF can be explicitly stated in a form that enables automated processing. For XML,
the automated processing only includes validating the information in the knowledge
resource against the specified semantics which are often called “constraints”. There
are no automated tools for validating the specified semantics themselves for their
consistency. This is because, in general, validating a collection of expressions of the
expressivity of XPath is undecidable, i.e., an automated process cannot exist. For
OWL DL representations of knowledge resources, this is not the case. It has been
shown mathematically that for semantics expressed in OWL DL, their consistency is
decidable.

