
Semantic Web & BI
Triples (Quads)

Sources of contextualized triple graphs

Analysis & Discovery

Declarative application modelling



Sets API & Functional Model
Triples and their contexts are arranged in a three sets elements dispositions so each set represents 
one part of the triple and the intersections between two of the sets represents a ‘Kind’ 
corresponding for the third set. Each Kind aggregates ‘attributes’ and ‘values’ which accounts for 
the classes and metaclasses of the Resources of the third set themselves. Elements with the same 
attributes are of the same class and classes sharing the same values are of the same metaclass.

Element, Set, ElementType, Resource, Predicate. Hierarchies. Functional features. Type tree 
relation with hashed keys. All sets elements are subclasses of Resource and have all four
triple/quad resource components (ctx, subject, predicate, object). The kind of Resource each part 
will holds depends on which Resource subclass is used.

Every set element is an instance of Resource, class which accounts for an individual or reifyied 
Resource (individual URI or another triple Resource treated as a Resource). Traversal over the 
sets structure is achieved performing joins between corresponding set resources components and 
using element types as functors in a functional environment.



Occurrence Attribute Value

Subject Predicate Object

Predicate Subject Object

Object Predicate Subject

Triples:

Occurrences (Subject ex.):
[context] [SubjectURI] [classID] [metaClassID]

Kinds:
[metaClassID] [classID] [attribute] [value]

Contexts:
[context / time] [Subject] [Predicate] [Object]

Subjects Predicates

Objects

Contexts
(Triples)

Object 
Kinds

Pred. 
Kinds

Subj. 
Kinds

SPO Model (Facts)



SPO Model (Facts)
SPO Model is the basic abstraction for source triples/graphs which will be
aligned/merged/augmented via the other set models.

Kinds aggregate classes/metaclasses hierarchies encoded in class/metaclass resources.
Reifyied Kinds accounts for type hierarchy trees into each SPO set. A class is determined by the 
intersection of Subjects having the same attributes. A metaclass is the set of same attribute values 
for a given class.

Sets api manipulation. Sets hold hashed keys relating an element’s position into set types tree to 
an elements map. Functional algorithms.

Abstract Predi:cates, possible kind individuals: query.



Semiotic Model (SCO, Contexts)

Occurrence Attribute Value

Sign Concept Object

Concept Object Sign

Object Concept Sign

Triples:

Occurrences (Object ex.):
[context] [ObjectURI] [classID] [metaClassID]

Kinds:
[metaClassID] [classID] [attribute] [value]

Contexts:
[Topic] [Object] [Concept] [Sign]

Signs
(SPOs)

Concepts
(SPO Kinds)

Objects
(SPO Triples)

Topics

Roles

Context
Individuals



Semiotic Model (SCO, Contexts)
Identify equivalent Resources and merge. Similar object graphs structures.

Signs / Individual

Concepts / Context

Objects / Topic



Behavior Model (TSP)

Occurrence Attribute Value

Scenario Topic Player

Player Scenario Topic

Topic Scenario Player

Triples:

Occurrences (Topic ex.)
[context] [TopicURI] [classID] [metaClassID]

Kinds:
[metaClassID] [classID] [attribute] [value]

Contexts:
[Purpose] [Topic] [Scenario] [Player]

Scenarios
(SCO Kinds)

Players
(SCOs)

Topics
(SCO Topics)

Purpose
(Patterns)

Binding

Performance

Definition



Behavior Model (TSP)
Topics / Role

Scenarios / Definition

Players / Performance

Purposes (Patterns)

Topics as a pattern to “reacts” to input triples. Merge topics. Update sets tree hash 
map keys. Identify similarity, later in Semiotic Model identify equivalence.



Applications
DOM model. Peers / Node applications.
Merge (models). Mapred / DCI / monads.

Nodes: Topics. Purpose. Transforms: rules flows events declaratively stated.
Possible individuals. Node nav hierarchies. Analysis.

Linked Topics Purpose driven apps. Declarative, domain driven development.

Backend: p2p nodes running services/clients (apps) declarative clients / agents. 

Triple encoding and peers resolution. Registry, dataflow.

Applications and client agents evolve from domain data (and schema) specifications.


